Available from: http://www.math.utwente.nl/publications

University of Twente,

(October 2011). ISSN 1874-4850.

Memorandum 1957

The Netherlands

Enschede,

Department of Applied Mathematics,

Discrete Fourier Analysis of
Multigrid Algorithms!

~ A
G~

Ad

(‘..1'

J.J.W. van der Vegt and S. Rhebergen

Department of Applied Mathematics
University of Twente
P.O. Box 217, 7500 AE Enschede
The Netherlands

October 8, 2011

!This research was partly funded by the ADIGMA project which was executed in the 6th Re-
search Framework Work Programme of the European Union within the Thematic Programme Aero-
nautics and Space



Contents

Introduction

Brief Overview of Multigrid Techniques

2.1 Standard h-Multigrid algorithm for linear systems . . . ... ... ... ...

2.2 hp-Multigrid as Smoother Algorithm . . . . . . . ... ... ... ... ...,

2.3 Runge-Kutta type multigrid smoothers . . . . . . . . .. .. ... ... ...,

2.4 Multigrid algorithms for nonlinear systems . . . . . . . ... ... .......
2.4.1 Newton multigrid method . . . . . . .. ... ... ... ... ...
2.4.2 Full approximation scheme . . . . . .. ... ... ... . L.

2.5  Full multigrid method . . . . . . .. ... o o

Multigrid Error Transformation Operators
3.1 h-Multigrid error transformation operator . . . . . .. ... ... ... ...,
3.2 hp-MGS Multigrid error transformation operator . . . . . ... ... ... ..

Fourier Analysis of Discrete Operators

4.1 Introduction . . . . . . . . . ..

4.2 Fourier symbols of grid operators . . . . . ... .. Lo
4.2.1 Aliasing of Fourier modes . . . . . . . . .. .. ... ... .......
4.2.2 Discrete operator and smoothing operator . . . . . . .. ... .. ...
4.2.3 Discrete Fourier transform of pseudo-time smoothers . . . . . . .. ..
4.2.4  h-Multigrid restriction operators . . . . . ... ... ... ...
4.2.5  h-Multigrid prolongation operators . . . . . . ... .. ... ... ...
4.2.6  p-Multigrid restriction and prolongation operators . . . .. .. .. ..

4.3 Two-level Fourier analysis . . . . .. . .. ... ... . L.

4.4 Three-grid Fourier analysis . . . . . . . . . .. ... .. o

4.5 Discrete Fourier Analysis hp-MGS algorithm . . . . . . . ... ... ... ...

Definition of Convergence Rates

Auxilary Results

A.1 Orthonormality of Fourier modes . . . . . . . . ... ... ... ... .....
A.2 Discrete Fourier transform and its inverse on an infinite mesh . . . . . . . ..
A.3 Discrete Fourier transform and its inverse on a finite mesh . . . . . . . .. ..
A4 Parsevalsidentity . . . . . . . ...
A5 Aliasingmodesin 2D . . . . . ... oL

18
18
20

27
27
29
30
33
34
35
42
45
46
o1
62

66



Abstract

The main topic of this report is a detailed discussion of the discrete Fourier multilevel
analysis of multigrid algorithms. First, a brief overview of multigrid methods is given for
discretizations of both linear and nonlinear partial differential equations. Special attention is
given to the hp-Multigrid as Smoother algorithm, which is a new algorithm suitable for higher
order accurate discontinuous Galerkin discretizations of advection dominated flows. In order
to analyze the performance of the multigrid algorithms the error transformation operator
for several linear multigrid algorithms are derived. The operator norm and spectral radius
of the multigrid error transformation are then computed using discrete Fourier analysis.
First, the main operations in the discrete Fourier analysis are defined, including the aliasing
of modes. Next, the Fourier symbol of the multigrid operators is computed and used to
obtain the Fourier symbol of the multigrid error transformation operator. In the multilevel
analysis, two and three level h-multigrid, both for uniformly and semi-coarsened meshes,
are considered, and also the analysis of the hp-Multigrid as Smoother algorithm for three
polynomial levels and three uniformly and semi-coarsened meshes. The report concludes
with a discussion of the multigrid operator norm and spectral radius. In the appendix some
useful auxiliary results are summarized.



Chapter 1

Introduction

Multigrid algorithms are very efficient and versatile techniques for the solution of large sys-
tems of (non)linear algebraic equations. During the past decades many different multigrid
algorithms have been developed and applied to a wide variety of problems. In particular, the
solution of the algebraic systems resulting from discretizations of partial differential equa-
tions using finite difference, finite volume or finite element methods has been very important.
Apart from the development and application of multigrid algorithms also extensive math-
ematical analysis has been conducted for many multigrid algorithms. This has resulted in
detailed knowledge about the design of optimal multigrid algorithms, their performance and
efficient implementation. For many problems multigrid algorithms now achieve an excellent
computational efficiency and robustness and are widely used in many (commercial) codes.
Also, their suitability for use on parallel computers, which is nowadays essential for large
scale problems, is very important.

Achieving excellent multigrid performance is, however, nontrivial. In particular, new classes
of problems frequently require a detailed analysis and optimization of the multigrid al-
gorithm. The objectives of these notes are to summarize some important mathematical
techniques for the analysis of the performance of multigrid algorithms. An important tool
is discrete Fourier analysis, which will be used to estimate the convergence rate of both
two- and three-level A-multigrid algorithms. The performance estimates obtained with dis-
crete Fourier analysis, in particular the spectral radius and operator norms of the multigrid
operator, are very useful in the analysis and optimization of multigrid algorithms.

These notes do not aim at providing a comprehensive survey of multigrid methods. Some
basic knowledge of multigrid methods is assumed. There are many introductory text books
on multigrid methods with different levels of mathematical sophistication which can be
consulted for additional information. See for instance Briggs et al. [2], Hackbusch [3],
Hackbusch and Trottenberg [4], Shaidurov [10], Trottenberg et al. [11] and Wesseling [16].

The main components in a multigrid algorithm are an iterative method and coarsened ap-
proximations of the algebraic system. In addition, restriction and prolongation operators
are necessary to connect the various approximations of the algebraic system. In case of
partial differential equations the coarsened algebraic systems can be obtained either by dis-
cretizing the equations on meshes with a different number of degrees of freedom, resulting in
h-multigrid algorithms, or by using discretizations with different orders of accuracy, which
give p-multigrid methods. Of course combinations of both techniques are possible, resulting
in hp-multigrid methods.



The design of the iterative method, which is frequently called a smoother since it mainly
acts on the high frequency components of the error, and the restriction and prolongation op-
erators are crucial for multigrid performance. Also, the coarsening of the algebraic system,
in particular the discretization on the coarse meshes in case of numerical approximations
of partial differential equations, can have a significant impact on multigrid performance. If
these components in the multigrid algorithm are not chosen properly then a severe degrada-
tion of the convergence rate can be observed, and even divergence of the multigrid algorithm
is possible.

For linear problems discrete Fourier analysis can provide detailed information on these as-
pects. This is achieved by analyzing the full two- or three-level multigrid algorithm, which
will be discussed in detail in this report. These analysis techniques are rather technical, but
they provide a wealth of information about the multigrid algorithm. Due to its complexity,
the analysis of multigrid algorithms is frequently restricted to two-level analysis, or even
the simpler analysis of the multigrid smoother. For many problems this results in a rather
poor prediction of the actual multigrid performance. It is therefore important to consider
realistic model problems and extend the analysis to three grid levels, see e.g. Wienands and
Oosterlee [18]. This can significantly enhance the accuracy of the analysis and is essential if
one aims at optimizing the multigrid algorithm.

For higher order accurate discretizations it is important to use hp-multigrid algorithms.
These algorithms generally use a V-cycle p-multigrid and h-multigrid at the coarsest p-
level. These multigrid algorithms give a significantly improved convergence rate for higher
order problems, but are not always sufficiently efficient, e.g. for higher order accurate
discontinuous Galerkin discretizations of advection dominated flows. For this purpose we
extended the hp-multigrid algorithm to the hAp-Multigrid as Smoother algorithm, which also
includes semi-coarsening, see Van der Vegt and Rhebergen [14, 15]. In this report we will
also discuss the multilevel Fourier analysis of an hp-MGS algorithm with three p-levels and
three uniformly coarsened and three semi-coarsened h-multigrid levels. This analysis then
essentially covers all reasonable hp-multigrid algorithms.

The multilevel analysis is also important for nonlinear problems. These problems, which are
frequently solved with (versions of) a Newton-multigrid method or a Full Approximation
Scheme (FAS), are much harder to solve. An important component in many nonlinear
algorithms is, however, the solution of linearized equations, but also in case of fully nonlinear
algorithms the analysis of linearizations of these algorithms is important.

The outline of these notes is as follows. In Chapter 2 we give an overview of basic multigrid
algorithms for linear and nonlinear systems, including the hp-MGS algorithm. Next, in
Chapter 3 the general formulation of the multigrid error transformation operator for linear
problems will be derived. First for standard hA-multigrid and then for the hp-MGS algorithm.
In Chapter 4 multilevel Fourier analysis will be discussed. Both, two- and three-level h-
multigrid and the hp-MGS algorithm will be discussed in detail. This analysis provides the
spectral radius and operator norms of the multigrid algorithm which be discussed in Section
5.



Chapter 2

Brief Overview of Multigrid
Techniques

In these notes we are interested in the analysis of multigrid techniques for the solution of
algebraic systems originating from the discretization of partial differential equations with
for instance a finite difference, finite volume or finite element method. Since the main
analysis tool, viz. discrete Fourier analysis, is primarily limited to linear problems, we will
first discuss the standard h-multigrid algorithm for linear systems and its extension to higher
order accurate discretizations, viz. the hp-MGS algorithm. In addition, several Runge-Kutta
type smoothers will be discussed. Since the analysis techniques for linear problems are also
applicable to linearizations of nonlinear algorithms, we will also briefly discuss multigrid
techniques for nonlinear problems, in particular the Newton multigrid method and the Full
Approximation Scheme (FAS).

In order to simplify notation we define the product and division of vectors element-wise.
Hence for a,b € R? we have

ab:= (aiby,--- ,aqbg) € RY and a/b:= (ay/bi,--- ,aq/bg) € RY.

2.1 Standard h-Multigrid algorithm for linear systems

In a standard A-multigrid algorithm for the solution of the algebraic system obtained after the
discretization of partial differential equations we introduce a finite sequence of increasingly
coarser meshes M,,p,, with n = (nq,--+ ,n4) € N® and h € (R*)?%. These meshes are used to
generate approximations of the discretization on the fine mesh Mj,. For simplicity we will
only consider in the analysis uniformly and semi-coarsened meshes, but multigrid algorithms
can also be applied to discretizations on general unstructured meshes.

In the A-multigrid algorithm we need to connect the different meshes using restriction oper-
ators

h .
Zlh : Mnh _>Mmh

and prolongation operators
PT%Z Mo = M,

with n,m € N¢ and n; < m;, i € {1,---,d}, where n; < m; for some j € {1,--- ,d}. The
main goal of the multigrid algorithm is to iteratively solve in an efficient way the system of



Algorithm 1 Standard h-Multigrid Algorithm (H,p,)

Unh = th(thv fnha Unh, TV, V1, V2, ’Y)
if coarsest mesh then
-1

Unh = th fnh;

return
end if
// pre-smoothing
forit=1,---,11 do

Unh ‘= Unh — th (thvnh - fnh)7
end for
// coarse grid solution
Tnh ‘= fnh - thvnh§

. p2nh,. .
f2nh = an T'nh;
Vonn = 0;
foric=1,---,vdo

Vanh = th(Ltha f2nh; V2nh, 2”7 V1, V2, ’Y)a
end for
//coarse grid correction

- h .
Unh ‘= Unh + PQTth’U2Tlh7
// post-smoothing

forit=1,---,15 do
Unh ‘= Unph — th(thvnh - fnh)7
end for

}

algebraic equations
Lyup = f on My, (2.1)

with L a discretion operator and f, a given righthand side. In these notes we will assume
that Ly, is a linear operator and represented by a matrix. The multigrid algorithm also uses
a set of auxiliary problems at the grid levels M,

Lyhtuny = fnh- (22)

We assume that each operator L, is invertible. In the multigrid algorithm the linear systems
are solved approximately using an iterative method S, which starts from an initial guess.
Since, the main effect of the multigrid algorithm should be the damping of high frequency
error components, the operator S,,;, is also called a smoothing operator. The main steps
in a multigrid algorithm for linear problems are summarized in Table 1. Using different
sequences of meshes M, various multigrid cycles, such as the V, W or F-cycle can be
constructed by selecting the proper values of the multigrid parameters v, v, and 7.

The multigrid algorithm discussed in this section is a so-called h-multigrid method, which
refers to the use of meshes with different grid resolution. For higher order discretizations one
can also use approximations with different order of accuracy, which results in p-multigrid.
The p-multigrid algorithm is essentially the same as the hA-multigrid method. The only
difference are the restriction and prolongation operators. The restriction operator is a pro-
jection of the data on a lower order polynomial space, whereas the prolongation interpolates
the data to a higher order polynomial space.
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Figure 2.1: hp-multigrid algorithm using A-multigrid with uniform coarsening at the p = 1
polynomial level.

2.2  hp-Multigrid as Smoother Algorithm

For higher order accurate discretizations the standard hA-multigrid algorithm generally is not
sufficiently efficient. One option to improve multigrid efficiency is to use an hp-multigrid
algorithm in which a V-cycle p-multigrid algorithm is combined with an h-multigrid al-
gorithm at the lowest polynomial level, see Figure 2.1. The hAp-multigrid algorithm can
significantly improve multigrid performance, but in particular for higher order accurate
discretizations of partial differential equations with a boundary layer solution a further
performance improvement is frequently necessary. This can be accomplished by introduc-
ing semi-coarsened meshes which are only coarsened in one (local) coordinate direction.
The semi-coarsening multigrid is then used as smoother in the hA-multigrid, resulting in
the h-Multigrid as Smoother (h-MGS) algorithm. Next, the h-MGS algorithm is used as
smoother in the p-multigrid, which gives the Ap-Multigrid as Smoother (hp-MGS) algorithm.
A schematic overview is given in Figures 2.2 - 2.3.

The hp-MGS algorithm for the solution of (2.1) is described in Algorithms 2, 3 and 4, with
n = (n1,n) € N2and h = (hy, hy) € (R*)2. The first part of the hp-MGS algorithm is given
recursively by Algorithm 2 and consists of the V-cycle p-multigrid algorithm H P, , with
the h-MGS smoother HUpp, p. In Algorithm 2 the linear system is denoted as Ly . The
linear system originates from a numerical discretization with polynomial order p and mesh
sizes h1 and hso in the different local coordinate directions. The mesh coarsening is indicated
by the integer n = (n1,n2). The unknown coefficients in the linear system are v, , and the
known righthand as fnn,p. The parameters vi,72,v1, V2, pt1, g2 and pz are used to control
the multigrid algorithm, such as the number of pre- and post-relations at each grid level

and polynomial order. The H P,j, ,-multigrid algorithm uses the restriction operators Qﬁg_lp
p—1 '

and the prolongation operator Tf;h_’p_l. The restriction operators th,p project data from a
discretization with polynomial order p to a discretization with polynomial order p — 1. The
prolongation operators T’ sh,pq interpolate data from a discretization with polynomial order
p — 1 to a discretization with polynomial order p. The h-MGS-multigrid algorithm HU, 4
is given by Algorithm 3.



Figure 2.2: hp-MGS-algorithm combining p-multigrid and A-multigrid at each polynomial
level. The smoother is the h-Multigrid as Smoother algorithm combining semi-coarsening
in the local ;- and zs-directions and a semi-implicit Runge-Kutta method.

Figure 2.3: h-Multigrid as Smoother algorithm used at each polynomial level in the Ap-MGS
algorithm. The indices refer to grid coarsening. Mesh (1,1) is the fine mesh and e.g. Mesh
(4,1) has size (4hq, hs).



Algorithm 2 hp-MGS Multigrid Algorithm (H P, ;)

Unh,p += HPnh,p(th,p7 fnh,pv Unh,ps Ty Py V1,72, V1, V2, 1, (42, /-113)

if polynomial level p == 1 then
Unh,p = HUnh,p(th,pv fnh,pa Unh,p, N, P, V1, V2, 1, 2, MS)v
return
end if
// pre-smoothing with h-MGS algorithm
for it=1,---,v do
Unh,p = HUnh,p(th,pa fnh,pa Unh,p, N, P, V1, V2, 1, 2, N3)7
end for
// lower order polynomial solution
Tnh,p = fnh,p - th,pvnh,p;
—1
fnh,p—l = thmrnh,p;
Unh,p—1 ‘= 0;
Unh,p—1 ‘= HPnh,P(th’p*h fnh,p*h Unh,p—1,1,P — 1) Y1572, V1, V2, U1, 12, /1/3)7
// lower order polynomial correction
Unh,p ‘= Unh,p + Tgh,pflvnh,p—l;
// post-smoothing with h-MGS algorithm

forit=1,---,v do
Unh,p ‘= HUnh,p(th,;m fnh,pu Unh,p, 0, P, V1, V2, 1, 42, M?));
end for

}

In the HU, p-multigrid algorithm semi-coarsening multigrid, indicated with H Sih,w i =
1,2, is used as smoother. The restriction of the data from the mesh M,,;, to the mesh M,,;,
with m1 > n; and mo > ng, is indicated by the restriction operator anh’fp. The prolongation
of the data from the mesh M,,; to the mesh M, is given by the prolongation operator
PTZL’}LP The semi-coarsening h-multigrid smoother H Sfm,p is defined in Algorithm 4. The

smoother in the coordinate direction 7 is indicated with Sim,p-

Various multigrid algorithms can be obtained by simplifying the hp-MGS algorithm given by
Algorithms 2-4. The first simplification is obtained by replacing in the H P, , algorithm
for polynomial levels p > 1 the h-MGS-multigrid smoother HU,} , with the smoothers
S’rQLh,pS’rth,p in the pre-smoothing step and S}Lthth’p in the post-smoothing step. We denote
this algorithm as the hp-MGS(1) algorithm, since the h-MGS algorithm is now only used at
the p =1 level. The second simplification is to use only uniformly coarsened meshes in the
hp-MGS(1) algorithm instead of semi-coarsened meshes. In addition, the semi-coarsening
smoothers HSth)p in the HU,} j, algorithm are replaced by the smoothers Sflh)p fori=1,2.
We denote this algorithm as hp-multigrid.

2.3 Runge-Kutta type multigrid smoothers

As multigrid smoothers we use in Algorithm 4 a pseudo-time integration method. In a
pseudo-time integration method the linear system

Lh,pvnh,p = fnh,pa (2.3)



Algorithm 3 h-MGS Multigrid Algorithm (HU,, p)

Unh,p = HUnh,p(th,pa fnh,pa Unh,p, N, Py V1, V2, 1, 2, MS)

if coarsest uniformly coarsened mesh then
—1
Unh,p += th’pfnh,m
return
end if
// pre-smoothing using semi-coarsening multigrid
forit=1,--- ,v; do
o 1 .
Unh,p += Hthyp(th,pv fnh,py Unh,p, la N, Py 1,y 12, ,u3)a
o 2 .
U”’%p T HS7z,h,p(th,P7 ho,p7 Unh,p? 27 n,p, 11, 42, ,LL3),
end for
// coarse grid solution
Tnh,p ‘= fnh,p - th,pvnh,p;
f R R2nh .
2nh,p -— nhmrnh,p,
V2nh,p = 0;
V2nh,p = HUnh,p(Lth,p7 f2nh,pa V2nh,p, 2”7 p,V1,V2, l1, K2, M3)7
// coarse grid correction
— h )
Unh,p = Unh,p + P27th,pv2"h7p’
// post-smoothing using semi-coarsening multigrid
forit=1,---,15 do
— 2 .
Unh,p *= Hthvp(th,‘m fnh,p» Unh,p, 27 n, P, 11, 12, ,U/3)7

. 1 .
Unh,p = HSn}Lp(th,pa fnh,p, Unh,p, 1,m, p, pa, pa, :U'3)a
end for

}




Algorithm 4 Semi-coarsening Multigrid Algorithm (H STizh,p)

Unh,p += HS:Lh’p(th,p7 .fnh,p; Unh,p, i7 n, P, hi, U2, /J“3)

if ( == 1 and coarsest mesh in i;-direction) or (i == 2 and coarsest mesh in is-direction)
then

forit=1,---,u3 do

Unh,p ‘= S:lhyp(th,pv fnh,py Unh,p);

end for

return
end if
// pre-smoothing
forit=1,---,u; do

Unh,p = S:zh,p(thJ’? fnh,,py vnh,p);
end for
// coarse grid solution on semi-coarsened meshes
Tnh,p = fnh,p - th,pvnh,p;
if (i ==1) then

// semi-coarsening in i-direction

. p(2ni,n2)h .
fenina)hp =By, Tnhps

V(2ny,na)h,p *— 0;
V(2ny,n2)h,p = Hsrlzh,p(L(Qﬂlynz)th’ f(in,ng)h,pa U(2n1,n2)h,p> i, (21117 ng),p,
s f2, 13);
Unh,p ‘= Unh,p + P&Zhnz)h)pU(in,ng)h,p;
else if (i == 2) then
// semi-coarsening in is-direction

._ pni1,2n2)h .
f("/l,an)hﬁU T Rnh,p Tnh,p;

U(ny,2n9)h,p *= 0;

o 2 .
U(ny,2n2)h,p = Hsnh,,p(L(n1,2n2)h7p7 f(n1,2n2)hyp7 U(ny,2n2)h,ps b (n1, 2n2),p,
11, 12, [13);
— nh .
Unh,p *= Unh,p + P(n1,2n2)h,pv(n172n2)h,17’

end if
// post-smoothing
forit=1,---,us do
Unh,p ‘= Sflhyp(th,pv fnh,pa 'Unh7p);
end for

}

10



is solved by adding a pseudo-time derivative. This results in a system of ordinary differential
equations

ov’y, » 1 .
9o = _E(th,pvnh,p - f’nh,p)a (24)

which is integrated to steady-state in pseudo-time. At steady state, vpp,p = Upp,p- Note,
for nonlinear problems this system is obtained after linearization. The matrix L,y p is then
the Jacobian of the nonlinear algebraic system. The hp-MGS algorithm therefore naturally
combines with a Newton multigrid method for nonlinear problems.

Since the goal of the pseudo-time integration is to reach steady state as efficiently as possible,
time accuracy is not important. This allows the use of low order time integration meth-
ods, which can be optimized to improve multigrid convergence to steady state. In [6, 13]
optimized explicit pseudo-time Runge-Kutta methods are presented, which are used for the
solution of second order accurate space-time DG discretizations of the compressible Euler
and Navier-Stokes equations [8, 13]. An important benefit of these explicit pseudo-time
smoothers is that they can be directly applied to nonlinear problems without linearization.
For higher order accurate DG discretizations, in particular for problems with thin boundary
layers, the performance of these smoothers is, however, insufficient. This motivated the
development of a semi-implicit Runge-Kutta pseudo-time integration method, which will be
discussed in the next section.

Semi-Implicit Runge-Kutta smoother

The system of ordinary differential equations (2.4) can be solved using a five-stage semi-
implicit Runge-Kutta method. In the semi-implicit Runge-Kutta method we use the fact
that the hp-MGS algorithm uses semi-coarsening in the local ¢;- and is-directions of each
element. This makes it a natural choice to use a Runge-Kutta pseudo-time integrator which
is implicit in the local directions used for the semi-coarsening. Also, the space-(time) DG
discretization uses, next to data on the element itself, only data from elements connected to
each of its faces. This results in a linear system with a block matrix structure. It is therefore
straightforward to use a Runge-Kutta pseudo-time integrator which is alternating implicit
in the local 7; and io-direction. The linear system then consists of uncoupled systems
of block tridiagonal matrices, which can be efficiently solved with a direct method. The
semi-implicit pseudo-time integration method then can efficiently deal with highly stretched
meshes in boundary layers. For this purpose we split the matrix L, ,, when sweeping in
the iq-direction, as

+ Li12

nh,p’

_ 7t
L”h7P - th,p

and for sweeps in the is-direction as

L”hJ? = LZTLQflhp + LZTLQ}2L7p'
The matrices Li;ﬁ,p and Lif,lhp contain the contribution from the element itself and the
elements connected to each face in the i;-direction, respectively, is-direction, which are
treated implicitly. The matrices L;lﬁ,p and L:fﬁ’p contain the contribution from each face
in the is-direction, respectively, ii-direction, which are treated explicitly. Since the DG
discretization only uses information from nearest neighboring elements this provides a very
natural way to define the lines along which the discretization is implicit. The semi-implicit
Runge-Kutta method for sweeps in the i;-direction then can be defined for the [ 4+ 1 pseudo-

11



time step as
0
'UO — vnh,p
; -1
Vg = (Inh,p + ﬁk)\oL:Lll—twp) (UO - As Z 5 L;li p fnh,p))7

k=1,---,5,

l+1_ 7

Unh,p nh,p nh N

= Us,

with a similar relation for sweeps in the is-direction, where 411 is replaced by iz and i1o
with i22. Here, ay; are the Runge-Kutta coefficients, 8, = Zf;é agj for k=1,---5, A\ =
Ao /At, with Ao the pseudo-time step. At steady state of the o-pseudo-time integration
we obtain the solution of the linear system (2.3). The coeflicients 8y ensure that the semi-
implicit Runge-Kutta operator is the identity operator if Ufm,p is the exact steady state
solution of (2.4). Without this condition the pseudo-time integration method would not
converge to a steady state. The only requirement we impose on the Runge-Kutta coefficients
oy is that the algorithm is first order accurate in pseudo-time, which implies the consistency

condition
4
E Qa5 = 1.
=0

For each polynomial level all other Runge-Kutta coefficients can be optimized to improve the
pseudo-time convergence in combination with the hp-MGS algorithm. For the computation
of the multigrid error transformation operator we define the semi-implicit Runge-Kutta

operator Q}Lh » recursively for sweeps in the i;-direction as

QO = Inh,p
Qi = (Innp + Bide L )™ (Innp — Ao ZakjL::,ip k=1,---,5, (2.6)

1
th,p = Q5a

with a similar expression for Q%hm in the 7s-direction, only with 417 and 412 replaced by,
respectively, i1 and 7so.

Point-Implicit Runge-Kutta smoother

A second approach to solve the system of ordinary differential equations (2.4) is provided
by a five-stage Point-Implicit Runge-Kutta (PIRK) method.

Vo = U’lnh,p
Vg = (U()*)‘ Zﬂk]vj )\ Zak] nh,pUj — fnhp))/(l‘i’)\aﬂkk)v

7=0 7=0
k=1,---,5, (2.7)

with Runge-Kutta coefficients ax; and Bi;, A\ = Ao /At, and Ao the pseudo-time step. At
steady state of the pseudo-time integration we obtain the solution of the linear system (2.3).

12



The coefficients §1; must satisfy the conditions Z?:o Brj =0and By, >0for k=1,---,5.
The only requirement we impose on the Runge-Kutta coefficients c; is that the algorithm
is first order accurate in pseudo-time, which implies the consistency condition

4
E Qa5 = 1.
3=0

All other Runge-Kutta coefficients can be optimized to improve the pseudo-time convergence
in combination with the multigrid algorithm. For the computation of the multigrid error
transformation operator discussed in Chapter 3, we also define the point-implicit Runge-
Kutta operator P, , recursively as

PO = Inh,p
k—1
Pk: ( nh,p — AO’Z ﬁk]+akJ nh,p)P>/(1+ﬁkkA0')7 k:l, 757
7=0
Puny = Ps. (2.8)

2.4 Multigrid algorithms for nonlinear systems

For nonlinear problems we can not directly use the algorithms discussed in Sections 2.1 and
2.2. Two main approaches exist to deal with nonlinear algebraic equations in a multigrid
context, viz. the Newton multigrid method and the Full Approximation Scheme (FAS). In
the next two sections we will summarize both algorithms.

Consider the nonlinear system of algebraic equations, obtained for instance by discretizing
a system of nonlinear partial differential equations on the mesh My,

thh - fh (29)

with N the nonlinear operator and f; a given righthand side. Assume that wy, is an
approximation to the exact solution v,. We define then the error e; = v, — wy and the
residual rp, = fj, — Npwy,. Subtracting Npwy, from both sides of (2.9) yields

Npvp — Npwp, =13, (2.10)

Note, since Ny, is nonlinear we have Np (v, — wp) # r,. Hence we can not determine the
error from linear equations using various meshes in a multigrid algorithm. In order to solve
(2.9) we can first (approximately) linearize the equations using a Newton method or use a
Picard iteration. The resulting linear algebraic equations then can be solved with a linear
multigrid method. In the FAS method, discussed in Section 2.4.2, (2.10) is used as starting
point for the derivation of the multigrid algorithm.

2.4.1 Newton multigrid method

The Newton multigrid method is based on Newton’s method. Consider the scalar equation
F(z) = 0. Newton’s method is obtained by expanding F'(z) in a Taylor series around the
point y and truncating at the quadratic term results in

Fla) = Fy) + (2~ )F () + 5(z — ) F"(©)



for some £ in between x and y. Newton’s method results then in the following iteration

method. Given an initial guess x¢, the solution x; in iteration j is then obtained through

_ F(z))
F' ()

Tj41 = Tj with j € N.

The extension of the Taylor expansion to a system of n nonlinear equations is given by
Np(wp, + e) = Npwy, + Jp(wp)ep, + higher order terms

with e;, = vy, — wy, and the Jacobian matrix defined as

Owhl a’whn
Jp(wp) = | S
B’Ll)hl awhn
and wy, = (wp1, -+ ,Why) and N, = (Np1, -+, Npp). Neglecting quadratic terms we obtain,

using (2.9) and the definition of ey,

Jn(wp)en = Nip(wp, + ep) — Npwy,
= NhUh — thh
= frn — Npwy.

Newton’s method for nonlinear systems is then defined through the following iteration pro-
cess: ‘
Given an initial guess w), the iterates w} are then obtained from

wit = w], + J;7 (wl) (fr — Nyw}).

The Newton-multigrid algorithm is now obtained by combining the Newton method in an
outer iteration with the solution of the resulting linear system with a multigrid method
for linear problems. There are various modifications possible to this algorithm. In many
cases it is difficult to compute the Jacobian matrix .J, exactly using analytic methods or it
is computationally too expensive to compute an accurate Jacobian matrix either through
automatic differentiation or numerical approximation. Then it is more practical to approx-
imate the Jacobian matrix, e.g. by neglecting certain contributions. This results in an
approximate Newton method which generally converges slower but can be computationally
more efficient. The process of computing the Jacobian matrix can also be combined with the
iterative solution of the linear system using a Krylov method. Multigrid then can be used as
a preconditioner for the Krylov method. This results in the ”Jacobian free” method which
requires significantly less memory since the Jacobian matrix is not stored, only the vector
Jrwp. The success of this technique, however, strongly depends on the preconditioner for
the Krylov method, which is generally a nontrivial task.

2.4.2 Full approximation scheme

The Full Approximation Scheme (FAS) directly considers the nonlinear algebraic equations.
We first consider the FAS algorithm for two mesh levels. Given a numerical approximation
w} of (2.9) on the fine mesh Mj,. This solution satisfies the nonlinear equation

Ni(w), +e€}) = fn, (2.11)
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with efl = vy — wy,. Restrict (2.11) now to the next coarser mesh My, and use (2.10) to
obtain

Non(wyy, + €3;,) — Napwyy, = 15,
The coarse grid residual is obtained by restricting the fine grid residual TfL to Map, resulting
in
), = Ri'r] = R¥(fr, — Npw)).
Also, the coarse grid solution wgh is obtained by restriction of the fine grid solution
. o i
wy, = Ry "wy.

Note, the restriction operators R,zlh and Rih do not necessarily have to be the same operators.
The coarse grid equation can now be expressed as

Non(RPw), + €),,) = Non(Ri"w]) + RE" (fa — Nuwy),

J J
Van LETS

where the right hand side is known. Assume we can obtain an accurate (approximate)
solution to the equation ' _
Nanvyy, = fa
e.g. with a Newton method, then we can define the error at mesh My, as
egh = U%h - Rihwi-

The error eéh can now be interpolated to the mesh M, using the prolongation operator Py,
and used to correct the numerical solution on the mesh M,

J+1 _ 7 h J
wy, = wy, + Pye
| h o J 2h, j
= wy, + Paj(vy;, — R},"wy,)

If N, is a linear operator then the algorithm reduces to the multigrid algorithm discussed
in Section 2.1.

The multilevel FAS algorithm is defined in Algorithm 5. As smoothers in the function SM,,;,
in Algorithm 5 one can for instance use a nonlinear Gauss-Seidel relaxation method or the
point implicit Runge-Kutta time integration method discussed in Section 2.3.

2.5 Full multigrid method

Both the Newton and FAS multigrid methods require an initial condition to start the al-
gorithm. If this solution is not sufficiently close to the exact solution then the multigrid
algorithm can diverge. In addition, a solution which is closer to the exact solution makes
the assumptions in the Newton and FAS algorithm more realistic and can significantly im-
prove the efficiency of the solver. The Full Multigrid Method (FMG) provides a good initial
solution by starting the Newton and FAS multigrid algorithms on the coarsest mesh and
in case of a higher order accurate discretization also for the lowest possible discretization
order. After a reasonable reduction of the initial residual is obtained then the solution is
interpolated to the next mesh level

Wpp = P,’,‘L},Llwmh7 with1l <n<m< N,
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Algorithm 5 Standard h-Multigrid FAS Algorithm (F'AS,.;)

Unh ‘= FAth<Nnh> fnha Unh, 1, V1, V27'7)
{
if coarsest mesh then
Unh = Nn_hlfnh;
return
end if
// pre-smoothing with nonlinear smoother SM,,;,
forit=1,---,11 do
Unh ‘= SMnh(Unha fnh,);
end for
// coarse grid solution
Tnh ‘= fnh - Nnhvnh;
V2nh = R?Lzhvnh; B
f2nh = NoppVopy + R?J}llhrnh;
for ic=1,--- ,vdo
V2nh = FAth(Nthv f2nh7 V2nh, 2”1 V1, Vo, A/)a
end for
//coarse grid correction
Unh ‘= Unh + Pznrilh (U2nh - R}anhvnh);
// post-smoothing with nonlinear smoother SM.,,
forit=1,---,15 do
Unh = SMnh(Unhu fnh);
end for

}
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The interpolation operator Pﬁl’i should be of sufficiently high order and not generate un-
necessary high frequency errors. If m < N, then at each level the FMG procedure can of
course be combined with a Newton-multigrid or FAS multigrid method on the mesh levels
which already have an initial solution.
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Chapter 3

Multigrid Error Transformation
Operators

3.1 h-Multigrid error transformation operator

In order to understand the performance of the A-multigrid algorithm, defined in Algorithm
1, we need the multigrid error transformation operator. This operator shows how much the
error in the iterative solution of the algebraic system (2.1) is reduced by one full multigrid
cycle. Given an initial guess v0, of the linear system (2.1) at grid level n then the initial
error is equal to

Cnn = Unh = Unp,

with wu,p the exact solution of (2.2). The multigrid error after application of the h-multigrid
algorithm is then equal to
Enh = Unh = Vpp,s

with v}, = Hppn(Lon, fan, 2, m, v1, v2,7). The initial and multigrid error at grid level n are
related through the multigrid error transformation operator

1 _ 0
€nh = Mﬂhenh'

We will now derive a recursive expression for the multigrid error transformation operator
M.

1. At the coarsest mesh My, we solve (2.2) exactly, hence the error at this level is zero
and My, is the null operator.

2. At grid level n the error after [ pre-smoothing iterations is defined as
Jéh:unh—véh, 1=0,1,--- vy,
with 0%, = €%, . In the pre-smoothing step the numerical solution is updated as
vt = Vi = Sun(Lanthy, = fan)y  1=0,1,-++ 0y — 1. (3.1)
Subtracting (3.1) from u,;, and using L,punn, = fnn we obtain

I+1 _ 1 ! _
oo = 0nn — SunLnnopy, l=0,1,--- vy — 1.
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After v pre-smoothing steps the error then is equal to
Vl = Syh,enh? (32)
with S,n = Inp — SunLnn and I,y the identity operator at grid level n.

. For the coarse grid solution at grid level m > n, we first compute the restriction of
the residual

F v
Tmh = R?hl(fnh - thvn}l)
h v
= R (Lnnunh — Lnpvy),)
h v
= R?h tho’n}z

At the grid level m we need to solve now

Lth mh — = Tmh; (33)

which has the exact solution

*

Zmh = L;n}erh
=L RTML,, o (3.4)

. The linear system (3.3) at the coarse grid level m is also solved iteratively using the
multigrid algorithm. We start with the initial guess 20, = 0, hence the initial error is
80 =z 20 = 2% ,. After v applications of the h-multigrid algorithm the error

in the multigrid solution z) , is reduced to

& =M,z

mh>
hence
Zyn = Oy
o M) Zhn (3.5)

with I,,,5 the identity operator at grid level m.

. The solution after the coarse grid correction is denoted as
0
Ynh = Uz,h + P’ﬂ mh (36)

After [ post-smoothing steps this solution is updated to yﬁlh, 1=0,1,--- ,v9, and the
multigrid error is equal to p!, = u,, —y!,. Then using subsequently (3.6), (3.5), (3.4)
and (3.2) we obtain

P%h = Unh — y?zh
= Upp — V), P"
- th (Imh — Mgv,h) Zimh
(Inh — P2 (L, — M), )L*1 RN Loy) o
= (Inh — Pph (Inh — M), Lo R L) SE3 €.

mh
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6. Finally, due to the post-smoothing step the error pgh is modified using (3.2) into

pnh = Syhpnh

Combining all steps we obtain a recursive expression for the multigrid error transfor-
mation operator at grid level n

My = 82 (I — Pl (Inw — M, ) L3 R L) 25

For two grid levels (n = 1,m = 2) with uniform mesh coarsening the multigrid error trans-
formation operator is equal to

MP9 = Sy (I, — Pl Ly R Ly,) Sy (3.7)

and for three grid levels (n = 1,m = 2) and (n = 2, m = 4) with uniform mesh coarsening
we obtain

MP? = Sy* (I, — Py (Ion, — My),) Lo  R3" Ly,) Sp* (3.8)
with

Moy, = 3, (Ian — Py Ly, Rah Lon) Sgj,- (3.9)
The two-level and three-level multigrid error transformation operators will be studied in
detail in Chapter 4 using discrete Fourier analysis.
3.2  hp-MGS Multigrid error transformation operator

In this section we analyze the error after one application of the hp-MGS multigrid algorithm.
We assume that the linear system (2.1) is obtained from a finite element discretization of
a partial differential equation using polynomial basis functions of order p. We define the
initial error in the solution of the algebraic system on the grid M, as

0o _ 0
enh,p = Unh,p — vnh,p'
Here, uyp.p is the exact solution of the algebraic system
thm“nh,p = fnh,p7

and v”h p the initial guess used in the multigrid algorithm. Similarly, the error after one
application of the multigrid algorithm is defined as

1 _ 1
Cnh,p = Unh,p =~ Unh p

with v}, = Pn;%pvnh The operator HP, , denotes the action of the Ap-multigrid
algorithm defined in Algorlthm 2. The initial and multigrid error are related through the
hp-MGS error transformation operator

1 _ 0
enh,p - Mnhypenh,p'
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The error transformation operator of the hp-MGS multigrid algorithm is obtained by com-
puting the error transformation operators of Algorithms 2-4 defined in Section 2.2 and the
pseudo-time smoothers defined in Section 2.3.

1. p-multigrid step. At the lowest polynomial order, which we set equal to p = 1, the
multigrid solution is equal to

1 _ 0
Unh,1 = HUnh,lvnh,r

The h-multigrid operator HU,}, p, defined in Algorithm 3, must satisfy the consistency
condition
Unh,p = HUnh,punh,p;

hence the multigrid error at the lowest polynomial level is equal to

1 0
€nh,1 = Unh,1 — HUNhJUnh,l
0
= HUnp1(Unh,1 — Unpp)
0
= HUnn1€pp1-

For p = 1 the multigrid error transformation operator then is equal
Mnh,l = HUnh,l-

For polynomial orders p > 1, the hp-multigrid algorithm starts with +; pre-smoothing
steps using the HU, , algorithm. The error after [ pre-smoothing steps is defined as

U'th,p = Unh,p — ,U’f’Lh,p’ l= 0,1,--- » V15
with Ughm = e%hm. During the pre-smoothing step the multigrid solution vg,w is
updated as

U1l'7,h,p = (HUnh;P)lv’?Lh,p7 l= 07 17 1 — 1.
After [ + 1 pre-smoothing steps the error then is equal to

+1 _ _ o+
anh,p = Unh,p Unh,p

l
= HUph,ptnh,p — HUnh,pUnp
1
= HUnhapanh,p

= (HUnh,p)Hle%h,pa

hence o)}, = (HUppp)" ed, »- For the correction from the lower order polynomial

discretization we first compute the residual and project this to the lower order poly-
nomial space

—1
f’ﬂ}hp*l = Qflh,p(fnh7p - thm”%,p)
—1
= QZh,p(th,punh,p - th,pvz%m)
— pr-1 v
- th,pL”h,PUn;L,p'

At the polynomial level p — 1 we need to solve now

thvp—lz:h,p—l = fnh,p—l (310)
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which has the exact solution

Z:Lh,p—l = (L7lh7p—1)71fnh,p—1
1 -1
= (th,p—l) Qih,pL”haPO’;{}L,p'

We use the p-multigrid algorithm with p — 1 polynomials to solve the system (3.10).

Set Zgh,pq = 0. The initial error at polynomial level p — 1 is then

0 * 0
5nh,p—1 = Znh,p—l - Znh,p—l = Z:h,p—l'
After one step of the H P, ,-multigrid algorithm at the polynomial level p — 1 the
error is reduced to
1 0
6nh,p71 = Mnh,Pflanh,pfl
= nh,p—lz;h,p—l

; 1 = e
We also have o, , 1 = 25, ,_1 — Zp, 1, hence

1 % 1
Znh,p—1 = Pnh,p—1 — 6nh,p—1

o x *
= Znh,p—1 Mn}hpflznh,pfl

= (Inhp-1— Mnh,p—l)Z;h,p—p

with I, p—1 the identity operator for polynomial level p — 1. The solution after the
correction with the lower order polynomial solution is equal to

Ynhp = Vb T Tfh,pqzih,p—r
After [ post-smoothing iterations with the HU,}, ;, algorithm this solution is updated
to yﬁthp, and the multigrid error is equal to
p'lnh,p = Unh,p — y’flh,p? 1=0,1,-- 7.
This error can be further evaluated into
p?zh,p = Unh,p — ygh,p

= Unh,p — ,UZ;L,p - Tsh,p_ﬂvlzh,pq

= UZ;L,Z) - Trzzjh,pfl(]nh,p—l - Mnhw—l)z;klhm—l

= Uli,p - Tgh,p—l(‘[nh@*l - Mnhypfl)(thypfl)_1QZ;,1anh,pU:{}z,p'

The post-processing error is analogous to the pre-processing error

P = (HUnhp) o -

Combining all terms we obtain that the error after one step on the mesh M,,; with
the H P, ,-multigrid algorithm is equal to

— -1
nnp = TunpInnp = Top 1 (Inhp—1 = Monp—1) (Lnnp—1) " Qs Lnip)
= (I_IUnh,p)w2 (Inh,p - Tgh,p_l(jnh,p—l - Mnh,p—l)(th,p—l)ileL;}anh,p)
(HUnhap)’Yl egh,p'
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The hp-MGS multigrid error transformation operator My, on the mesh M, is
defined recursively as

Mnh,p = (lq'U'nh,p)A/2 (Inh,p - T£h7p_1(jnh,p—1 - Mnh,p—l)(th,p—l)7

@ Lnn) (HUnn )" ifp>1, (3.11)
:HUnh,l lfpzl

. h-multigrid step. In the h-multigrid step we first compute the error reduction using
the HU, p,-multigrid algorithm. Given the initial solution vnh the initial error is
equal to

0 _ 0
Cnh,p = Unh,p = Unp p-

The error after vy HUpj p-multigrid steps at the grid level n then is equal to

ot = (HUppp) el

nh N2 nh,p'

At the coarsest mesh with n = N we use an exact solver and

oNp = (Lnnp)  fnnp

The error is then equal to

eNnp = UNhp — (LNnp) " fnp =0,
and we obtain that HUpnyp p, = 0.

At the finer meshes with n < N, with n; < N; for some i, we set w), = = v, .

Define the error after | semi-coarsening smoother steps, in respectwely the local 44
and io-direction, as

l _ l _
Tnhvp_unhvpiwnh,p7 l _0317"' s V1,

with 79, p = e%h After one semi-coarsening smoothing step in, respectively, the
local 7;- and is- dlrectlon we obtain the multigrid solution
1
wnh,p:HS Hthp nh,p*
If we apply the semi-coarsening smoothers now v;-times then the initial solution wgh)p
becomes equal to
= (HSZ), ,HS}, ) w))

'UJ nhp'

nhp

Using the consistency of the semi-coarsening smoothers H S?

nhps With @ =1,2, we can
now express the error after [ + 1 smoother steps as

+1 _
Tnh,p = Unh,p — Hth N
_ 2
- Hth,pHth,punh,P - HS Hthp nh,p
_ 2 1 l
- HS Hth,p nh,p

(Hth pHSth, )l+1 Sh D)

HS}

l
nhp nh,p

23



hence 77 = (HS2, HS1 )”1 €nnp- Lhe correction from the coarse mesh with level
2n is obtalned by ﬁrst restrlctlng the residual to this level
fonnp = Ropl (fanp — Lunpwyy, )
Rnh p( nh,pUnh,p — thapwfuLlh,p)
S Rnh D nh,p TZ;L,[)'

At the coarse mesh with level 2n we need to solve

L2nh,Px;nh,p = f2nh,p (312)

which results in

xznh,p = (Lth,P)ilenh,P
= (Lth,p> anh ,p~nh,p Trﬁl,p'
We use the h-multigrid algorithm with initial solution xgnh’p = 0 to solve the linear
system (3.12). The initial error is then ugnh’p = Tounp — xgnhyp = 25, ,- After one
step of the h-multigrid algorithm we obtain
1 0
Hoph,p = HUQ"}LJJ:“Zth,p
= HUzn}vax;nh,p'
We also have ,u%nh’p = Toppp — x%nh,w thus

1 ok 1
xth,p - anh,p - UZnh,p

ok *
- $2nh,p - HUQth‘/EZnh,p

*
= (Ith#? - HUth»P)xth,p'

The solution after the coarse grid correction is now equal to

h,
tnh p nh N2 P;nhppx?nh P
After v5 post-smoothing iterations the solution is updated to tnh =01 -1
and the multigrid error is equal to
ﬂ'th,p :u’ﬂh,p_tgnh,lﬂ l:O717 , V2.

The multigrid error can now be expressed as

0 _ 0
nh,p — Unh,p — tnh,p

Pnh,p 1

= Unp,p — W, 2nh,pL2nh,p

nhp

l’1 *
Tnh P P2nh p(IZnh P HU?"hap)x2nh,p

1
::ill D 2nh p(I2"h7p HU2nh,p)(L2nh,p) Rnh D th,p h D"
The post-smoothing step is analogous to the pre-smoothing step. Combining now the
various contributions we obtain
HUHh,penh D

h, -
(Hsnh pHS'rQLh,p)Vz (Inh p Panhpp(I?nhm - HU2nh,p)(L2nh,p) !

Ry Lonp) (HS3, , H S, ) e

nh,p nh,p‘

nhp
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The h-MGS error transformation operator HUy, , can now be defined as

HUpnp = (HSp yHS2, )" (Innp — Pothy o (Ionn,p — HUsnhp)
(Lonhp) " Roy Lun ) (HS2, JHSY, )™ ifn<m, (3.13)
=0, ifn=m. (3.14)
The HU,},, error transformation operator given by (3.13)-(3. 14) can also be used to
obtain the semi-coarsening error transformation operators HS!, pand H sz, p» Which
are equal to
HSpp =(Sinp)" (T = Pl naynp(Lna mayhp = HS{ny oy p)
(L@ny na)hp) 1R£,2;7;’n2)h nh,p) (Sl )M, ifn <m,
=Lnp = (Snnp) "™ itn =m,
HS?m, (th p) (Inh,p - P&}:,gnz)h,p(l(mﬂnz)h,p - HS(2n1,2nz)h,p)
(Lny,2n2)np) an%ﬁng)h nhp) (Son, )M, if n <m,
= dnhp — (SELh,p)H37 if n =m,

where we used that at the coarsest level u3 smoother iterations are performed.

. Multigrid smoothers. The pseudo-time integrators solve the linear system

LyhpWnh.p = frh.p- (3.15)

We define the error after the Ith and [ + 1st pseudo-time integration step as

) _ l
Enhp = Wnhp = Wppp

1 _ +1
enh,p = Wnh,p — wnh,p'

We also define the error in each Runge-Kutta stage
€i = Wnh,p — Wi,

with ey = e%h p

(a) Semi-Implicit Runge-Kutta pseudo-time integrator. This pseudo-time integrator
solves at steady state the linear system (3.15). Using (3.15) the semi-implicit
Runge-Kutta method (2.5) for the local i; direction can be transformed into

k—1

(Inh,p + Brdo Lifi Jwr, = wo = Ag Y g (L2 wy — Lk ptwnnp),
=0

k=1,---.5,
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with wg = wpr. This relation can be further evaluated into

P11

Wnh,p — Wg = Wnh,p — Wo + ﬂk)\ath,pwk

k—1
i12
+ A0 Y g (LyE jwj = Lunpan,p)
Jj=0
k—1
7
= Wnh,p — W0 — AU E O‘kjLnlﬁ,p(wnh,p - wk)
Jj=0

k—1
7)\0 § :akjL'lnleL,p(wnhvpiwj% kila 75'
Jj=0

The error after one semi-implicit Runge-Kutta step can now be defined recursively
as

0
€y = enh’p
k—1
_ 7 —1(= 7 >
ek = (Innp + Ao BeLiA ) 7 (00 = As 3o augLif7 ,5), k=1, 5,
=0

nh,p — €5 = thﬁpegh,p'
(b) Point-Implicit Runge-Kutta pseudo-time integrator. Using (3.15) we can trans-
form the point-implicit Runge-Kutta method (2.7) into
k—1
(1 + /\Uﬁkk)wk =Wy — Ao Z (6kjwj + akjth,p(wj - wnh,p))y
j=0
k=1,---,5,
with wg = wflh)p. This relation can be further evaluated into

k
Wnh,p — Wk = Wnhp — Wo + Ao 5 Brjw;
=0

k—1
+ X Y @k Lnp(w; — Wn,p)
i=0

k
= Wph,p — Wo + Ao Z Bkj (wj - wn}hp)
Jj=0

k—1
+)\azakjth,p(wj _wnh,p)v 1= ]-7 757
j=0

where we used in the second step that Z?:o Br; =0, k=1,---,5. The error
after one point-implicit Runge-Kutta step can now be defined recursively as

éO == eghyp
k—1

e = (éo — Ao Z (ﬁkjéj + Oékjth,péj)/(l + )\Uﬂkk)a k=1,---,5,
=0

e'}Lh,p =é5 = Pnh’Pe?zh,p'
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Chapter 4

Fourier Analysis of Discrete
Operators

4.1 Introduction

In this chapter we will analyze in detail the two- and three-level error transformation oper-
ators derived in Section 3.1. We will also analyze the error transformation operator of the
hp-MGS algorithm, which was derived in Section 3.2. The analysis closely follows Brandt
[1] and Wienands and Joppich [17], see also Hackbusch [3], Hackbusch and Trottenberg [4],
Trottenberg et al. [11] and Wesseling [16]. The analysis will be general and includes both
uniformly coarsened and semi-coarsened meshes. For the analysis of the two- and three-level
error transformation operators we will use discrete Fourier analysis. In this section we will
introduce some important definitions which will be used throughout this report.
Assume a finite mesh G, C R?, with n, N € N and h € (R*)9¢, which is defined in R? as
GY, = {z = (21, ,2a) = (kinaha, - kangha) | k € G},

with the index set G given by

GN ={keZ'| — Ni/n; <k; < (Ni/n;) =1, Nj/n; €N, i=1,--- ,d}. (4.1)

On Gﬁfh we define for vy, Wy : Gﬁfh — C the scaled Euclidian inner product

(Unhawnh)Gg’h = (H 27;\7}) Z Unh(x)wnh(x) (42)

L 7 N
1=1 zeGN,

and norm )
anh”Gﬁ’h = (Unh7vnh)éfyh.

Here an overbar denotes the complex conjugate. We will also consider an infinite mesh
Grnn C R?, which is defined as

Gnh, = {$ = (1‘1,~ . ,.Z‘d) = (/{1711}11,- < ,kdndhd) | ke Zd}.

Similarly, on G, we define for v,p, wnp : Gpp — C the scaled Euclidian inner product as

. 1 d
(Unhs Wnh) Gy = A Ny (T n4) ZG:N Unh (2)wnn (), (4.3)
zeG,
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and the norm .

lvnnllG,, = (Unhvvnh)énh'
In R? a uniform mesh with mesh sizes h = (h1, h2) can now be represented as G, = G (hy,hs)
and a uniformly coarsened mesh as Gan = G(2p, 21,)- A mesh with semi-coarsening in the

x1-, respectively, xo-direction is represented as G ap, n,) and G(n, 2n,)-

In the analysis we will also need the discrete ¢2 inner product and norm on G,,;,, which are
defined for vy,p, wpp 1 Gup — C, respectively, as

(vnh;wnh)fz(Gnh) = Z Unp () Wi () (4.4)

zE€Gnn

1
[onnlle2(Gn) = (Unhy Vnn) g, )

We consider now on each of the meshes G,,;, the following linear system

th’Unh(SL’) = fnh(x)y S Gnh7

with L, the matrix resulting e.g. from a numerical discretization on the mesh G, of a
(system of) linear partial differential equations with constant coefficients and f, the right
hand side. The linear system on the mesh G, is described using stencil notation

Lypvpn(z) = Z . kUnh (z + knh), r € Gup, (4.5)
ke,

with stencil coefficients I,, , € R"**™* and finite index sets J,, C Z¢ describing the stencil.
For instance, in two dimensions frequently a 9-point stencil is used with

Jy = {k’ = (kl,k'g) | kl,kg S {71707 1}} .
The stencil of L, is then given by

ln,—l,—l ln,—l,O ln,—l,l
[th] = ln,O,fl ln,0,0 ln,O,l
lng—1 Inao  lnan

In general the stencil coefficients I,, ;, are my X mj, matrices, with m; > 1.

On the infinite mesh G, € R%, we define for z € G,,;, the continuous Fourier modes with

frequency 6 = (61, ,0q) € Iy, with I, = [—=, ) X - x [, ), as
Gnn(nb, x) := 0w/ (1), (4.6)

where nf - x/(nh) = 0121 /hy + -+ + 0q24/ha, h € (RT)? and 2 = /—1. Note, the Fourier
modes are orthonormal with respect to the scaled Euclidian inner product on G,j. For a
proof see Appendix A.

We define the space of bounded grid functions on the infinite mesh G, with n € N?, as

F(Gnn) = {vnn | Unn : Gpp — C with |Jopnlla,, < oo}.
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For each vy, € F(Gpp), there exists a Fourier transformation, which is defined as

d
on(n0) = ([ ;‘T’;) 3 van(z)e TN g e, (4.7)
k=1

zE€EGnn

The inverse Fourier transformation is given by
Vi (z) = / Upn ()0 =/ M ag e Gy, (4.8)
€T,

Hence v, can be written as a linear combination of Fourier components, see e.g. Brandt
[1]. For more details see also Appendix A.

Due to aliasing, Fourier components with 0] := max{n1|61|,--- ,nq|f4|} > 7 are not visible
on Gy,. For more details see Appendix A. These modes therefore coincide with emntd-z/(nh)
where 6 = 0 (mod 27 /n). Hence, the Fourier space

Fn(Gnp) :=span{op(0,z) | 0 € I,z € G}

contains any bounded infinite grid function on G, ;. The norms of the fields v, and v,
are related through the Parseval identity

/\ ny
AEH,L "Unh(n9>|2d0 = (Hleﬂ) anhH!%Z(Gnh)a (49)
for a proof, see Appendix A.

On a finite domain with mesh Gﬁfh, where at the domain boundaries periodic boundary
conditions are imposed, only a finite number of frequencies can be represented. Hence, for
every Unn € Fn (Gﬁfh) the discrete Fourier transformation is defined as

d
— I | n 2 —nb-x/(n
'Unh(nekz) = ( 2]\2) Unh(l‘)e Oz /( h)7

=1 2GR,
with 0 = (O, -+ ,0k,), O, = 7ki/Ny, k; € g{)ja The inverse discrete Fourier transforma-
tion is given by
nn(z) = Z Upp (B )tk e/ (nh) zeGh,.

kegh

The results of the discrete Fourier analysis on the infinite mesh G, and the finite mesh
Gﬁfh are equal for a periodic field at the frequencies 6 = 0y, with 6, = 7k/N, k € GN. This
equivalence will be used to find approximate results for the discrete Fourier analysis on the
infinite mesh G, which generally results in eigenvalue problems which can not be solved
analytically.

4.2 Fourier symbols of grid operators

In this section we will derive the Fourier symbols of the basic multigrid operators, namely the
fine and coarse grid operators, and the restriction, prolongation and smoothing operators.
We will first consider the more general case of three level analysis, which relations can be
simplified if only two grid levels are used in the analysis. In order to simplify notation we
limit the discussion of the Fourier analysis to two dimensions.
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Figure 4.1: Aliasing of Fourier modes for uniform-coarsening. Modes with a black symbol
alias on the mesh Gap, to the mode with equivalent open symbol in the domain [~ /2, 7/2)2.
Modes in the domain [—7/2,7/2)? \ [-7/4,7/4)? alias on the mesh Gy to the mode in
[—m/4,m/4)2.

4.2.1 Aliasing of Fourier modes

In three-level analysis with uniform mesh coarsening 16 modes on the fine mesh G, 4,)
alias to four independent modes on the mesh G2, 21,) and to one mode on the coarsest
mesh G4, 4n,), see Figure 4.1. We therefore introduce the Fourier harmonics }',3’(9), with
0 €Tl 4, as

F(0) = span{¢h(9;3’,x) | o€ a2, B € Ba},

with
0= 090 € Ty o= [/, m/4)2,
ggo = 009 — (B sign (6), B2 sign (62)),
05 == 9%0 — (aysign ((020)1), Qi sign ((0%0)2))7r, (4.10)

g = {(071,072) ‘ a; € {0, 1}, 1= 1,2},
Ba = {(B1,B2) | Bi € {0, %}, i=1,2}

Next to uniform coarsening, the hp-MGS algorithm also uses semi-coarsening multigrid. In
this case the grid is coarsened in only one direction, which implies that four modes on the
fine mesh alias to two modes on the medium mesh, and to one mode on the coarsest mesh,
see Figures 4.2 and 4.3.

The aliasing relations for the Fourier modes on the different coarse meshes can be straight-
forwardly computed using the representation of the modes 63 given by (4.10). For more
details, see Appendix A.5. First, assume the following mesh coarsenings G, — G, with
n € {(2,2),(2,1),(1,2)}, which includes both uniform and semi-coarsening. For x € Gy,
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Figure 4.2: Aliasing of Fourier modes for semi-coarsening in the x;-direction.

Modes with a

black symbol alias on the mesh G 21, 1,) to the mode with an equivalent open symbol in the

domain [—7/2,7/2) x [—m, 7). Modes in the domain 6 € ([-7/2, —7/4)U[r /4,

m/2)) X [~ 7)

alias on the mesh G4y, p,) to the mode in [—m/4,7/4) x [—m,7) with the same value of 65.

Fourier modes with frequency 02‘ € Il(1,1), with o € ag, B € B2, alias on the mesh G, to

modes with frequency Qg/ € I1,, with

on(03,7) = 61(05 , x)

= ¢un(n0g ,2), 05 €I, x € Gup,

and
o' =< (0,as) if n=(2,1),
(@1,0) if n=1(1,2).

Analogously, for the mesh coarsening G, — Gpp, with m € {(4,4),(4,1),

with frequency Hg/ € 11, alias on the mesh G,,;, to modes with frequency 05
Gun(n03', ) = on (65, 2)
= Gun (Mm%, z), 0% € Iy, € Grup,

with o/ and 3’ given by

o’ =(0,0), B8 =(0,0), if m=(4,4),
o' = (0,as), B = (0, 532) it m=(4,1),
o = (a,0), B = (p1,0) if m = (1,4).

In order to unify the analysis of uniform and semi-coarsening multigrid we

(4.11)

(1,4)}, modes

’

, €11, as

also use in the

semi-coarsening analysis the sixteen modes 07 defined in (4.10) for uniform coarsening.
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Figure 4.3: Aliasing of Fourier modes for semi-coarsening in the xs-direction. Modes with a
black symbol alias on the mesh G, 2p,) to the mode with an equivalent open symbol in the
domain [—m, 7) x[—7/2,7/2). Modes in the domain 6 € [—m, ) x ([—7/2, —7/4)U[n/4,7/2))
alias on the mesh G, 4p,) to the mode in [—m, ) x [-m/4,7/4) with the same value of 6.

These modes are, however, subdivided into four independent groups. On the coarser meshes
there is no aliasing between modes in different groups, only between modes in the same
group.

For the three-level Fourier analysis of semi-coarsening in the zi-direction we subdivide the
Fourier harmonics with frequencies 03, a € as, B € B2, on the mesh G, p,) into the groups

aien = 10,0, (L)} = Yz = (0,0),
a%Q,l) ={(1,1),(0,1)} - ’7(22,1) =M
1
ﬁ(12,1) = {(0,0), (570)} - 5(12,1) = (0,0),
11 1 1
ﬁ(22,1) = {(275)7(075)} - 5(22,1) = (0, 5)7

where also the index of the mode to which each group of modes aliases on the next coarser
mesh level is indicated with an arrow, see also Figure 4.2. For example the modes with index
in the group a%ll)’ viz. (0,0) and (1,0), both alias to the mode 7(12,1) = (0,0). Analogously,
for three-level Fourier analysis of semi-coarsening in the xs-direction we define the groups

Q1,2) = {(070)’ (07 1)} - 7(11,2) = (Oa 0)7
O‘%l,Q) - {(17 1)’ (170)} - 7(21,2) = (1,0),
1
/8(11,2) = {(070)’ (0, 5)} - 5(11,2) = (0,0),
11 1 1
5(21,2) :{(575)’(530)} - 6(21,2) = (5’0)7



see Figure 4.3. Finally, for uniform mesh coarsening the modes in the three-level Fourier
analysis are ordered as

a%2,2) ={(0,0),(1,1),(1,0),(0,1)} - 7(12,2) = (0,0),

ﬂ(12,2) = {(0,0)7 (%a %% (%70)3 (0’ %)} - 5(12,2) = (Oa 0)7

see Figure 4.1. In principle the ordering of the modes in the different groups can be changed,
but it is important that the same ordering is used in all steps of the multilevel analysis.

In two-level analysis with uniform mesh coarsening 4 modes on the fine mesh G, »,) alias
to four independent modes on the mesh G(ap, 24,)- We therefore introduce the Fourier
harmonics F7(6), with 6 € I3 5), as

Fi(0) :=span{¢n (0%, z) | a € az},
and
0 =0 €lyy) = [-7/2,7/2)%,
0% := 0" — (@ysign ((0°°)1), ag sign ((6°°)9)), (4.12)
Qg = {(071,072) ‘ a; € {0, 1}, 1= 1,2},.
Analogous to the three-level analysis, the mode subdivision into different groups is also used
in the two-level analysis for semi-coarsened meshes.
4.2.2 Discrete operator and smoothing operator

Define for « € G, the discrete operator Ly : F(Gnn) = F(Gnp) as

(thvnh)(x) = Z lk,nhvnh(x + knh), T e Gn}u T+ knh € Gnh
k€JL,

with Jr,
operator L, in terms of its discrete Fourier transform L, v, (nd) through the relation

the stencil of the fine grid operator. On the mesh G,,;, we can express the discrete

nh

(Lnpvny)(z) = / Lonvnn (nd)e™?=/(nh) gg. (4.13)
0cIl,

The discrete Fourier transform can be further evaluated for 8 € II,, into:

L;lv\nh(ne) = (H %) Z (thvnh)(x)e—m&x/(nh)

k=1 z€Gnp
d

= ok —wmb-z/(nh)
- (H 27T) Z Z U nhOnh (z + knh)e™ e/

k=1 z€Gnp keJth

d
n

= Y lk,nheme.k(HQi) > vnn(x + knh)em - (rHkni)/(nh)

ke k=1 g z€Gph

nh

= Lo (n0) 0 (n6), (4.14)
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with -
th(nG): Z lk’nheznﬂk-
keJr

nh

wmnl-z/(nh)

The Fourier modes e are the eigenfunctions and L/,;L(nQ) the eigenvalues of the

operator L., since .
thezne-w/(nh) =L (ne)eznﬁvw/(nh)7

which follows directly from a substitution of (4.6) into (4.5).

Similarly, we obtain for the smoothing operator S, : F(Gpnn) — F(Gnp), which is defined
as

(Snnvnp)(x) = Z Sk.nhUnh (T + knh), x € Gpp, x+ knh € Gy,
keds

nh

with Jg, , the stencil of the smoothing operator, the relation

(Sonvnn) (x) = / Somomn (nf) =/ b gg. (4.15)
0ell,,

where the discrete Fourier transform can be further evaluated into:

Snnn (1) = S (nB)Ton (n6), (4.16)
with .
th(ne): Z Sk,nhelne‘k-

kEanh

4.2.3 Discrete Fourier transform of pseudo-time smoothers

Using the techniques discussed in the previous section it is straightforward to compute the
discrete Fourier transform of the pseudo-time integration smoothers discussed in Section 2.3.
For the semi-implicit pseudo-time Runge-Kutta operator Qﬁl, with [ = 1,2, on the mesh Gy,
which is defined in (2.6), the discrete Fourier transform is equal to

Qo(6g) =1,
— 7T 1 k-1 Iy —
Qr08) = (I + Bide Ly (63)) 7 (1M1 = Ao Y i Ly (05)Q5(65)),
j=0
VOKEOQ, VBEﬂQ, kzlv 557

QL(0%) = Q5(03),

On the coarse mesh G,; the discrete Fourier transform of the semi-implicit pseudo-time
Runge-Kutta operator Qilh is equal to

Qo(nb) = 1™,

—_— k—1 —_—
- " m s :l =1l/mm s :LA :L
Qu(nf) = (I + Bdo Lip (083 ) ™ (1™ = As S ang L (n67)Q; (n})),
7=0

VﬂEﬁfu T7S€Sn,k:17... 757

La(nb)) = Qs(nf).
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The set s, is defined as s, = {1,2} if n = (2,1) or (1,2) and s,, = {1} if n = (2,2). For the
point implicit Runge-Kutta pseudo-time integration operator Pj, on the mesh Gy, given by
(2.8), the discrete Fourier transform is equal to

Py(0g) = I,
k—1
Byog) = (1 - 3 Bui B3 (05) + s Ly (03)P5(05)) )/
(1+)\17/6k:k)7 k=1,---,5,
ﬁ;(eg) = ﬁ;(eg)a Ya € as,Vp € [s.

Analogously, on the mesh G, the discrete Fourier transform of the point-implicit Runge-
Kutta method is

Po(nd}) = 1",

Pe(no}) = (1™ = A Z B Py (00" + s L (003 ) Py (n0})) )/
(1+)\aﬁkk); kila"'757
ﬁ\nh(n%:’) = ﬁ:,(n@}’r‘), VB e, rsE sp.

Depending on the type of pseudo-time integrator the discrete Fourier transforms ]/3; (Gg‘) and
Q},(85) provide the discrete Fourier transform of the smoother 3;(9‘5’) Analogously, the
discrete Fourier transforms ﬁ;l(nﬂg:) and Q' , (9%’:’) provide the discrete Fourier transform

of the smoother §\nh(n0;:‘).

4.2.4 h-Multigrid restriction operators
Define the restriction operator R : F(Gy) — F(Gnp), with n € {(2,2),(2,1),(1,2)}, as

(Ri"vn) (@) = D reanva(@+kh), 2 € Gup, z+kh € Gy,
kEJRth

with J Ryt the stencil of the restriction operator. On the mesh G, the restriction operator

can be related to its discrete Fourier transform through the relation

(Biwn)(a) = [ BFon(np)ent =g
0€ll,,

CYY Y [ Aot O,

i€sn jESn BBl 0€1l(4,4)

with 63(0) given by (4.10). Note, in (4.17) we used the subdivision of modes with frequency
6 € 11, into different groups as discussed in Section 4.2.1. The discrete Fourier transform
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Rﬁhvh(nG)7 with 0 € I1,,, is defined as

b n1n2

Rihoy, (nd) = g Z (R ) (z)e o=/ (nh)
zE€EGnn

=TSN el keSO,
78

IEGnh keJRnh
h

For = € G, we have the aliasing relation

o (05, ) = dun (b}, ), (4.18)
with a € af,, i € s, and VB € 8, j € s, see Section 4.2.1.

We can use the aliasing relation (4.18) to express the modes in the different groups of Fourier
modes on G, as the average of aliasing modes on the mesh G,

h 1 o .
znéﬁ -z /(nh) - = zOQ-w/h VBepBl i e . 4.19
(& 17y Z € ; 5 Bna B¥i Sn ( )

i
acoay,

The discrete Fourier transform Rﬁhvh(negl), VB € BJ, 4,7 € sp, can be further evaluated
into

L . a
Rjon(nbg") = 2 ST rkmnon(w+kh) Y e 0Ew/h
T e€Gnn k€T pnn acai,
1 (3 o .
=13 2. O mrene D up(a+ kh)en OB e/
us acal, keJR;L,L 2E€Gnn
1 i )
=13 2 D e Y (vh(x + kR)e—t05 (e+kh)/h
us acal keJR;m 2E€Gnn
+ Z vn(x + kh + Lh)e W05 (ztkh+ih)/h
S

— Z vp(x + kh + lh)e—leg'(w-i-kh-&-lh)/h)
l6ln

- 4%2 Yo D reane®E Y wp(a)e

acal, kEJRZ" zeGp,
1 o
Y T i © Tttt e
T
acal, kEJR;’Lh z€Gnp €L,
[e3 1 [e3
=> X Tk,nheleﬂ'kzl 5 > on(a)ei/h
™
acal, kGJRr,h z€Gh
1 [e3
— oz Do Than D D vn(wtkhln) Y et (4.20)
T
ke‘]R;’:h z€Gnp lEL, (16(1';‘1’

with [,, ;== al\7L. Note, in the fourth step we used that for points z € G, and [ € [,, the
points x + lh € G}, \ Gy, hence a summation over both sets is equal to a summation over
Gh.
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Using (4.10) we obtain for & € G, hence x = jnh,j € Z?, that

Z o= 105 (z+lh) /b _ Z o~ 05 (Gnh+1h) /b

acaj, acal,
= Z e~ (05° = (a1 sign((03°)1) 62 sign((05”)2))m)-(Gn+1)
acal
— W8’ (in+) 3 (@ sign((630)1),G2 sign((63°)2))- (jn+1) (4.21)

acal
The last summation in (4.21) can be further evaluated as
e For uniform coarsening we have a(1272) = {(0,0),(1,1),(1,0),(0,1)} and
li2,2) = {(1,1),(1,0),(0,1)} and we obtain
Z v (@sign((05°)1),@zsign((05°)2)) (21 +11,2j2-+12)

1
aea(212)

= Z ot (arsign((05°)1),azsign((65°)2))- (11,12)

aeaéz)
= 1+ emsien((05)1) | gemsien(O3)1) 41 — g, if 1 = (1,0),
=1+ ezﬂ'sign((ogo)z) 14 emsign((ego)2) _ O, gl = (07 1)’

-1 + ezﬂ-sign((ago)l)elﬂsigrl((ago)z)) + emsign((ﬁ’goh)
+ ezwsign((agoh) — 0’ ifl = (1, 1)

e For semi-coarsening in the z-direction we have two cases: 0‘%2 1 ={(0,0),(1,0)} and
O‘%Z,l) ={(1,1),(0,1)}, with I 1y = {(1,0)}, which can be further evaluated as

Z et (arsign((05°)1),azsign((05°)2)) (251 +1,52) _ | + ot (sign((05°)1),0))-(2j1+1,52)
aea%u)
=1+ ezwsign((92°)1)
=0.
Z et (@rsign((05°)1),azsign((05°)2)) (21 +1.52) _ gem(sign((05°)1),sign((65°)2)) (251 +1.42)
04604%271)
+ 62W(075ign((9g0)2))‘(2j1+1»J'2)
_ (GZﬂsign((ago)l) T 1)emjzsign((egﬂ)2)

=0.
e For semi-coarsening in the zs-direction we have two cases: oz%l oy = 1{(0,0),(0,1)} and
0‘%1 oy = {(1,1),(1,0)} , with I 2) = {(0,1)}, which can be further evaluated as
Z Gm(alsign((ego)1)’@251@((920)2))'(]’1’2j2+1) =14+ em(o’Sign((ego)z))'(h72j2+1)
aea%m)
=1+ ezwsign((QgO)g)

=0.
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Z et (arsign((05°)1),azsign((05°)2))- (j1,2j2+1) _ gom(sign((05°)1) sign((65°)2))- (41.252+1)

04604(1 2)

+ et (sign((05°)1),0)-(41,272+1)
_ ewrjlsign(wg“)l)(emsign(@?g”)z) +1)

=0.

Combining all contributions in (4.21) we obtain that
S e Bt/ =0 VB e B Q] € sp.
acal,

The relation for the discrete Fourier transform of the restriction operator, given by (4.20),
therefore can be further evaluated into

Rphop(nd3") = > RpMO5)TR(65), VB € BL, i,j € sn, (4.22)

acal
with the Fourier symbol ﬁz\hwg) defined as

Rnh 95 E Tk, nhel% k
keJRZh

Relation (4.22) shows that the restriction operator couples the grid modes 03 on the grid

G, to the coarse grid modes Gg;’ on the grid G,;. Using relation (4.22) we can transform
(4.17) into

LADCEDSD DI | S BT | s,

i€sn j€sn el 0€ll(y,q) acal,
with 85 = 05(0) given by (4.10).

Next, we define the restriction operator R™" : F(Gpp) — F(Gump) as

(Rnh Unp) () = Z Tk mhUnh (T + knh), € Gmn, v+ knh € Gpup,
keJRmhn

with n € {(2,2),(2,1),(1,2)},m € {(4,4),(4,1),(1,4)} and Jgmn the stencil of the restric-
tion operator. On the mesh G,,; the restriction operator can be related to its discrete

Fourier transform through the relation

( :mnhhvnh)(ﬁ):/e 0 anhhvnh(ma)elma'm/(mh)dH
S

1m9ﬁkz mh
/ Rfoan(mo)e ™5 "as, (4.23)
9€H(44) "

zes JESn
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where the discrete Fourier transform R::’}{Lvnh(mﬁ), with 6 € Il4 4, is defined as

f\ mymsz mh —wmb-x/(mh
Ry vnn(mb) = = 6; (R v ) (a)ermee/ (mh)
z mh

_ mims Z Z ’I’k’mh’l)nh(il'ﬂ-knh)e_lmem/(mh)o

472
2€Gmh keJRmh
nh

For = € G,,,;, we have the aliasing relation

O (0}, ) = Gy (MO ), (4.24)

with 3 € 87, 4,j € sy, see Section 4.2.1.

We can use the aliasing relation (4.24) to express the modes in the different groups on G,
as the average of the aliasing modes on the mesh G,

i )
ezm@ég’fm/(mh) _ 1 Z emﬁgil.m/(nh)7
ning .
BEBR

i, € sn. (4.25)

The discrete Fourier transform thhvnh(megj‘), i,J € Sp, can be further evaluated into

Rnh Upp (M 97") _ Tme Z Z Tk.mhUnh (T + knh) Z e —mb; " w/ nh)

4m2ning
1702 zEGmn kEJRZIth Beﬁiz
mi1mo “/;iz, _ ’wa
=— E E Theom maﬁ k 2 : vnh(w—l—knh)e " (z+knh)/(nh)
4m’ning
BEB, keJRmh z€Gmn
mymg T ot
_ > E § : Tk,mhelneﬁ k § : (vnh(x—i-knh)e " - (z+knh)/(nh)
47 ning .
Bepl ke JRmhh z€Gmn

+ 3" van(@ + knh + lnh)e~ 0" (e hnhtinh)/ (nh)

lel,
’Yi,
=" vnn(@ + knh o+ )¢5 hn ) [0
lel,
mima maﬂi;i"“k _Z7L07fz.x nh
" AnPngng Z Z Thymh€ 7 E : v ()€ 0"/ )
J ked ,m €Gnn
BEBR Rmh x [
e T
C An2ning Z Z Tk,mh § E Uk (z + knh + Inh)e —wmng" - (z+inh)/(nh)
/I8
1 BEBL kEJRmh 2EGmn LEL,
17197” ko T1m2 —zna’yil»x nh
2 : E Tk, mh€ - e— E 'Unh(x)e 5"/ (nh)
4m2nins
Bep, ke ]Rm,h z€Gnn
e Z Tk,mh E § Unn(z + knh + Inh) E e—znG " (a+inh)/ (nh)
 Am2ning ning - e
JR:L”hh z€Gmn lE BEﬁn

(4.26)
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with 1, := al\y}. Using (4.10) we obtain for € Gy, hence x = jmh, j € Z?, that

Z efznegf‘-(erlnh)/(nh) — Z e*’bnegjL'(jthrlnh)/(”h)

BEB, BeEB,
— Z ot (05° — (71 sign((05°)1) 72 sign((05")2))m)- (4 2 +1)
BeBs,
_ Z e—zn920~(j%+l)eznﬂ'(’71 sign((ego)l)ﬁgsign((ﬁgo)g))»(]’%-‘rl)
BEBY
— Z e 11(060 — (Bisign((060)1),F2sign((650)2))m)-(j 5 +1)
BEB,
e (N sign((6%°)1),72 sign((92°)2))'(j%+l)’ (4.27)

with 8 = (81, 52) and 7%, = (J1,72). The last summation in (4.27) can be further evaluated
as

e For uniform coarsening we have 5(12 9y = {(0,0), (3,3),(3.0),(0,3)}, ’y(12 o) = (0,0)

and (3 2y = {(1,1),(1,0),(0,1)} and we obtain

Z e~ (000 — (Brsign((050)1), B2sign((060)2))m)-(j 5 +1) gen (31 sign((05°)1) .72 sign((05%)2))- (5 52 +1)

BEBL, 2

= T e Busten((OR)): Basian((O88)2))m) (21 i)
BEB(5,2)
— o000 (4714201 452 +212) Z ot (Busign((600)1),Basign((600)2))- (471 +201,4j2+212)
BEBL 2

Use now the relations

Z et (Bisign((00)1),P2sign((650)2))- (471 +201 4j2+2l2)

BEBL 4
— 1 4 ermiEn(001) | grmsign(950)1) 1 — if [ = (1,0),
1 evmsisn((659)2) +1+ etmsign((090)2) — 0, if 1 =(0,1),
— 1 4 ermsisn((009)1) umsign((600)2) | pumsign(999)1)
+ ermsian((059)2) — if 1= (1,1).

e For semi-coarsening in the zi-direction we have two cases: 5(12’1) = {(0,0),(3,0)},

7(12’73: (0,0) and A7, 1) = {(5:3), (0, 3)} 21y = (0,1) with 21y = {(1,0)}, which
e fu

can rther evaluated as
Z e~ 1000 — (B1sign((00)1),B2sign((650)2))m)- (7 2 +1) ganm (31 sign((05°)1),72 sign((05°)2)) (5 22 +1)
BEBL 1)

= S O (Brsian((035)1).Basign((955)2))7)- (41 +2.52)

BEB 1y

_ 6—1088'(4j1+2,j2)(1 + elwsign((988)1))
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Z e~ 1m(000 — (B1sign((00)1),P2sign((650)2))m)-(j 5 +1) gunm (31 sign((057)1) 72 sign((65°)2))- (5 5 +1)
BEBY 1)
— o000 (471+2.52) Z ot (Bisign((000)1),P2sign((000)2))- (4j1+2,52))
BEBE 1)
et (0.72 sign((05")2))-(451+2,42)
— ¢~ oo (451+2.52) (em(%sign((GSS)l)7%sign((aé’é’)z))‘(4j1+2,jz)ezw(o,sign((92°)z)>~(4j1+2,ja)
+ 17 (0, 35ign((050)2) (451 +2.52) oom (0,sign((05")2))- (441 +2»J'2))
— 6*2988'(4j1+2;j2)6%“751gﬂ((983)2)j2 GWSign(wgo)z)h (elWSigﬂ(wgg)l) + 1)

e For semi-coarsening in the xo-direction we have two cases: 6(11’2) = {(0,0), (0, 3)},

7(1172 = (070) and 6(21,2) = {(%7 %)7 (%,O)}, 7(2172) = (170) with l(1,2) = {(07 1)}7 which
can {)e further evaluated as

Z e~ (060 — (B1sign((009)1),P2sign((050)2))m)- (7 2 +1) gunm (31 sign((05°)1),72 sign((05°)2)) - (5 22 +1)
BEBL 2
_ Z 6*1(938*(Blsign(wgg)l),stign((eggh))ﬁ)'(jl~4j2+2)
BEBY 2
= 000 (71:432+2) (] 4 ermsign((056)2))
Z e~ 1n(000 — (B1sign((00)1),P2sign((650)2))m)-(j 5 +1) gunm (31 sign((05°)1), 72 sign((05°)2))- (5 5 +1)
BEBY 5
— ¢ 000 (71,452+2) 3 v (Brsign((600)1),B2sign((000)2))- (41,472 +2))
BEBY 5
et (F15ign((63°)1),0)-(j1,4j2+2)
= ¢ 1088 (i1 iz +2) (o (sign((650)1) Asign(838)2))- (71 iz +2) gom (sign((65°)1).0)- (42 +2)
+ e%ﬂ(%sign(wgg)l),o)-(h,4j2+2)em(sign((ag‘))l)’o)(jl’4j2+2))
_ 18- (G1,43242) g Brmsign(099)1)in gomsign(OF 1) (omsisn((038)2) 4y 1)

Combining all contributions in (4.27) we obtain that
Z e—zag%.(x+znh)/(nh) —0, i, € 8.
BEB

The relation for the discrete Fourier transform of the restriction operator, given by (4.26),
therefore can be further evaluated into

Rytoun(m0)r) = 3 Ryt (n0) Yomn(no}"), i) € sn, (4.28)
BEBL
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with the Fourier symbol anhh(nﬁg’i) defined as

h "/n _ zn@ n k i
R (nlg Z Tk,mh€ VB e B, i,j € sn.
kEJRth{L

Relation (4.28) shows that the restriction operator couples the modes with frequency 0 5" on

the grid G5 to the coarse grid modes with frequency 9;; on the grid G,,. Using relation
(4.28) we can transform (4.23) into /

mi i i m ’Y’il-w m
(R onn)( Z Z/ Z R (8 )onn(ny) | e 05 @/ (mh) 4o

i€sn j€sn "D \geg)

In the special case of two-level analysis the restriction operator is related to its discrete
Fourier transform through the relation

(Bito)@) =30 [ Ryl g, (4.29)
i€sy, Y O€2,2)
The discrete transform of the restriction operator then reduces to

Riron () = 37 REMO)T(0%), i€ s, (4.30)

acal,
with the Fourier symbol R"(6%) defined as

Rnh 0%) = E TE, nh€" 0%k
kEJR;lh

Relation (4.30) shows that the restriction operator couples the modes 6%, with a € al,
i € 8y, on the grid G}, to the coarse grid modes #7» on the grid G,,;,. Using relation (4.30)
we obtain from (4.29) the following relation for the restriction operator in two-level analysis

(Rpop)(z) = > /9 Rnh(ea) (0% | et/ (k) g, (4.31)

i€sy, ¥ 0€l(2,2) aEa’
with 0% = 0%(0) given by (4.12).
4.2.5 h-Multigrid prolongation operators
The definition of the prolongation operator P" : F(G,;) — F(Gp), with n € {(2,2),(2,1),
(1,2)}, requires the introduction of subsets of the mesh Gj. Define the meshes G as

Gy = {(z1,22) € R? | (z1,22) = ((naj1 + R1)h1, (n2je + Ra)he), j € Z*},

with k € Ky, = {k = (R1,R2) | R; € {0,n; — 1}, = 1,2}, see Figure 4.4. The prolongation
operator related to the mesh G} then is equal to

(Pyon) (@) Z Pr,hUnh (2 + kh), x € Gy, x + kh € Gpp,

KET5n
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(o S)
Q ky even, ko even

[ ] kiodd, ks 0dd
NI [] 7 A k1 odd, ko even

v ki1 even, kg odd

C S

Figure 4.4: Different meshes Gf used in the definition of the prolongation operator for
uniformly coarsened meshes

where the index set J% Pr C Z2 is used to define the prolongation operator on each mesh.

We consider now the prolongation operator P F(Gun) — F(Gh), with n € {(2,2),(2,1),
(1,2)}. The prolongation operator P% is related to its discrete Fourier transform through
the relation

(Pffhvnh) (z) = / Pfhvnh(ﬂ)e’e'z/hdﬁ
O€Il(q 1)

=> > Z > / nhvnh(ea) e!’i e/, (4.32)

1€8n JESN a€al, BB, 0€1l(a,q)

with 0 = 05(0) given by (4.10). The discrete Fourier transform P, e nn (05), with « € af,,
B € B, i, € sy, can be further evaluated as

— 1 .
Pl oap(05) = s Z (Pl vp) (x)e= 05 a/h
z€Gy,
1 —0%. I
ZHZZ nhvnh lﬁ‘x/l
KEKn IGGK
1 . )
el SN pene D van(a + kh)e 05 @kn/h
7 KEKn ke‘]mh (L’er
Prn
5k 12 —ngh.
= - Z Z pk,6103 k F Z Unh(JC)@ n@ " -z /(nh)
112 KEKn k€ ]N e
nh
= B (03) 5 (8. -

Note, in the fourth step in (4.33) we used that ©+kh € G,,p, for all k € J%, and that modes

Ph

with frequency 6%, o € o’ , on the mesh G}, alias to modes with frequency 67 7% on the mesh
q Yy n B
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Gpp. The Fourier symbol I/DEL(QE‘) is defined as

Ph _ }: Z pkhelef"k
n1n2

KERKn keJ"

nh

Hence, we obtain for x € G}, the expression

From) @ =33 3 % / Pl (03) 0 (nf )75 /" dp.

i€sn jE€sn acai, geps Y V€D

Next, the prolongation operator P™ : F(G,.n) — F(Gnn), with n € {(2,2),(2,1),(1,2)},
m € {(4,4), (4,1),(1,4)}, is considered. The definition of the prolongation operator requires
the introduction of subsets of the mesh G. Define the meshes G¥, as

Gy = {(x1,22) € R? | (1, 32) = ((maji + R1)ha, (majs + Ro)ha), j € 2%},
with & € Ky, 1= {k = (R1,R2) | Ri € {0, (2m; — 2)/3},7 = 1,2}. The prolongation operator

related to the mesh G7, then is equal to

(P"hvmh) Z Dk.nhUmh (T + knh), x € Gy, x4+ knh € G-
KETE,,

Pk

The prolongation operator P} is related to its discrete Fourier transform through the
relation

(P,:;};;’Umh) (1’) = / Pnhvmh(ng)elne-w/(nh)dg
0€ll,

=y > > / P"f,gumh(ne”n) mo3 o/ (nh) g (4.34)

1€Sn JESK BGﬂJ O€ll(4,4)

The discrete Fourier transform P hvmh(nQ ) with 3 € 82, j € sy, can be further evaluated
as

i i ning ok
h Tn\ h " -x/(nh
Prhomn(ndy) = 5 > (Prhomn) (w)e 00"/
z€Gpp
n1n9 —mG'y’i”Lw nh
= 2 E: E 7nhvmh )6 g #/(nh)
4
KEKm weGnh
nins . g
_ g § : § : pk,nhelneﬁ k § : vmh(x—l—knh)e mfg" - (z+knh)/(nh)
7
KERKm ke‘]pnh Z‘eG;h
i v
n1n2 . 1Mo —1mb J”a/(mh)
= > > " Prane™’? 12 > vpn(z)e o
2 K€hm keJy, 2€Gmn
mh
_ b (g Th N (1 AT
= P (n8) Yo (). (4.35)

Note, in the fourth step in (4.35) we used that z + knh € G,y for all k € J5,, and that
mh

modes with frequency 9ﬁ7 with 8 € BJ, on the mesh G, alias to modes with frequency
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9;’;‘, i,j € s, on the mesh G,,;,. The Fourier symbol Pﬁl’ﬁ(nﬁg:‘) is defined as

BTy T2 mO" -k
PRy (nfgr) = Dknne # .

mim
12 KEKm keJ®

P" h

Hence, we obtain for z € G,,;, expression

Fon) @ =5 5 8 [ B0 e s

1€ESy JESK 5657 O€ll(4,q)

In the special case of two-level analysis the Fourier symbol of the prolongation operator is
related to its discrete Fourier transform through the relation

(Blyon) (1) = 3 30 Pl oan(6°)e” /b, (4.36)

1€8n a€al, 0€ll(2,2)

—

The discrete Fourier transform of P, v,,;(6%) reduces to

P ooy (07) = PP (0% o (nf77) (4.37)
with ]/DE(GO‘) defined as
/h\ oy >k
Pin0) === > D prawe ™.
KEKR keJN

nh

Hence, we obtain for x € G}, the expression

(Plyvnn) (z) /9en 0 Yonn (n67m)e?” */ .
(2,2)

1€Sn acal,

4.2.6 p-Multigrid restriction and prolongation operators

Define the p-multigrid prolongation operators T;’;p_l : F(Gr) — F(Gy) in stencil notation
as

(Tlf,pflvhwpfl)(j) = thpUnp(2), T € G,

where ¢, € R"™»>*™» is the matrix defining the p-multigrid prolongation operator in an
element. Since this is a purely element based operator it immediately follows that its Fourier
symbol is equal to

T}fp L =thp- (4.38)

The p-multigrid restriction operator Q‘,'fpl : F(Gr) — F(Gy) is equal to the transposed
of the p-multigrid prolongation operator. The Fourier symbol of the p-restriction operator
then is equal to

/\

e = (0, i, )7 (4.39)
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4.3 'Two-level Fourier analysis

In two-level analysis the Fourier symbols EL(Q) and f,;(nﬂ) can be zero for certain values of
6. The frequencies of these Fourier harmonics are removed from F7 () through the definition
of

]-",39 = {Fp(0%) | 6 €T(a0) \ Uy, Vor € 0,0 € 5}
with
v, = {9 €Il | det(fh(ﬁa)) =0or det( n(n 07")) =0,Yacal,ic sn}, (4.40)

and 0% = 0%(0). The set s, is defined as s, = {1,2} if n = (2,1) or (1,2) and s, = {1} if
n = (2,2). The error ef on the mesh Gj, after one iteration of a two-grid multigrid cycle is
derived in Section 3.1, equation (3.7), and equal to

eb = Mesd, (4.41)

with eﬁ the initial error and M}fg the two level multigrid error transformation operator
defined as

= 832 (In — P Loy Ry Ly) Sy, (4.42)

where Lj denotes the discrete approximation of the spatial operator L, S} the multigrid
smoother, R”h the restriction operator, P} ", the prolongation operator, v1, v the number
of pre- and post-smoothing iterations, and I}, the identity operator. The error e” has for
r € Gy, the Fourier decomposition

Ra)= [ Perrrap
€1l

=y > / 29 e) (8%)e?" =/ ap. (4.43)

i€sn acal, 6“(22>

In order to compute the Fourier symbol of the error transformation operator Msg we first
compute the discrete Fourier transform of S;* P, hL ththglef for each group of modes
with a € o}, © € s, using the following steps

1. Using (4.13), (4.14), (4.15) and (4.16) we obtain

(LS} es Z Z / thgle;‘) (0%)eX?" =" dg

i€sn acai, Y I€l2.2)

“E T f, B (S0) e

1€8n a€al,

hence o . -
(LnS; es) (0) = Lip(0%) (Sh(6)) e A(ea) Va €l i € s, (4.44)
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2. Using (4.29) and (4.30) we obtain for x € Gy,

(B s et)@) = 3 [ (P asped) et g
€ll(2,2)

1€Sy ,
- Z/ S REMO) (LaSyeft) (972 g
1E€ESn O€ll(2,2) az€al
- 2/9 S RE(0°) D (0°0) (Sn(0°7)) " e (07 ) = ) g,

i€sn ¥ 0€(2,2) as eoﬂ

where (- )Ais used to indicate the Fourier symbol of the product of a number of variables,
hence

(Rp Lo Sy et) (nf7e) = S RpM(0°2) L (0°2) (Sh(0°2)) " e (092), i € 5. (4.45)

as€al,
3. Using (4.13), (4.14), and (4.45) we obtain

(Lon B LuSiten) (x) = Y /0 ; (LoARM Ly SV ei) (nf7h)etm®™ =/ g
i€s, YV 0€l2,2)

S [ (Bt (B LSy eR) (e 0 g
GGH(z 2)

iESn

Z/‘QEH@ 2) (Z;L(nG’Y:L))_l Z éz\h(aaz)fh(go‘z)(gz(gaz))lﬁ

1E€ESn

i
azcal,

g,hZ(eag )emm% ~x/(nh)d9
hence
~ . _ s -1 — —
(Luh R LSyreit) (n67%) = (Lan(ne™)) 3 RpF(0°*)L(6°2)
an€al,
(Sn(6°2))" el (0°2), i€ sp. (4.46)
4. Using (4.36), (4.37) and (4.46) we obtain

(Pl Lot B sy el (o) = Y0 Y / (Pl Lot R LSy i) (07)* g

1€8n a€al 0€lls, 2)

_ Z Z / (L anthSl/l )(na’y;)eZQQw/hde

i€sn a€al, 0€ll(2,2)

-y / Pgh 0°) (Lun(nf") ) ST Rph(6e2)

1€Sp a€al, az€al,
Ln(62) (Si(6°)) " et (672)e " /o
hence
~ — _ s \—1 — —
(PI Lt Ri"LSyeil) (00) =Pl (6°) (Lan(no7)) 7 Rygh(6°*) Ln(6°)
az€al
(8n(6°2))" el (6°2), Va € al, i€ s,. (4.47)
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5. Using (4.15), (4.16) and (4.47) we obtain

(S;:zph 71RnthSV1 A)( )
_ Z Z / Suzp RnthSm A) (ea) zQ"ﬂc/hda
i€sn a€ad, 0€ll(2,2)
_ Z Z / Sh 904 Vo ( nhRnthSul A)( a)ezea-z/hda

i€sn acai Y I€l2,2)

D3>

€8 a€al,

ST RpR(6%2)Dn(6°2)

i
az€Qy,

| @) B ) (o)
0€ETl (5 5

(S(6°2)) " ef} (6°2)e*" /g

hence
— 1 —
(SZQP,? RnthSul A) (ea) (Sh(ea))uzpr}; (ea) ( ( 9%1)) Z th(eaz)
O‘Qeail
Ln(6°2)(Sh(6°2))" e (6°2), Va € al, i€ s,.

(4.48)

Using (4.16), (4.42) and (4.48) the error in the two-level multigrid algorithm in (4.43) can
now be expressed as

ZZ/ Suz

i€sn acai, Y I€l2.2)

—zz/

1€5n a€al,

Lo R L) Sy ert) (0%)er /M df

-1

oa))u1+v2AA(9a) (g«;(aa))ufz@(ea) (m(nafﬁl)>

O€ll(o, 2)

ST RpH(6°2) L0 (6°2) (Sn(6°2))"

i
azcal,

i (0°2) )" /M dp.
The discrete Fourier transform of M,fgef(ea) for the group of modes with o € al, i € s,
denoted by M" /1(6%), can now be defined as

—1

M (0°) = (S0 (0) a0k 0%) — (S1(0°) Pl (07) (Lan(no))
S RO L) (Sa(07) (070, Vaeah, i€s,  (449)

i
azeal,

The expression for the discrete Fourier transform of the error transformation operator M 29
can be simplified using matrix notation. Define for each group of modes «o},,i € s, the
matrices

Ly (0°%) == bdiag (Ly (™), , Ly(6°7)) € CT>, (4.50)
Sp(0°n) := bdiag (S (0°*), -+, Sp(6°7)) € CI*a, (4.51)
R (00) = (B (0), o RyH6°) € C, (4.52)
Pl (6°%) = (Pl (6°), -, Pl (%) € €<, (4.53)
GHO) = (e (0, e (0o e T, (4.54)
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with 0% = (0*1,--- ,0°")T oy, ,a, € o), r := Car(al,), with Car(a?,) the cardinality of
the set af,, and bdiag refers to a block diagonal matrix consisting of ¢ x ¢ blocks with ¢ > 1.
Note, the same ordering of mode indices «; for each group of modes defined in Section 4.2.1
must be used in all vectors and matrices defined in (4.50)-(4.54). For example, for uniform

coarsening we have

222,2)(000’ 911’ 9107901) = bdiag (EL(GOO)7EL(911)3 Z;(GIO), EL(GM))’

for semi-coarsening in the x;-direction
LiZD(0™,0') =bdiag (L(6™), Ln(6)),

—

L2V (0",6"") =bdiag (Ln(6™), L1 (6™),
and for semi-coarsening in the zo-direction

{12 (090, 6°1) =bdiag (L (0°°), T (6°1)),

Lit(0™,0'%) =bdiag (Ln(0™), Ln(6")).

If we use (4.50)-(4.54) and consider uniform coarsening then we obtain for all a € a(12 o) the

relation

(S(0) " BR(0) (Do 20™)) S0 R0 E(0°) (Sh(0°2)) " e (0°)

a2€o‘%2,2)
Sn(6%) 0 0 0 e
B 0 Syt o 0
0 0 Sp69°) 0
0 0 0 Sp(6™)

(Zar2s) ™ (o) R RO FOM )

L (6%) 0 0 0

0 Ly 0 0

0 0 Ln(619) 0

0 0 0 Ln(6°Y)
ECA 0 0

0 Sp1) 0 0

0 0 Sp6Y©) 0

0 0 0 Su(6°)

~ ~ — -1 ~
= (2 (p*2))" Ph (0% (Lgh(woo)) R (9°C2) L2 (g0

(822 (p2(22)) " 62D (polz2)),
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Analogously, for semi-coarsening in the x;-direction we obtain for all a € a%Q 1) the relation

(Sh(ea)) (2}27};?))(90‘) (sz)(2(000) 900 ) Z R(i}fl};}:Q) 9042) h(eaz)

0‘260‘(2 2)

(S (0°)" efi(6™) =
:<sz<eoo> 0 ) P 0)
)

< (plo hih
0 Sh(0 P((2hll,}fz)) (610)

(L (2000, 002)) ™ (R 00y R (g0 )

v o Sie™) o\ [ ™)
0 L") 0 Su(6v) e (610)

R 1 va al — N —
= (522,1)(0%2,1))) ZP(h2h17h2)(0 (2,1)) (L(th,m)(@’ 1)97@,1))))
fiézhl,hz)(eagm) )222,1)(9@211))(@(12,1) (90@’1) ))Vlgf,l)(eaé,l)).
with a similar result for o € aé 1) and also for semi-coarsening in the x,-direction.

For each group of modes o, i € s, the discrete Fourier transform of the two-level multigrid
error transformation operator then is equal to

AT i an.i/pal \\ V2 T D ol T i\t DN ol \NTnpal
M (0°0) = (Sp7(0°)" (177 = Pl (0%) (Lan(n07)) Ry (00 (o))
(Sp(om))" € comxar, (4.55)

with 19" the gr x gr identity matrix and r = Car(a?,).

The two-level error transformation operator is now obtained by combining the contributions
from the different groups of modes «,, @ € s,,. The multigrid error transformation operator
for uniform coarsening then is equal to

]’\4\2272)(0&(2,2)) _ ]’\4\22,2)(0&%22)) c (C4q><4q7

with §22 = G2 = (690,611 919 9°1)T | The error after one two-level multigrid cycle
with uniform coarsening can now be expressed as

eP(6oe) = M (goe el (9e),

with P (0702) = (1P (67), D (011), P (610), 1P (6.
The multlgrld error transformation operator for semi-coarsening in the x-direction is

7=(2,1) / pat
MY (geen) = M3V (gen) 0 ¢ Chaxdg
h 0 M}(L?J)(ga(z,l)) ’

with goe0 = (0%, go=0)T, 976 = (990, 910)T and #°Cn = (911, 0°1)T. Note, however,

/\

that the error vectors e Dgeen) = (ef’D(ﬁoo),ef’D(Qlo),ef’D(QH),ef’D(Gm))T have a
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different ordering than the error components for uniform coarsening, e’,j’D(GO‘Q»Z)). The
ordering of the components of the error vectors is not important for the computation of
the operator norms and the spectral radius of the error transformation operator, which are
discussed in Chapter 5. For the coupling of different multigrid algorithms, such as uniform
and semi-coarsening, it is, however, essential that the same ordering of the components of
the error vectors is used. This can be easgf\accomplished/u\sing the permutation matrix

P*Y e R4*44 which reorders the vector ef” (8%@0) to e P (8*22) and is defined as

790 0 O

21 | 0 0 17 0
B = 0 19 0 O
0o 0 o0 14

The error after one two-level multigrid cycle with semi-coarsening in the x,-direction can
now be expressed as

g}?(aa(z‘z)) _ (Pf’l))71]\722’1)(0“@‘1))P,EQ’l)g%(eau,z)).

Finally, the multigrid error transformation operator for semi-coarsening in the xo-direction

is
A(12) paf
]\7}51,2)(904(1,2)) _ [ M, (6*2) I 0 . € Claxda,
0 M (o0 2)

with 9.2 = (%02, 9°0.2)T, %02 = (90,9017 and 9°11» = (11,01%)7. The permuta-

)

. . 1,2 . .. . .
tion matrix P,E € R*ax4a for semi-coarsening in the xo-direction is defined as

90 0 0

(1,2) _ 0 0 o0 I
b= 0 179 0 O
0 0 I7 0

The error after one two-level multigrid cycle with semi-coarsening in the xs-direction can
now be expressed as

e/hB(aau,z)) — (PF(LLQ))717\4\}51’2)(0&(1‘2))P}(ng)g%(ea(zm)'

4.4 Three-grid Fourier analysis
In three-level analysis the Fourier symbols fh(ﬂ), I//;(nO) and @(m&) n € {(2,2),(2,1),

(1,2)}, m € {(4,4),(4,1),(1,4)}, can be zero for certain values of 6. The frequencies of
these Fourier harmonics are removed from 7 (6) through the definition of

F9 = {F(09) |0 € Mg\ W, Yo € al,, VB € B, 4,5 € 55},
with

W = {0 € Mgy | det(Ln(65)) = 0 or det(Zun(nb)")) = 0 or det(Lys(m67?)) = 0,

Va€al ,V3epl, ijc Sn}s (4.56)
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and 0F = 03(0). The set s, is defined as s, = {1,2} if n = (2,1) or (1,2) and s, = {1} if
n = (2,2). The error transformation resulting from a three-level multigrid cycle is derived
in Section 3.1 and equal to

eD = M. (4.57)
The three-level multigrid error transformation operator is defined as
M9 = Sy (I, — Pl (Lun — (M%) L A REM Ly, ) it (4.58)
with coarse grid correction
=S (L — P L R th) Sy (4.59)

Here L, L,y and L,,, denote the discrete approximation of the spatial operator L on the
meshes Gj, Gnn and G, respectively, Sy, Spp the multigrid smoothers on the meshes
Gy, and Gy, respectively, Rﬁh, Rmh the restriction operators, an P"h the prolongation
operators, I, and I,; the identity operators on G}, and Gy, rebpectlvely, v1, Vs denote the
number of pre- and post-smoothing iterations on Gy, v3,v4 the number of pre- and post-
smoothing iterations on G, and v the number of applications of the coarse grid correction

operator M)}

In order to compute the discrete Fourier transform of M, 39 we first compute the discrete
Fourier transform of the two-level operator M), on the mesh G, using the following steps

1. Using (4.13), (4.14), (4.15) and (4.16) we obtain

(LanSyem) (x Z Z Z/ nh/S\fﬁ,ﬁfh)(nﬂgi)emegz'x/(”h)dﬂ

i€sn jESn Bepl USIERS

—zzz/

1ESy JESN ,(36,37

9%) (g\nh (n%h) 3 e/f;(neg;)emg;n z/(nh) 49

O€I(4,4)

hence
(LunSZel,) (n0)) = Lun(n83) (S (nb3)) e, (n83"), VB € B, i,j € sp.
(4.60)
2. Using (4.23), (4.28) and (4.60) we obtain
VR WS Ry
(Rnh ththenh Z Z Rnh ththenh) (ma(;jL)e on do
i€ jEsn ¥ 0 L(a,0) "
- i zm@w%‘w mh
= Z Z/ Z Rmh n@v" nhszzeﬁh)(n%;)e h ) )d9
1€8y JESH 0T (4,4) B2 Eﬁ]
DY / S R (003 Lon (n0) (S (n0)
1€ESy JESK 6€IL(4,4) Bo EﬁJ
i wmb '™ .z/(mh
efh(n%;) s )d9
hence
(Rt LonSyem) (o) = 3~ R (n0) Lun(ndle) (Sun(nb3)) " e, (nf11),
B2€67,

i,j € sn.  (4.61)
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3. Using (4.13), (4.14), and (4.61) we obtain

(Lon B Lun Sy enn) (@)

1m0ﬁ”-z mh
/ L R LanS2yel) (moTm)e ™ sk ™™ g
163 JESn OEH(44) "
- i zm@ﬁ‘m mh
/ megy)) (R LanS¥e) (mo7e)e ™5 """ ag
ZGS JGS 961‘[(4 4) n n
—1 — i — i — i
_ 'Yn mh n n Tn\) Y3
-y /GH md})) Y R0} Lun(nd) (Sun(nd)
i€sn j€an WO Ba€,
e;?h(nﬁg;‘)ezm e z/(m )d9

hence
~ i — i -1
(Lot Rt Lun i) m67) = (Lun(m07)) > Rygh(n6}) Lun(n0)
B2€B7
(Sun(nf3)) el (n8y),  ij€sn  (4.62)

4. Using (4.34), (4.35) and (4.62) we obtain

(P" L-LR™ thS”henh)( )=

RN [ (PIRRLashe) (o

i€sn j€sn el 0€ll(y, 4)

= Z Z Z / nm")( mhRnh nhSZieﬁh)A(meg%)em"Z"'w/<nh>d9

1€Sy JESK BEBJ O€M(4,4)

Yy

1€8n JESn BB,

n@v") (f\ m6‘7” ) Z Rmh nﬁv"
B2EB,

L (n03) (Sun(n03)) " ey (nf37 )e %" =/ " g

O€ll(4,4)

hence

(P2 Lt R LS e, ) (n0) = P"h(nm’)( o megz ) ST Rmi(n6])
BZEBJ
Lon(n93) (Sun(n})) ey (n031), VB € Bl 1,5 € sn. (4.63)
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5. Using (4.15), (4.16) and (4.63) we obtain
(SZZ mhL hR ththenh)( ):

= Z Z Z / SZ‘,{LP” L Rm L”hthenh) (nggi)emogi’».z/(nh)dg

1€sn JESn Bl €Ml (4,0

XSS [ Gt (PR R LS (5 e T

1€5n JE€Sn B, O€lla, 4)

-y y/

1€ESy JESK BeBL O€ll(y, 4)

Snn( n97"))V4F/’;‘ZLL(nGZi‘) (L/\ m@v" ) Z Rmh n@y"
52€5J
f;l (negé ) (@L(negé )) v3 e/é;(negé )emeg" @/(nh) gp
hence

i — i i — i -1
(SZ[;L mhR L"hS’nhe )(ngvn) = (th(nggn))wpnh( Hg") (Lmh(m9z5)>

mh

Z Rmh 71497 nh(n@ )(@(negi))%eﬁh(negi) VB E B, i,j € sp.
/62€ﬁn

Using (4.59) the error in the multigrid algorithm at the mesh G}, can now be expressed as

B =3 S [ (St~ PRRLGL R L hel) (0

1€8y JESK BeB €H(4 4)
znOg%z/(nh)dQ

_ Z Z Z / 97n))”3+y4 A ( Q’Yn) _ (g;(neg;))”‘l%(neg;)

1€Sy JESK ﬁG,BJ O€lly, 4)
7 SN Pmh (0 n T ()3
(L W (m 9%)) S° RO Lon(n03) (San (b))
B2€8,
et o) 03" e (nh) g,

The discrete Fourier transform of M} henh is thus equal to

M el (n0]) = (San(n03)) " e, (n03) = (San(n03)) " Bt (03 (Lo (m07))
> RIEmO3 ) Lon (0 ) (Sun(nb)) e (n03r), VB € B, 1,5 € sp.
B2€84,
(4.64)
We can also obtain this result directly using the fact that the modes qﬁh(@g, x) on the mesh

G, alias to qzﬁnh(nml x), with o € o, 3 € BJ, i,j € sy, on the mesh G,p,. If we use the
discrete Fourier transform of the two-level error transformation operator (4.49) and replace

0 with nm” 02 with né’? ", n®7 with mé” ”, nh with mh, and h with nh then we also
obtain (4.64).
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Define now the coarse grid correction operator

M = I, — (M), (4.65)

If we introduce the matrices (MT%)B € CI*a with B € B2, 4,j € s, and r = Car(al)) =

Car(B7), we can write the discrete Fourier transform of M™ e4, as

Med, (n63r) = Y (M), (nf);y)ed, (n0):), VB EB), i€,  (4.66)

B2€8,

where an explicit expression of (M ﬁh) 55 (anZ’; ) can be obtained using (4.64). For instance,
if v =1 then
(VI3 5, 00035 1) =17 = (San(n03))"* ™ (San(n03)) " i 0 (Een(m0))
Ryt (0 Lon(n0}") (Son (n63)) it =6
(S (n0)) " P 0 (Lm0 ) R (ne)
Lan (63 (San (n677)) ", it § # 6.
Next, we compute the Fourier symbol of the operator M 29 . We first derive for each group of

modes o, 32, i,j € s, the discrete Fourier transform of Sy Pé‘hM[L’,’IL;; thLhS e ef using
the following steps:

1. Using (4.13), (4.14), (4.15) and (4.16) we obtain

(msieet) @)= 5 3 0 [ (masied)@n)e i

i€sn jEsn acal, gepd @y

“Y XYY [ Ty (Se)” e an

i€sn jE€sn acal, gl ” I
hence
(LnSTe) (63) = Ln(63) (Sn(03)) " €A (03), Vo€l VB € B, i,jE s, (467)
2. Using (4.17), (4.22) and (4.67) we obtain

(Ermspel) o =Y 3 0 [ (mPIaspel) e

i€sn jEsn gepd 0 @

P 2p> / S RO (LaSiet) (652)e 0K /M g
. €

i€sn j€sn gep Y 0TI azeal,

=30 30 3l IS SR L CSInC SIS TS

1€8y JESK BB (4,9 az€al,

ezné‘;" -z /(nh) do
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hence

(Rp"LaSytelt) (n6) = 37 Ry (037)Ln(652) (Sn(652)) " e (63,
as€al
VB e B, i, jE s, (4.68)
3. Using (4.13), (4.14), and (4.68) we obtain
(L r Ry Ly Sy en) (z)

S Y [ R syt (e g

1€ESy JESR ﬁeBJ €T, 4)

-y

1€5n JESn B, NI

Yy Z/ (Lonndy)) Y2 R 0305 (Sh(65)

i€sn JESH BeBY S, 4> az€al,

-1 -~ i T
(Emnnd3)) ™ (RR"LaSy e (na )=/ g

e (652)e™ 05" /() g
hence
-~ i _— i -1 — — —~ v
(Lo Ry LaSyer) (ndyr) = (th(neg")) Z RiM(052)Ln(052) (Sn(052)) "
az€al,
eA(63), VB EBL, i) € sn. (4.69)
4. Using (4.66) and (4.69) we obtain

(M L ARIAL, S0 eA) (z) =

S X [ (IR LS e e g

1E€ESy JESK ﬁGﬁJ H(4 4)
o —1pnh s
=2 > > / ST (M), (00357 (Lt REP LSy efd) (o)
ZESnjesnﬂeBJ 0< H(4 4) Ba EB’

emegj1 x/(nh)da

Yy Y[

1€5n JESn B, CT(4,4) B BJ

(T30, 005 (Emn)) ™ S R

Q2 Eoﬂ
La(052) (Sn(052)) " et (952)e™%s" /"M dg
hence

(VI Lo R LSt e 8 = S (M) 5 (n03 ) (Ton(nel))
nh®™~nh*th h2p CEh B ‘ nh) B, B Y nh B2
B2EB7,

> Rp052)LR(052) (Sh(952))" A(e% VB e Bl ijEsn (4.70)

i
az€ay,
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5. Using (4.32), (4.33) and (4.70) we obtain

(P M 1RZthSV16A) (x) =

I

€8 JESn a€al, BB O€ll(4,4)

-yyyy/

1€5n J€Sn a€al, B, Ol (4,4)

Yy Y 05 S (1), (05 4) (B o)

ML R LSy et ) (05)% </ do

P7];Lh oﬁ (M nththSV 6h> (nﬁg")ewg“/hdtg

i€sn jE€Sn acal, B, 0€ll(4,4) ﬁzeﬁi
> REM032)La(052) (Sn(052)) " et (052)er? =/ dp
az€al,

hence

- —

- — i — i —1
(Pl R LSy e ) (63) =PR63) 32 (Mgh) 5, (00759) (Ean(ns))

B2€8,
ST RpMO3)La(03) (Sh(052)) " e (052),
az€al,

Ya€al VB e B, i,j€ sy,
(4.71)

6. Using (4.15), (4.16) and (4.71) we obtain

(5"213 ML RnthSV1eA)(x) -

-yyyx/

1€8n JESn a€al, Bep O€ll(4,4)

-yyyy

i€sn jE€sn acai, gepi 0@

-yyyx/

1€8n JESn a€al, Bep 0€ll(4,4)

Sugp M%LnéRn LhSheh) ( a)ezeg»m/hde
(Sn(03))" (P ML R;;thsheg‘) (09)e% =/ dg

Sh 95 )V2P7}Zh(05) Z (M%)gz(nagzﬂ)

B2€B,
(L/,;(ne%) Z RpM(052)Tn(652) (Sn(652))

i (052)e /o
hence

(ke PR L R LS i) (93) = (SO0 PR 09) 3 (M), (n85)
B2€83,
T 'Yi -1 onh [e% I = V1A
(Ennd)) 3 RFO3)In(6052) (50 (032) " e (632),
042604'1

Vo€ o}, VB € B, 0,5 € sn. (4.72)
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Using (4.58) and (4.72) the error in the three-level multigrid algorithm can now be expressed
as

Z Z Z Z/ SV2 PghM%L;iRZth)SZIC;?> (eg) ezegm/hde

1€8p JESK CKEOC” BEBL EH<4 4)

“Y Y Y S [ () e - (i) P )

1€sn €S a€al, BeBl O€ll(4,4)
—1

S (323),, 8357) (Eon ()

B2€B,
Z f?z\h(@g;)z;(ﬁg;)(g;(gg;))vl A(9a2)>ezeg.x/hd0.
az€al,

The discrete Fourier transform of M 29 ef is thus equal to

M 03) =(51(0))" A 65) — (Sal0))* PR 03) 3 (VI33), (08757
52€6ZL
— i —1 — P e o .
(th(neg;)) j{: RpM(052) Li(052) (Sn(052)) " et (052),
az€al,

Va € ai,Vﬁ € BZ“ 1,] € Sp.

The expressions for the discrete Fourier transform of the error transformation operator can
be simplified using a matrix representation. On the mesh G, we introduce the matrices

mmw:bm%( (m“)u,ﬂﬂwﬁ»ecwwﬂ (4.73)
nd“ — bdiag (S o S (nIm)) € Ccorxar 474
B,
0"/71 — Rmh Q'Yn , Rmh 0’771 c (quqr, 4.75
nh nh
(ne”n) (1>nh(n9”"), Z’”h(nGV"))T € CI<4, (4.76)

with 9;2 = (Hgiy ,GZé)T, B, Br € B, r = Car(al) = Car(B)), i,j € s, and bdiag
refers to a block diagonal matrix consisting of g x ¢ blocks with ¢ > 1. For each group
of modes 3}, j € s,, the discrete Fourier transform of the coarse grid multigrid error
transformation operator M can be directly obtained from (4.64) resulting in
" g Y\ h(pnoIn (T W) "L Pmh 0T T "
T (n073) = (S (n072))" (197 — B (0073 (Lo (7)) ™ Bl (n073) L2 (07
(Sz(no))” e coxar, i je s,

with 79" € RY"*9" the identity matrix. The matrices representing the discrete Fourier
transform of the coarse grid operator (4.65) then are equal to

A (nmj i) = I — (A,%(negé )7 € corxar,
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Next, we introduce the matrices

Ly(037) = bdiag (Lh(eal ,Ly(057)) € Carxar
n(957 = bdiag ( (9 (9 )) c carxar’
Sp(05m) = bdiag (Sh(05),- -+, Sn(65)) € Co X
S7(0%) = bdiag (SE(057), -+, Sp(057)) e Cor o’
ﬁﬁh(%k) (Rp™(651), - - Rgh(eg;)) e coxar
RO o ») = bdiag(Rp" (657 ", ﬁzh(gg})) c carxar’
ph (9;:) (Pﬁh(ea;)w“ ,Pﬁh((’gg))T c Carxa
Pl (0%7) = bdiag (Pl (057), -+, Ph (057)) € €7 xor
2 (n 97") (bdlag( n(n 9”’n) o Lon(n 9%)))—1 c Carxar
5 = (el 050, - e @) e Com,

er (e = (5.

with 05 = (652, ,05)7, 05

o, o,
:(051’...’067‘

),

AT e Ct,

Qp, -, 0 € Cki” 517"' 7ﬂr

Using these matrix representations, we obtain now for Yoy, € of,, V3 € 82, i,j € s,

(Sn(65)) Pl (055) 7 (M), (n83379) (Lo
B2€B
(Sn(052))" e1(052)

—

n97"

Z Rnh 0042 Lh gaz)

a2€oﬂ

= (Sn(051) " P (052) > (M) 5, n0357) (Lon(n83)) ~ RR (057 L7 (057)

B2€8%
(Spam) " en o)
Spogr) ... 0 Pl (05)
0 Sp(o5m) 0

T

99

0
Pé’hwgf)
Lo (n63) 0
0 m(negf)
0
Ly (05™)

(4.77)
(4.78)

(4.79)
(4.80)

(4.81)
(4.82)

(4.83)
(4.84)

(4.85)

€ B,



i v i

L0 ) (SEO%)) e (650,

= (S7(07)) Pl (053 ) DL, (n7:9) Qi (073 R0

ﬁj ﬁ] )

The discrete Fourier transform for each group of modes of the error transformation operator

for a three-level multigrid cycle M, ”(0 € Crle X’”Qq, with 4,7 € s, can now be expressed

as

o)

NEP(0%7) = (Sp(05)) (170 = P (05 ) N3 (00755 7) Qo (007 B (057 L1 (67

n

(S N™. (4.86)

The three-level error transformation operator is now obtained by combining the contri-
butions from the different groups of modes. For uniform coarsening the multigrid error
transformation operator is equal to

B (05) = M2 (6512 € Cromten, (4.87)

with 09 = 9[3(2 ? . The error after one three-level multigrid cycle with uniform coarsening
2.2)

can now be expressed as
D/na 2,2
eP(63) = M2 (63)e (63),

with
/A,\ a “Dno o « a /A-,\ a
€n D(eﬁ) = (65(9511)"“ h (9 1), D(Q,e;)a"‘ €y’ (9 S e D(aﬁ:)a
7eﬁ)D( g:))Ta Qp,- e ,Oé4€04%2’2),/817"' 76466(12,2)‘

The multigrid error transformation operator for semi-coarsening in the x;-direction is

17(2,1) (p2,1) M Al TR %y T2 %
M, (9[3(271)) bdiag (M, (9 )Mh (95(21))Mh (¢ (2271))7

M}(LQ’l)(Qaf'” )) c (C16q><16q’

(2.1

o al o? al o? ..
with 6, = (0,>V,60_ 27 0 Y 0 2Y)T. The frequencies 9 ( ), i,j € sp, are defined
B Biay’ Bz’ Biany’ Pl Bla.ny
as
(2,1) 10\T ala,1) 01\T
93(12 b = (0007000’910’0%0) ’ 05(12 1) - (000’0007910»0%0)
2
a<2 1) _ 10\T *(2,1) _ 01N\T
Oty — O130033 000, 001)"s O] = (01,033 60, 601)"

Note, however, that the error vectors for semi-coarsening in the z; and xs-direction have a
—_—

different ordering than the error components for uniform coarsening ef’D(Qg). The ordering
of the components of the error vectors is not important for the computation of the operator
norms and the spectral radius of the error transformation operator, which are discussed in
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Chapter 5. For the coupling of different multigrid algorithms, such as uniform and semi-

coarsening, it is essential that the same ordering of the components of the error vectors
is used. This can be easily accomplished using the permutation matrix Pf’l) € R16ax16q

which reorders the vector e;” D(Hg((j’f;) to e (9‘“) and is defined as

7T o 0O o O O O O o o O o o0 o0 o0 o0
0 0 I# 0 0 000 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 I/ 00 0 0 0 0 0
00 0 0 0 0 0 0 0 0 19 0 0 0 0 0
0 I« 0 0 00000 0O 0 0 0 0 0 0
o o o 17 0 O O O O O O O O o o0 o
o o o 0O O O O o o 1 0 O 0 0 o0 O
pen_| 00 0 0 0 0 0 0 0 0 0 0 0 0 0
=l o 0o 0 0 I 0 00 0 0 0O 0 0 0 0 0
0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0
o o o o0 O O O o o o o o0 12 0o o0 o0
o o o O O O O O o o o o0 o0 o0 12 0
0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0
00 0 0 0 0 019 0 0 0 0 0 0 0 0
00 0 0 0 0 0 0 0 0 0 0 0 I 0 0
0O 0 0 00O O 00000 0 0 0 0 I
(4.88)

The error after one three-level multigrid cycle with semi-coarsening in the z;-direction can
now be expressed as

Dina 2,1\ —177(2,1) , ,(2,1 2.1)" A/ pa
eR (65) = () MV 0580 PR et (65).

Finally, the multigrid error transformation operator for semi-coarsening in the zo-direction

is

=(1,2) ; p¥(1,2) (1,2)  p%1,2)\ TF(L,2)  p%0,2)y TF(1,2)  n%1,2)
MM (6502)) = baiag (M2 (0] (12)),Mh (0502), A 00,

M(l 2) (0 ;1 2))) c CleXle,

(1,2)

« (l/ O/ ()é Ot . O/L
with 6,42 = (02,0 2 0 {2 0 )T, The frequencies §_"'? are defined as

B1,2) Bhoy  Bliay’ Bhay’ Bl .
9“(11 2) 990 pO1 00 AOLNT 00‘%1 2) gL 10 gll plONT
= 1 1 = i )
321,2) ( 00> 700> 035 5) ) 5(1112) ( 007 700> 0> E) 5
2

o, aa, 11 pl

96;12) _(agolaeoll 01079 ) 9 512) :(ell,elol 910,9 )

(1,2) 22 22 (1,2) 22 22

the permutation matrix P\""® € R164X164 which reorders the vector ef’D(ﬁg((ll’;)) to
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ef’D(Qg) and is defined as

I 0 0 0 0O OO O 0 0O 0 0O 0 0 0
0 0 0 I9 0 0 0 0 0O 0O 0O 0 0 0 0 0
0O 0 0 0 0 0 0 0 0 0 0 0 I9 0 0 0
o0 00 0O 0 0O 0D 0 0 0 0 0 0 0 I
0O I“ 0 0 0 0 00O O 0 0O 0 0 0 0 0
0O 0 I 0 00 OO O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 0 0 0 0 0O I7 0 0
p_| 00 0 0 0 0 0 0 0 0 0 0 0 0 I 0
= o 0o o 0o I 0 0 0 0 0 0O 0 0O 0 0 0
0O 0 00 0O 0 0 I 0 0 0 0 0O 0 0 0
0O 0 0 0 0 0 0 0 1790 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 0 0 0 I? 0 0 0 0
00 0 0 0 I? 0 0 0 0 00 0 0 0 0
0O 0 0 0 0 0 I7 0 0 0 0 0 0O 0 0 0
00 0 0 0 0 0 0 0 1IZ 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 0O 0 I7 0 0 0 0 0
(4.89)

The error after one three-level multigrid cycle with semi-coarsening in the xo-direction can
now be expressed as

—~

D « s -1 , a1, o
eP(03) = (PV7) T AL (0502 P (63).

4.5 Discrete Fourier Analysis hp-MGS algorithm

In this section we derive the discrete Fourier transform of the error transformation operator
J/\/[\h,g(ﬁg) with 0F = 0, o) , for the hp-MGS multigrid algorithm for a polynomial order
p =3 and three (semi)- coarsened mesh levels, given by (3.11). We will use the shorthand
notation a = o} (2,2 and 8 = Bl 2,2) for the Fourier mode indices in uniform mesh coarsening.
The first part of tf)hc hp-MGS algomthm consists of p-multigrid. Since there is no coupling
between modes on different meshes in the p-multigrid the discrete Fourier transform of the
p-multigrid part of the hp-MGS algorithm can be computed straightforwardly, resulting in
My,5(05) =(HU»3(09))™ ( 169 — T2 ,(09) (1'% — M, 2(63)) (L<2 2)(%))
Q2 503 L) (03)) (HUA5(65)) ™" € C1omx100, (4.90)

with the contribution from the p = 2 level given by

7 777 2 T a 777 e} 7 (4 a -1
Mi2(05) =(HU2(09)) " (1'% — T2, (05) (1" — HUwa(05)) (L2 09))

Qh2(05)L5(05)) (HU,2(63)) " € C1om10%,

62



1
where 0 = 9;{2’2). Here g, refers to the size of the blocks in the matrices for polynomial
2.2)

order p. The p-multigrid prolongation operator T}f;l is defined using (4.38) as
Fp+1 (Dl Fp+1 Fp+1 Fp+1
Ty, (05) =bdiag(Ty " (05!), -+ Ty, (05). Ty, (05)), -+ Ty, (05)),
Tp+1 Tp+1 16g,, X 164,
T}Z;p (93;)7 ’Tlf,p (ggj)) € C10arx16ap
and the restriction operator is equal to sz)l,p 1= (T f;l)T. Note, frequently the p-multigrid

restriction and prolongation operators are purely element based in which case their discrete
Fourier transform is not a function of 67.

The discrete Fourier transform of the hp-MGS error transformation operator depends on the
discrete Fourier transform of the three-level h-MGS smoothers HU}, ,(03), p € {1,2,3}. The
discrete Fourier transform of these operators can be obtained using the thee-level analysis
discussed in Section 4.4. In order to describe the discrete Fourier transform we extend
the matrices defined in (4.73)-(4.76) and (4.77)-(4.85) to include also the polynomial order
p. Using the result for the three-level error transformation operator given by (4.87) we
obtain the discrete Fourier transform of the h-MGS error transformation operator for each
polynomial order p

e, —(12), ., - ay T (4d) 5(2,
U (03) = (80, O3S, (05))" (1" = Pl 05Ny (203 10355 (208)

—=(2,1)

D ay T (2, a 7512 « a\\ ¥
Rz{lp(GB)Lﬁj)(Qﬁ))(st (05)HS,,., (6))"" € C1om 160, (4.91)
/\(2,1) /\(1,2)

with S}, ,, (05) and HS), , (0F) the discrete Fourier transform of the error transformation
operator of the semi-coarsening multigrid smoothers in, respectively, the x1 and zo-direction.
The coarse grid contribution Méi’j(%go; 1) from the mesh Gy, in (4.91) is given by
My (2090;1) = 119 — MY (20%°) € Clanxdan,

with

NS (20%0) =(HSsr ) (2000)HS S (209)) (149 — P2 (20%) (L5 (4658)) ™"

2h,p B ) 2h,p B 2h,p B 4h,p B 4h,p 00

—=(1,2) =21

R (200 £ 200 ) (TS5 020 S (20)" & <1

The discrete Fourier transform of the semi-coarsening smoother in the local z;-direction is
given by

—(2,0), 2111 1o TH2,1)  p %210y TR21) %21y TR(2,1) 0 e,
HS),,, (63) = (B) " "hdiag (M2 (6557, MV (050), M3 (057",

TH2,1) 021 (2,1) 16q, x 16
Mh,p (9[3(22 1) ))Ph 6 C qPX qp?

with the permutation matrix P,(lz’l) € C169» %1690 given by (4.88) and

1 2
(03 (o2
(2,1) _ (p00 pl0 p00 plONT (2,1) _ (pll p01 pll p01\T
95(12 H - (900790079%039%0) ) 9522 1 - (900’90079%079%0) ’
1 2
(21 1 10\T (21 11 1 11 1N\T
eﬁé ) = 930159101,68379()%) ) 0 2( )= 91l763179015981) .
(2,1) 272 272 2 2 (2,1) 272 272 2 2
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The discrete Fourier transform of the semi-coarsening smoother in the local xo-direction is

—(1,2) 1,2 1,2) 1,2)  p& 1,2)  p®
"8, (03) = (PM2)~'bdiag (M2 (01 ot i), M,(lvp)(%:ll 2), M{p)(eﬁ(fj;)
]/\4\(1,2) 0‘(1 2) P(l 2) 16q, X 16g,
h,p (9 (1 2) >) (C )
the permutation matrix P ) € 164y x16qy given by (4.89) and
1 2
Y2) _ 01\T Y2 _ 10\T
93(11,2) (0007000’001 .0 %) ’ 05(11,2) (000,9007 901 6 %)
0 = (00,00 0. 00 05 = (8)),.010, 011 030"
B 2 32’ 23 30 ’ Bt 2 32 23 30

Note, the permutation matrices are necessary in order to combine the error transformation
operators for the different types of mesh coarsening which use a different ordering of the
Fourier modes. The contribution to the error transformation operators from the different

—— (2,1 1,2 , ,
groups of modes in the semi-coarsening smoothers H S;vp )(Gg‘) and HS), , )(Gg) is now given
for i,j € s, by

My 05) = (510510 (1% — Bl B, (075 1) Q075 R (07

n nh,p gL’
Li o (657)) (Sh,(627))" € Clawxdas,

with the coarse grid contributions

Mﬁp(nG’ﬁYé; 1) =1%% — Aﬁ,p(nggé) € C2a X2,

and

nh,p nh,p m

— (negé) :(An (nQZiL))Mz ([qu _ pn hp(n9;é>([qp _ (%(megé))us)
(EE?(magi))_ Rnh p( 97n) nh p(negé)>( nh p( 9"{"))#1 S CquXqu7

withn = (2,1), m = (4,1) for HS}>" and n = (1,2), m = (1,4) for HS}">). The smoothers
gn

h,p and %(m@fb) are either the point implicit or the semi-implicit pseudo-time

qn

h,p’ 7
Runge-Kutta smoother in the local direction x; for n = (2,1) or local z5 for n = (1,2),
which are defined in Section 4.2.3.

The contribution of the semi-coarsening smoothers at the mesh level 2h is equal to
ﬁg’;h,p(%go) (Pap)™ lbdlag(M% p(2951) oh p(29 ))P2nh € C4qPX4qP;
with

A?;h,p(wgg) :(§§h,p(2022))“2 (12% - P (2057) (1% — (Szanp(20639))")

2nh,p

— -1 ~
(Lannp(2n0))  R3(2059)L35,,(20%9) ) (S5, (20%9)) " € €20 <200,
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where n = (2,1) for HS%;} and n = (1,2) for HS%QP) The permutation matrices are

defined as

970 0 O 70 0 O

(2,1) 0 0 I?7 0 (1,2) 0 0 0 I9
Po " = 0 I¢ 0 O Pa = 0 I9 0 O
0o 0 o0 I¢ 0 0 I?7 0

65



Chapter 5

Definition of Convergence Rates

The performance of the multigrid scheme is measured with two parameters.

1. The cycle convergence factor, which is defined as

D
D,
A= sup || ZHZZ(Gh)a
eazo llen e

with [[e7[|2(c,,) and [|ef ||e2(c,) the discrete £2-norm of the initial error and the error
after one full multigrid cycle, respectively. Using (4.41), (4.57) or (4.90) we can also
express the cycle convergence factor as
M eA
A= sup IR CR (G p ey 1Ml ()
eazo e llexen)
with || M9 2(c,) the discrete £ operator norm of M;" and n the number of multigrid
grid levels. On an infinite mesh G} this expression can be further evaluated using
discrete Fourier analysis. Parseval’s identity (4.9) implies that

e Iy = @r)? [ 16 0)Pd0 = 2y r mye
GEH(lyl)
1M eI,y = (QW)d/ M2 (0)eit (0)[2d = (2m) | My eit Lo~ pmyas
O€ll(q,1)
with || - || 22 the L?-norm. The discrete £ operator norm thus satisfies || M} ,2(q,) =

1M | L2 (= mya)-

The discrete > operator norm of a matrix A also satisfies [|A|sp2(q,) = /p(AA*),
see e.g. Golub and Van Loan [5], Theorem 2.3.1. Here A* refers to the conjugate
transposed of A and p is the spectral radius, which is defined as

p(A) = max{|A[ | A € o(A)}

where
o(A) ={A € C |\ is an eigenvalue of A}.
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On an infinite mesh G}, the Fourier modes are eigenvectors of the matrix M;?, and
also of M"Y (M}"?)", hence

P (0a)") = s o (320) (7)),

with for two-level multigrid ¥ = ¥,,, given by (4.40), and for three-level multigrid
U =V, ,, given by (4.56). The cycle convergence factor for a multigrid algorithm
using n meshes then can be expressed as

A= sup \/p(M\,ZLg(G)(Z/W\:g(Q))*)

HEH(Ll)\‘If

. The asymptotic convergence factor per cycle, which is defined as

1

(m)
p= lim sup ||€h ||e2(Gh)

0
0\ @ g ||€§L)||é2(ch)

where egm) is the error after m applications of the multigrid cycle, hence ego) = ef and
eg) = e}? . The asymptotic convergence factor can be further evaluated using (4.41)

or (4.57) as

ng\m (0
(M) " el lle2 1)

p= lim sup

m oo 0
=2\ oz [let e
1
= W}E}loo (M) " Nlezcany) ™ - (5.1)

Next, we use the following result, Theorem 3.3 from Varga [12]. Let A be an n x n
complex matrix with spectral radius p(A) > 0 then

m m—p+1
1A™ |2y ~ ( o > <p(A)) as m — 0o, (5.2)

with p the largest order of all Jordan submatrices J, of the Jordan normal form of A
with p(J,.) = p(A), and ¢ a positive constant. If we use relation (5.2) in (5.1) then we
obtain that the asymptotic convergence factor is equal to

= p(M;?).

On an infinite mesh G, the Fourier modes are eigenvectors of the matrix M;"¢ and
also of M"Y (M}"¥)", hence

p(M,?) = sup p(M"g(9))~
061‘[(1,1)\‘1/

The asymptotic convergence rate then can be expressed as

p=  sup 0(1\7”9(9)>-
GEH(LU\\IJ
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A requirement for convergence is therefore that the spectral radius satisfies the condi-
tion .
sup  p (M”g(e)) < 1.
QGH(LI)\\I}
Since [|My?le2(c,y > p(M,?) it may happen that || M|,y > 1, even though
p(M;?) < 1. The error egbm) will then increase during the initial iterations, but

eventually egbm) will decrease to zero because lim,, ||(M;;g)m||[2(gh) — 0 when
p(M,?) < 1.
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Appendix A

Auxilary Results

A.1 Orthonormality of Fourier modes

The Fourier modes ¢y, (nd,z) = e™*/(*") with § € R? and © € G, are orthonormal
with respect to the scaled Euclidian inner product on Gy, given by (4.3), viz.

1 if 0, = 0,,,

0 otherwise.

(Onn (00, ), S (MO )G, = {

First, consider a finite mesh G, C RY. On this finite mesh only Fourier modes with
frequencies §; = 7l/N, with [ € G and N € N% can be represented. We also have for
x € GY, that x/(nh) = k with k € GYY.

The inner product of the Fourier modes ¢, (nd;, ) and ¢pp(nby,, x) then is equal to

. . _ d nj wmb;-x/(nh) ,—1nby, -x/(nh)
(¢nh (ngl» )v ¢nh(n9mv )) Ggh, - (Hj_l 2N] ) EEG: € ! €
z nh

Nl/nl—l Nd/TLd—l

J ki=—Ny /ny ka=—Ng/nqg
e~ (110, kit +nabm ka)

Nl/nlfl Nd/ndfl

E . § szl (27;\]7 el’njelj k}jef’”ljemj k‘j)
J

klszl/nl kd,:*Nd,/nd,

N Nj/njfl
Hd J ezwnjljkj/Njefm'njmjkj/Nj ) (Al)

=t 2n;
kj=—N;/n;
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For the evaluation of the summations on the righthand side of (A.1) we now consider

Nj/njfl N]‘/’njfl
My § evnliki /N g—vmngmyk; /Ny _ T § ety (L —m;)k; /N,
j 2N;
kj=—=Nj/n; kj=—N;/n;
2Nj/nj71
U v (Lj—m;) (p—Nj/n;)/N;
2N,
J p=0
s 2Nj/’n]‘71
= e—mlli—my) (emnj(lj—mj)/NJ)p_
2N;
p=0

For the summation, we need to consider two cases:
1. [ —m # 0, then
2Nj /TL]' —1

—r(ly—my) " v (L —my) /NP
2N, (c )

e
p=0
(em’nj(ljfmj)/Nj)2Nj/"j —1

- e—m(lj—mj)&
2N; ermn(lj—my)/N; 1

n; 627r1(lj—mj) -1
2N; ermni(li=my)/Ni — 1

—m(l;—my)

since e2mli—mi) = 1 if lj —m; € Z.
2. lj — mj = O, then
2Nj/nj71

6717r(lj7mj)2n7]\]}j (ewrn]-(ljfmj)/Nj)P -1

p=0

Combining both terms then gives

Nj/nj—1
g E etk (li=m)/N; — 5,

YU

7 kj=—N;/n;

ljamjGgyjyjjanjaNjENaj:L"'7d7 (AQ)

and 0y, m; the Kronecker delta symbol. Combining (A.1) and (A.2) the inner product
between two Fourier modes on G, then is equal to

(¢nh(ngla ‘)7 ¢nh(n9m7 '))GNh = 5l,ma l7m S gé\]

If we take the limit N; — oo using the definition of the scaled Euclidian inner product on
G, given by (4.3), we obtain

1 if 0, = 0,,,
0 otherwise.

(P (M1 ), G (M0, )., = {
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A.2 Discrete Fourier transform and its inverse on an
infinite mesh

Define the discrete Fourier transform of v,;,(x) on the mesh G, as

— n —nd-
'Unh(no) — Hld:1 (%> Z 'Unh(ﬂf)e b x/(nh)’ 9 e H'ru
z€Gnn
with IT,, = [- &, &), x - -+ x [- 2, X). The inverse discrete Fourier transform is equal to
ny’ ny ng’ Nd

Upp(T) = / m(nﬁ)emo'x/("h)dﬁ, x € Gpp.
e,
This relation follows for = € G, directly from

Unh(fv):/e ; Ty (nB) 0=/ (1) g
el,

() 5 ) [ oo

yEGnn 0€ll,,

Use = jnh and y = knh with j, k € Z¢, then

n .
o) =Ty (32) 3 vt [ em0i-biag

kezZd o€lln
= E ’Unh(knh) H?:l <nl/nl ezanl'(jl—kl)d0l> .
27 9, —— T
kezd l ny
Set n;0; = oy and df; = day/n; then

1 (" )
v (2) = Y van(knh) T, (% / elaz'(ﬂ—kz)dal)

keczd =T

= Z Unn(knh) H?:l(sjz,k?l
kezd

= Upp(jnh)
= Upp ().

A.3 Discrete Fourier transform and its inverse on a fi-
nite mesh

On a periodic domain with a finite mesh G%, the discrete Fourier transform and its inverse
are defined as

e a n —wnbi-x/(nh
Unn(nby) = (Hlilm\l]l) Z Unp(z)e O/ (nh)

xeGﬁIh

Unh(x) = Z U/n\h(nek)elnekm/(nh)’
kegh
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with 0, = (9k1,~~- ,gkd), gkl = Wkl/Nl, k€ gé\? and x € Gﬁfh

and Up,p,(nb) follows directly from

Upp () = Z @(n&k)em"k'w/(nh)

kegl
:< l 12N> Z Z Unh 7zn0k~y/(nh)eln0k~x/(nh)
keGl yeGN,
) 3 5 e
keGN megN

Ni/ni—1 Ng/ng—1

. The relation between v, (x)

= Z vnh(mnh) (H;j 1 ;]l\lf > Z . Z et (n18iy (1 —ma) - +nabi, (ja—ma))

megy}:r ki=—Ni/ni kq=—Ng/ng
Nl/nlfl
ny .
= E Unn(mnh) Hle N E o0, (Gi—ma)
megn l ky=—N;/n,
Nl/nl—l
ng _
= E Unp(mnh) H;izl N E evmniki(i—mi) /Ny
megy ! ki=—N;/ny
= E Unh(mnh) 0 .m
megly

= vpp(Jnh) = vpn(x).

where we used (A.2) in the seventh step.

A.4 Parsevals identity

Using (4.8) and (4.7) we obtain Parsevals identity

[ mmopio~ [ o) moas
0ell,

0€ll,,

— (Hleg—;) Z VUnp () /eenn

z€Gnhn

= (mLit) Y foan(@)P?

z€Gnn

da T 2
= (U155 ) lonn @26,

A.5 Aliasing modes in 2D

m(no)emem/(nh) do

Consider 0 = (61 £ 27 /ny, 05 + 27 /n3), with 6 € T1,, and « € G,,. Then

(bnh(né JI) — eznl(91:|:27r/n1):c1/(n1h1)em2(92:i:27r/n2)3:2/(n2h2)

— gtmbiza/(niha) gE2umky 20232/ (n2he) g 20mks with k; € Z

— ez71,9~:1c/(nh)

= ¢nh (719, LL'),
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where we used x = knh if 2 € G,,j,. The modes with frequency 6, where 6 = 6 (mod 2 /n),

therefore coincide with er0#/(nh)

Assume the following mesh coarsenings G, h, — Gapy 2hss Ghy by — G2ny by a0d Gpy py, —
Ghy,2h,- Given the modes with frequency 05 € Il 1), with o € {(0,0), (1,1),(1,0),(0,1)}
and 8 € {(0,0), (3, 3),(3.0), (0, 1)}, then we have the following relation between modes on
Gy, and G, with n € {(2,2),(2,1),(1,2)}
(05, 2) = on(63 @)
= ¢un(n3 ), 05 €T, x € G,
with
(0,0) if n=(22)
o' =< (0,a») if n=(2,1) (A.3)
(@1,0) if n=1(1,2)
Proof. Using (4.10) we obtain for x € G,,;, the expression
on (65, ) = 5"
_ 67,(9207(&wign((&%o)1),dgsign((920)2))7r)-z/h
_ 61920‘x/he—wr(&lsign((ego)l),&gsign((ng)g))‘jn (A4)
where we used « = jnh if x € G,;. The second term on the righthand side of (A.4) can be
further evaluated as
e—m(alsign((ﬁ’%‘))l),&2sign((9‘£«0)z))‘jn =1, if n=(2,2)
_ e*lﬂ'dQSign((ng)2)j2’n2’ if n= (2’ 1)
_ e—lﬂ'@ﬁigﬂ((ﬁgo)l)jlnl if n= (1’2)

and we obtain the following expression for x € G,

On (09, ) = e =/h if n=(2,2)
_ el(ﬂgo77\'(0,c_tzsign((0go)2))~a:/h7 if n= (2’ 1)

— (08" —m(axsign((05°)1).0)x/h 3¢ (1,2),
which is equivalent with
on (05, 2) = (057 —(aysign((03°)1),a,sign((05°)2))m) w/h
— 05 x/h
= emegl'm/("h), 0[?/ ell,, x € Gpp
with o given by (A.3).

Assume the following mesh coarsenings Gap, 2n, — Gahy ahsy G2hy he — Gany b, and

Ghy 2h, — Ghy ah,. Given modes with frequencies 9;‘, € II,, on the mesh G,;, with n €
{(2,2),(2,1),(1,2)}, then we have the following aliasing relation between modes on the
meshes Gy, and G,p,, with m € {(4,4), (4,1),(1,4)},

Sun (b5, z) = o1 (05, 7)
= $mn(mb,z), 05 €y, € Gy,
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with

Proof.
¢nh (neg,7 $) = em9§ =/ (nh)
— 002/ h g~ (Busign((050)1),Basign((050)2))-z/h

e—zw(d;sign((Ggo)l),&;sign((égo)z))'z/h.

Use now for z € G, the relation

et (Bisign((000)1),B2sign((000)2))w/h _ ,—im(Bisign((600)1),B2sign((65p)2) mj

then we obtain
et (Bisign((000)1),B2sign((650)2)) mi _ | it m=(4,4)
— e—lﬂgzsign((egg)'z)bmz if m=(4,1)
— e*”BlSign((egg)l)jlm1 if m= (174)'
Combining all terms we obtain for z € G,
(bmh(meg/’ -T) = 6102{ @/h
— o000z /h g —um(Bsign((050)1),Basign((060)2))x/h
o (@ sign((037)1),a5sign((037)2)) @ /h

_ ngl, -x/h

— 05w ) ith 99 € Ty,
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