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Introduction

Motivation:

• Develop efficient multigrid algorithms for space-(time) discontinuous Galerkin
finite element discretizations of advection dominated flows.
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Main Features of Space-Time DG Methods

• Simultaneous discretization in space and time: time is considered as an
additional dimension to the spatial dimensions.

• Discontinuous basis functions, both in space and time, are used with only a weak
coupling across element faces resulting in an extremely local, element based
discretization.

• The space-time DG method is closely related to the Arbitrary Lagrangian Eulerian
(ALE) method.
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Benefits of Space-Time DG Methods

• A locally conservative discretization is obtained on moving and deforming meshes
for conservative pde’s.

• Well suited for hp-adaptation and parallel computations.

• Space-time formulations are well suited for problems which require dynamic
meshes, such as free surface problems, multifluid flows, and fluid-structure
interaction.

• No data interpolation or extrapolation is necessary at free boundaries and after
mesh movement or adaptation.
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Disadvantages of Space-Time DG Methods

• The space-time DG method generally results in an implicit formulation, which
requires the solution of a system of algebraic equations.
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Applications

• Compressible and incompressible Euler and Navier-Stokes equations, e.g.
fluid-structure interaction and free surface problems

• Multifluid flows using two-fluid elements

• Dispersed multiphase flows

• Free surface gravity waves
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Computational Efficiency

• The computational cost of solving the (non)linear algebraic system resulting from
a DG discretization with a multigrid or other iterative method is considerable and
needs to be reduced.

• In particular, for higher order accurate DG discretizations of advection dominated
flows with thin boundary layers convergence rates are unsatisfactory.
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Objectives

• To investigate multigrid performance for higher order space-time discontinuous
Galerkin discretizations of advection dominated flows using a detailed multilevel
analysis.

• To improve multigrid performance by optimizing the multigrid smoother by
minimizing the operator norm and spectral radius of the multigrid error
transformation operator.

• To investigate the theoretically obtained results on realistic test cases.
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Outline of Presentation

• Multilevel analysis and optimization of multigrid performance

• Performance of optimized multigrid algorithms

• Conclusions
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Solution Strategies for Implicit DG Discretizations

Main solution techniques for solving implicit DG discretizations

• Newton multigrid methods with ILU smoother in combination with GMRES

• FAS multigrid in combination with explicit pseudo-time integration methods

For industrial applications, both approaches need significant improvements for higher
order DG discretizations, both in terms of computing time and memory use.
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Pseudo-time Integration

• Let the system of algebraic equations of the space-time DG discretization at time
level n be denoted as

NhÛn
h = Fh.

• A pseudo time derivative is added to the system, which is integrated to
steady-state in pseudo-time

∂Û∗h
∂τ

= −
1
4t

(NhÛ∗h − Fh).

• At steady state Ûn
h = Û∗h .

• Convergence to steady state in pseudo-time is accelerated using a multigrid
algorithm with a Runge-Kutta type smoother.

• Since time-accuracy is not important in pseudo-time there is a lot of room to
optimize the Runge-Kutta smoother in the multigrid algorithm.
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• For explicit or point-implicit RK smoothers the pseudo-time approach is easy to
implement, has minimal memory overhead and, due to its locality, combines well
with discontinuous Galerkin discretizations.

• Explicit and point-implicit smoother are very easy to use for non-linear problems
in combination with a FAS multigrid algorithm.

• The algorithm works reasonably well for second order accurate DG discretizations
of the (in)compressible Euler and Navier-Stokes equations, but not for higher
order accurate DG discretizations.

The aim is to find new multigrid algorithms, which also work well for higher order
accurate discretizations of advection dominated flows, including thin boundary layers.
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Multigrid Performance

Multigrid performance is affected by:

• Efficiency of iterative solver in reducing high-frequency error components

• Coarse grid discretization

• Transfer of data between coarse and fine meshes
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Approach

• Perform extensive multi-level Fourier analysis of multigrid algorithms for
space-time DG discretizations using various smoothers, e.g. ILU, SSOR,
Runge-Kutta methods.

• Investigate different coarse grid discretizations.

• Improve multigrid performance by optimizing free coefficients in the smoother and
other multigrid parameters.

• All discrete Fourier analysis results are verified using matrix analysis.

The matrix analysis also allows the investigation of the effect of boundary
conditions, but is too expensive to be used in multigrid optimization.
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Advection-Diffusion Equation

Model problem:

• The space-time discretization for the advection-diffusion equation

∂u
∂t

+ a · ∇u = ν∆u

can be represented by the linear system

LhÛn
h = Fh.

• The discretization depends on the flow angle and the dimensionless numbers

CFL =
|a|4t

h
, Reh =

|a|h
ν
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Standard hp-Multigrid

p = 3

p = 1

p = 2 p = 2

p = 3

h MULT

• Combination of p-multigrid with h-multigrid at the lowest polynomial level (p = 1).

• Note, use p = 0 in coarsest mesh is not advisable.
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Multigrid Convergence rates

• For linear problems the multigrid error is controlled by the multigrid error
transformation operator

e1
h = Mnh,pe0

h.

• An upper bound for the error and residual after one full multigrid cycle is

‖e1
h‖ ≤ ‖Mnh,p‖‖e0

h‖,

‖d1
h‖ ≤ ‖LhMnh,pL−1

h ‖‖d
0
h‖,

where the operator norm is defined as

‖Mnh,p‖ := sup
e0

h 6=0

‖Mnh,pe0
h‖

‖e0
h‖

,

with an analogous definition for ‖LhMnh,pL−1
h ‖.

• The asymptotic convergence rate of the multigrid algorithm is given by the
spectral radius of Mnh,p .

17 / 61



Multigrid Optimization with Runge-Kutta Smoothers

• The multigrid performance is optimized by searching for Runge-Kutta smoother
coefficients such the operator norm ‖Mnh,p‖ or the spectral radius of ρ(Mnh,p) is
minimized.

• The optimization is performed under the constraint that the spectral radius of the
multigrid error transformation operator and the smoother for all p-levels is less
than one.

• In order to compute the operator norms and spectral radii efficiently discrete
Fourier analysis is used.
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Discrete Fourier Analysis in 2D

• Consider the infinite mesh Gh, defined in R2 as

Gh :=
{

(x1, x2) = (k1h1, k2h2) | k ∈ Z2, h ∈
(
R+
)2}

.

• Define the Fourier space

F(Gh) := span
{

eiθ·x/h | θ ∈ Θ := [−π, π)2, x ∈ Gh

}
contains any bounded infinite grid function.

• Due to aliasing, Fourier components with |θ̂| := max{|θ1|, |θ2|} ≥ π are not
visible on Gh.
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• For each vh ∈ F(Gh) there exists a Fourier transformation, hence vh(x) can be
written as a linear combination of Fourier components

vh(x) =

∫
|θ|≤π

v̂h(θ)eiθ·x/hdθ, x ∈ Gh,

with inverse transformation

v̂h(θ) =
1

4π2

∑
x∈Gh

vh(x)e−iθ·x/h, −π ≤ θj < π,
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Three-level Discrete Fourier Analysis
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Aliasing modes for three-level discrete Fourier analysis on uniformly coarsened mesh.
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Main Steps Discrete Fourier Multilevel Analysis

The main steps in the discrete Fourier analysis can be summarized as:

• Compute for each mesh and polynomial level the discrete Fourier symbol of the
DG discretization and smoother. (Three p- and three h-levels are used in the
Fourier analysis).

• Compute the discrete Fourier symbol of the mesh transfer operators, viz.
restriction and prolongation operators. These operators result in a coupling of
modes.

• Combine all individual operators into the multigrid error transformation operator.
This results in the Fourier symbol of the hp-error transformation operator M̂nh,p .

• For a 2D steady state problem with a fourth order accurate space-time DG
discretization of the advection-diffusion equation this requires for each Fourier
mode the solution of an eigenvalue problem with a 160× 160 matrix.
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• Compute for each Fourier mode the spectral radius of the error transformation
operator.

• The operator norm ‖Mnh,p‖ can be linked to its discrete Fourier transform

‖Mnh,p‖ = sup
θ∈Θnh,p\Ψnh,p

√
ρ
(
M̂nh,p(θ)

(
M̂nh,p(θ)

)∗)
• The asymptotic convergence factor is given by the spectral radius

µe = sup
θ∈Θnh,p\Ψnh,p

ρ
(
M̂nh,p(θ)

)
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Point-Implicit Runge-Kutta Method

Since point-implicit Runge-Kutta methods combine very well with FAS multigrid we first
explore these algorithms.

• The point-implicit Runge-Kutta method is defined as

w0 = w l
nh,p

(I + λσβii )wi = w0 −
i−1∑
j=0

(
βij wj + αijλσ(Lnh,pwj − fnh,p)

)
, i = 1, · · · , 5,

w l+1
nh,p = w5,

with αij Runge-Kutta coefficients, λσ = 4σ/4τ , and4σ the pseudo-time step.

• At the steady state of the σ-pseudo-time integration we obtain the solution of
Lnh,punh,p = fnh,p .

• The point-implicit Runge-Kutta method is straightforward to use for nonlinear
problems.
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Optimization of Runge-Kutta Smoothers

• The only requirement we impose on the Runge-Kutta coefficients αij and βij is
that the algorithm is first order accurate in pseudo-time.

• In particular, this implies the consistency condition

4∑
j=0

α5j = 1.

• All other Runge-Kutta coefficients can be optimized to improve the pseudo-time
convergence in combination with the multigrid algorithm.

• The RK smoother coefficients are optimized separately for each p-level.
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Three-level hp-Multigrid
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Three-level hp-Multigrid
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Stretched Meshes

• The hp-multigrid convergence rapidly deteriorates on stretched meshes which are
necessary to capture boundary layers.

• Also, for uniform meshes the performance of hp-multigrid has room for
improvement
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ILU-Smoother

Remark:

• Multigrid convergence is much better for higher order DG discretizations with an
ILU smoother.

• The ILU smoother requires, however, a large fill-in of 7 to 10 times the original
matrix for the considered problems, and is not really practical for large scale
problems
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hp-Multigrid as Smoother Algorithm

The hp-multigrid performance for higher order DG discretizations is improved using the
following steps:

• h-Multigrid, combining uniform and semi-coarsened meshes, is used as smoother
in the p-multigrid at all p-levels, resulting in the hp-Multigrid as Smoother
algorithm.

• A low cost semi-implicit Runge-Kutta smoother is introduced to deal with
boundary layers and highly stretched meshes.
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hp-MGS Multigrid

p = 3

p = 1

p = 2 p = 2

p = 3

h MULT

h MULT h MULT

h MULT

h MULT

S.C.

S.C.

S.C.

S.C.

S.C.

• hp-multigrid with semi-coarsening Multigrid as Smoother algorithm at all p-levels

31 / 61



MGS-Algorithm

2,1 2,2

1,1

1,2

4,1 4,2 4,4 2,4 1,4

• Multigrid as Smoother algorithm with semi-coarsening in x- and y-direction
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Semi-Implicit Runge-Kutta Method

• The semi-coarsening multigrid and the block matrix structure of the DG
discretization combine well with a semi-implicit Runge-Kutta method.

• Split the matrix Lnh,p , when sweeping in the local i1-direction, as

Lnh,p = Li11
nh,p + Li12

nh,p,

and for sweeps in the local i2-direction as

Lnh,p = Li21
nh,p + Li22

nh,p.
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Semi-Implicit Runge-Kutta Method

• The semi-implicit Runge-Kutta method for sweeps in the local i1-direction can be
defined as

w0 = w l
nh,p

wk =
(
Inh,p + βkλσLi11

nh,p

)−1(w0 −
k−1∑
j=0

αkjλσ
(
Li12

nh,pwj − fnh,p
)
, k = 1, · · · , 5,

w l+1
nh,p = w5,

• The semi-implict Runge-Kutta method results in a set of uncoupled
block-tridiagonal linear systems on a structured mesh.

• At steady state of the σ-pseudo-time integration we obtain the solution of
Lnh,punh,p = fnh,p .

• For p = 3 and steady state problems we need to optimize 45 Runge-Kutta
coefficients.
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hp-MGS Error Transformation Operator

• The initial error and the error after one application of the multigrid algorithm are
related as

e1
nh,p = Mnh,pe0

nh,p,

with Mnh,p the hp-MGS multigrid error transformation operator.

• The hp-MGS multigrid error transformation operator Mnh,p can be defined
recursively as

Mnh,p =
(
HUnh,p

)ν2
(
Inh,p − T p

nh,p−1(Inh,p−1 −Mnh,p−1)(Lnh,p−1)−1

Qp−1
nh,p Lnh,p

)(
HUnh,p

)ν1 if p > 1,

= HUnh,1 if p = 1.
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h-MGS Error Transformation Operator

• The h-MGS error transformation operator HUnh,p is equal to

HUnh,p =
(
HS1

nh,pHS2
nh,p
)γ(Inh,p − Pnh

2nh,p(I2nh,p − HU2nh,p)

(L2nh,p)−1R2nh
nh,pLnh,p

)
(HS2

nh,pHS1
nh,p
)γ
, if n < m,

= 0, if n = m.
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Semi-Coarsening Smoother Error Transformation Operator

• The semi-coarsening multigrid error transformation operators HS1
nh,p and HS2

nh,p ,
are equal to

HS1
nh,p =

(
S1

nh,p
)µ2
(
Inh,p − Pnh

(2n1,n2)h,p(I(2n1,n2)h,p − HS1
(2n1,n2)h,p)

(L(2n1,n2)h,p)−1R(2n1,n2)h
nh,p Lnh,p

)(
S1

nh,p
)µ1 , if n < m,

= 0, if n = m,

HS2
nh,p =

(
S2

nh,p
)µ2
(
Inh,p − Pnh

(n1,2n2)h,p(I(n1,2n2)h,p − HS2
(n1,2n2)h,p)

(L(n1,2n2)h,p)−1R(n1,2n2)h
nh,p Lnh,p

)(
S2

nh,p
)µ1 , if n < m,

= 0, if n = m.

• The error transformation operator is analyzed using discrete Fourier analysis
(three p-levels and three uniformly and semi-coarsened h-levels) for the 2D
advection-diffusion equation.
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Discrete Fourier Multilevel Analysis of hp-MGS Algorithm in 2D

The following complications arise in the discrete Fourier analysis of the hp-MGS
algorithm

• The Fourier modes on the uniformly and semi-coarsened meshes have different
aliasing properties.

• Fourier symbols on the uniformly and semi-coarsened meshes must be
combined, which is complicated due to aliasing.

• Large number of multigrid levels, three p-levels and three uniformly and
semi-coarsened mesh levels.
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Discrete Fourier Analysis of hp-MGS Algorithm
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Overview Computational Complexity of hp-MGS Algorithm

LU1
cost LU2

cost LU3
cost LU1

cost/LU2
cost LU1

cost/LU3
cost

12326 NM 5942 NM 5840 NM 2.1 2.1

B1
cost B2

cost B3
cost B1

cost/B2
cost B1

cost/B3
cost

14331 NM 2091 NM 1773 NM 6.9 8.1

Overview of computational complexity of hp-MGS algorithm consisting of
LU-decomposition cost and cost of forward and backward solution.

Mem1 Mem2 Mem3 Mem1/Mem2 Mem1/Mem3

3081 NM 1551 NM 1478 NM 2.0 2.1

Overview of memory storage for LU-decomposition matrices in hp-MGS algorithm.

(1-hp-MGS, 2-only smoother at p = 2, 3 levels, 3-hp-multigrid).
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Multilevel Analysis hp-MGS Algorithm, Uniform Meshes
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Multilevel Analysis hp-MGS Algorithm, Uniform Meshes
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(Reh1 = Reh2 = 103, Ah = 1, α = 45◦, steady state)
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Multilevel Analysis hp-Algorithm, Uniform Meshes
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Multilevel Analysis hp-MGS Algorithm, Stretched Meshes

400 350 300 250 200 150 100 50 0
30

20

10

0

10

20

30

Real

Im
ag
in
ar
y

Eigenvalues Lh,1

1200 1000 800 600 400 200 0
40

30

20

10

0

10

20

30

40

Real

Im
ag
in
ar
y

Eigenvalues Lh,2

Spectra of DG matrices for p = 1 and 2.
(Reh1 = 10−1,Reh2 = 103, Ah = 100, α = 75◦, steady state)
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Multilevel Analysis hp-MGS Algorithm, Stretched Meshes
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Spectra of DG matrix Lh,3 and error transformation operator of hp-MGS algorithm.

(Reh1 = 10−1,Reh2 = 103, Ah = 100, α = 75◦, steady state)
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Multilevel Analysis hp-MGS Algorithm, Stretched Meshes
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Spectra of error transformation operator of the hp-MGS(1) and hp-MGS algorithms.
(Reh1 = 10−1,Reh2 = 103, Ah = 100, α = 75◦, steady state)
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Spectra Time-Accurate Problems
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Spectra of DG matrices Lh,p for p = 1 and 3.

CFL = 1, Ah = 1, Reh1 = Reh2 = 105, flow angle 75◦, ρ(Mnh,p) = 2.× 10−18,
‖Mnh,p‖ = 2.× 10−18.
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Spectra Time-Accurate Problems
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Spectra of DG matrices Lh,p for polynomial orders p = 1 and 3.

(CFL = 1, Ah = 100, Reh1 = 10−1, Reh2 = 103, flow angle 75◦,
ρ(Mnh,p) = 2.× 10−18, ‖Mnh,p‖ = 2.× 10−17.
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Model Problems on Non-Uniform Mesh

• In order to test the performance for boundary layer problems we consider the
advection-diffusion equation on [0, 1]2 with Dirichlet and Neumann boundary
conditions.
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Solution of advection-diffusion equation on a 32× 32 Shishkin mesh .

• Based on the local Reh number in each element the best RK-coefficients are
selected.
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Convergence Rate Original Multigrid Scheme

Work units

L
/L
0

1000 2000 3000 4000
10-4

10-3

10-2

10-1
dRK5 coarse approx.
fRK5 coarse approx.
EXI/EXV coarse approx.
dRK5 coarse exact
fRK5 coarse exact
EXI/EXV coarse exact

Convergence rate of original multigrid algorithm for 4th order DG discretization
advection-diffusion equation (Re = 10, α = 22.5◦)
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Mesh Dependence of Multigrid Convergence Rate
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Re-Dependence of Multigrid Convergence Rate
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α-Dependence of Multigrid Convergence rate
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Flow angle dependence of convergence rate of multigrid algorithm for 4th order DG
discretization of advection-diffusion equation (32× 32 mesh, Re = 1000)
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Rotating Flow Field
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mesh for a rotating advective velocity field.
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Mesh Dependence of Multigrid Convergence Rate
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Grid dependence of convergence rate of the hp-MGS algorithm for a 4th order
accurate space-time DG discretization of advection-diffusion equation at Re = 1000 for

a rotating velocity field.
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Multilevel Analysis hp-MGS Algorithm – Compressible Euler Equations
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Spectra of DG matrices Lh,p for p = 1 and 2 (Ma = 0.4, Ah = 1, α = 45◦).
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Multilevel Analysis hp-MGS Algorithm – Euler Equations
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algorithm (Ma = 0.4, Ah = 1, α = 45◦).
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Conclusions

The hp-MGS algorithm combines a number of innovations:

• The use of a semi-coarsening h-MGS algorithm as smoother at all p-multigrid
levels.

• A new semi-implicit Runge-Kutta smoother with optimized coefficients.

• The use of discrete Fourier analysis of the complete hp-MGS algorithm in
two-space dimensions to analyze and optimize the algorithm.
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Conclusions

• The hp-MGS algorithm shows an excellent convergence rate for both advection
and diffusion dominated solutions of the advection-diffusion equation, including
thin boundary layers.

• The larger computational cost of the hp-MGS algorithm, compared to standard
hp-multigrid, is more than compensated by its faster convergence rate and
robustness.
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Outlook

• The optimization algorithm currently is used to optimize the multigrid performance
for the compressible Euler and Navier-Stokes equations.

• Extensions to unstructured meshes with mixed hexahedral and prismatic
space-time elements are being tested. These hp-MGS algorithms heavily rely on
the ability of discontinuous Galerkin discretizations to deal with nonconforming
meshes.
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