李锐
Open time:..
The Last Update Time:..
Distinguished Professor, Vice Dean
School of Earth and Space Sciences
University of Science and Technology of China (USTC)
Hefei, Anhui, 230026, China
📞 +86-18326195630 ✉️ rli7@ustc.edu.cn
I. Personal Information
Education: Ph.D., Earth and Space Sciences, USTC, 2005
Academic Career:
Postdoctoral Researcher, State University of New York (SUNY) at Albany
Full Research Scientist, SUNY (2005-2013) at Albany
Returned to China and joined USTC in 2013
Current Appointments:
Vice Dean, Professor, School of Earth and Space Sciences, USTC
Joint Professor, State Key Laboratory of Fire Science
Director, Joint Laboratory of Fengyun Satellite Remote Sensing by National Satellite Meteorological Center and USTC ESS
Member, Atmospheric Science Teaching Steering Committee, Ministry of Education, China
Standing Council Member, Chinese Meteorological Society
Vice Chairman, Anhui Meteorological Society
II. Research Fields and Major Achievements
Research Focus: Development of advanced satellite remote sensing retrieval algorithms for Earth's climate system, focusing on carbon/water cycles and large-scale fire dynamics.
III. Academic Honors
2022 National "Ten Thousand Talents Program" – Leading Talent in Technological Innovation
2013 Chinese Academy of Sciences "Hundred Talents Program" – Overseas Outstanding Talent
2013 Anhui Province "Hundred Talents Program" – Distinguished Expert
2017-2020 Anhui Meteorological Society "Outstanding Member"
2022 Anhui Meteorological Society "Most Beautiful Meteorological Scientist & Technologist"
IV. Academic Appointments
Member, China Committee of WMO World Weather Research Programme (WWRP)
Chair, Scientific Working Group on New Observation Technologies, WMO WWRP China Committee
Member, China Committee of International Association of Meteorology and Atmospheric Sciences (IAMAS)
Academic Committee Member, Xu Jianmin Meteorological Satellite Innovation Center
Adjunct Professor, Forest Research Institute, University of Quebec, Canada
Secretary-General, Fengyun Precipitation Satellite Scientific Application Expert Committee
V. Principal National Research Projects
National Key R&D Program Topic
"Remote Sensing Retrieval and Dataset Construction of Key Parameters for Aerosol-Low Cloud Interactions"
Funding: 4.4 million CNY | Period: 2024–2029
NSFC Key Project
"High-Resolution Land-Atmosphere Carbon/Water Flux Technology and Methods Using Fengyun Satellite Remote Sensing"
Direct Funding: 2.31 million CNY | Period: 2024–2028
NSFC Key Project
"Retrieval of Latent Heating Vertical Structure During China Rainy Season Using Spaceborne Dual-Frequency Precipitation Radar"
Direct Funding: 2.99 million CNY | Period: 2019–2023 (Completed)
National Key R&D Program Topic
"Mechanism and Feedback of Aerosol Effects on Clouds and Precipitation During Different Life Stages of Convective Clouds"
Funding: 3.99 million CNY | Period: 2018–2021 (Completed)
NSFC-Belmont Forum International Cooperation Project
"Predictability of Boreal Forest Fires in Northern Hemisphere Mid-High Latitudes and Their Impacts"
Funding: 2.39 million CNY | Period: 2016–2020 (Completed)
National Key R&D Program Topic
"Remote Sensing Principles and Methods for Fuel Characteristics in Vertical Forest Layers Under Complex Environments"
Funding: 1.81 million CNY | Period: 2021–2024
NSFC General Project
"Satellite Passive Microwave Bayesian Retrieval of Land Precipitation in China Constrained by Land Surface Emissivity"
Direct Funding: 550,000 CNY | Period: 2023–2026
NSFC General Project
"Satellite Observation of Dynamic Response of Land Surface Microwave Emissivity to Clouds and Precipitation in China"
Direct Funding: 680,000 CNY | Period: 2017–2020 (Completed)
NSFC General Project
"Satellite Observation of Aerosol Impacts on Precipitation Vertical Structure in China"
Funding: 860,000 CNY | Period: 2014–2017 (Completed)
NSFC Youth Project
"Characteristics of Precipitation Vertical Structure Under Climate Anomalies"
Funding: 270,000 CNY | Period: 2007–2009 (Completed)
VI. Publications
1. Xi, J., Wang, Y., Li, R., Wu, B., Fan, X., Ma, X., & Meng, Z. (2026). The impact of Sahara dust aerosols on the three-dimensional structure of precipitation systems of different sizes in spring. *Atmospheric Chemistry and Physics, 26*(1), 15–32. https://doi.org/10.5194/acp-26-15-2026
2. Chen, F. Y., & Li, R. (2026). Influence of Martian environmental variables on methane partial pressure estimation. *Earth and Planetary Physics, 10*(2), 1–11. http://doi.org/10.26464/epp2026023
3. Liu, Y., Weng, F., Tang, F., Han, Y., Liu, Q. Y., Li, R., Xu, Y. M., & Yang, J. (2026). Construction and simulation of global land surface microwave emissivity atlas using FY-3D satellite data. *Advances in Atmospheric Sciences, 43*(5), 805–826. https://doi.org/10.1007/s00376-025-5048-7
4. Hu, J., Li, R., Zhang, P., Wang, Y., Wu, S., Letu, H., & Weng, F. (2026). Global retrieval of harmonized microwave land surface emissivity leveraging multi-sensor measurements from GMI, AMSR2 and MWRIs. *Remote Sensing of Environment, 334*, 115169. https://doi.org/10.1016/j.rse.2025.115169
5. Song, B., Liu, Q., Hu, J., Wang, Y., Zhang, P., Chen, L., Wu, S. L., Li, R., et al. (2025). Global gross primary productivity estimation using passive microwave observations from China's Fengyun‐3D satellite. *Journal of Geophysical Research: Atmospheres, 130*(21), e2025JD044385. https://doi.org/10.1029/2025JD044385
6. Huang, C., & Li, R. (2025). Seasonal and spatial variations of vertical profile heating (VPH) latent heat over northern East Asia based on GPM observations. *Journal of Geophysical Research: Atmospheres, 130*(21), e2025JD044415. https://doi.org/10.1029/2025JD044415
7. Liu, Q., Zhang, P., Wang, Y., Hu, J., & Li, R. (2025). Global evapotranspiration retrieval using Fengyun‐3D passive microwave measurements with genetic algorithm optimization. *Journal of Geophysical Research: Atmospheres, 130*(19), e2025JD043823. https://doi.org/10.1029/2025JD043823
8. Zhu, H., Zhou, R., Zhao, H., & Li, R. (2025). The impact of air pollution control programs (2014-2019) on the vertical structure of precipitation in China. *Geophysical Research Letters, 52*(7), e2024GL113571. https://doi.org/10.1029/2024GL113571
9. Liu, Q., Hu, J., Zhang, P., Liu, Y., & Li, R. (2025). Global microwave land surface emissivity under all weather conditions derived from Fengyun‐3D satellite observations. *Journal of Geophysical Research: Atmospheres, 130*(7), e2024JD043282. https://doi.org/10.1029/2024JD043282
10. Wang, Y., Hu, J., Li, R., Zhang, P., Song, B., & Liu, Q. (2025). Monitoring daily all‐sky evapotranspiration over the East Asian continent using multi‐channel passive microwave measurements from Fengyun‐3B satellite of China. *Journal of Geophysical Research: Atmospheres, 130*(18), e2025JD043317. https://doi.org/10.1029/2025JD043317
11. Zhu, H., Zhao, H., Yang, S., Zhou, R., Wang, Y., Zou, Y., Zhao, C., & Li, R. (2025). Smoke aerosols elevate precipitation and latent heat to the upper atmosphere globally. *npj Climate and Atmospheric Science, 8*(1), 90. https://doi.org/10.1038/s41612-025-01047-3
12. Song, B., Hu, J., Wang, Y., Li, D., Zhang, P., Wang, Y., Zhong, L., Li, R., et al. (2025). Regional gross primary productivity estimation using passive microwave observations from China's Fengyun‐3B satellite. *Journal of Geophysical Research: Atmospheres, 130*(5), e2024JD041425. https://doi.org/10.1029/2024JD041425
13. Duan, J., Hu, J., Fu, Y., Liu, Q., Li, R., & Wang, Y. (2025). Estimation of fire counts and fire radiative power using satellite optical and microwave vegetation indices with random forest method. *Journal of Geophysical Research: Atmospheres, 130*(3), e2024JD041680. https://doi.org/10.1029/2024JD041680
14. Wang, Y., Liu, Q., Li, R., Hu, J., Zhang, P., & Song, B. (2025). Remote sensing of vegetation phenology in the northern hemisphere from multi-channel passive microwave measurements of Chinese FengYun-3D satellite. *Remote Sensing of Environment, 330*, 114997. https://doi.org/10.1016/j.rse.2025.114997
15. Hailemariam, M., Li, R., & Wang, Y. (2025). Observational study on the relationship of albedo with vegetation water content and canopy development in tropical and temperate forests of China. *Theoretical and Applied Climatology, 156*(1), 25. https://doi.org/10.1007/s00704-024-05275-0
16. Liang, Z., Gu, D., Li, R., Liu, J., Zhai, C., Su, H., & Lau, A. K. H. (2025). Advancing atmospheric detection of weakly absorbing reactive trace gases using the FY-3E/HIRAS-II TIR sounder on a dawn–dusk orbit. *Environmental Science & Technology Letters, 12*(7), 848–855. https://doi.org/10.1021/acs.estlett.5c00501
17. Liu, Y., Weng, F., He, W., Tang, F., Li, R., Xu, Y., Han, Y., Yang, J., & Wang, Y. (2025). Improvement of the LandEM model and its preliminary application over the Tibetan Plateau region [LandEM 模式的改进及在青藏高原地区初步应用]. *Acta Meteorologica Sinica, 83*(1), 61–79. (In Chinese).
18. Liang, Z., Gu, D., Li, X., Xu, Z., Cao, X., Bai, H., Li, R., Zhai, C., Su, H., & Lau, A. K. H. (2025). An optimal sequential physical retrieval system for retrieving high-accuracy diurnal atmospheric gases from FY-4B/GIIRS: Theory, algorithm and evaluation. *Remote Sensing of Environment, 328*, 114901. https://doi.org/10.1016/j.rse.2025.114901
19. Liang, Z., Gu, D., Zhang, M., Yang, N., Zhao, C., Li, R., Wang, Q., Ye, Y., Liu, J., Li, X., et al. (2024). Diurnal carbon monoxide retrieval from FY-4B/GIIRS using a novel machine learning method. *Journal of Remote Sensing, 4*, Article 0289. https://doi.org/10.34133/remotesensing.0289
20. Wang, Z., Wang, W., Huang, J.-G., Li, R., Liang, H., Duan, J., Cao, J., Yang, F., Zhang, Y., Hartl, C., Tardif, J. C., & Zhang, Q.-B. (2024). An improved assessment of forest disturbance using a novel approach of combining a Gaussian mixture model with an EM algorithm. *Ecological Indicators, 166*, 112564. https://doi.org/10.1016/j.ecolind.2024.112564
21. Liu, J., Yu, B., Pang, F., Fan, S., Gu, L., He, L., Lei, Y., Li, B., Li, R., Li, Y., Liu, D., Liu, K., Tian, H., Wang, B., Wang, Y., Xu, M., Xue, X., Yan, F., Ye, X., ... Wu, W. (2024). SOTHE: SOlar-Terrestrial Habitability Explorer. *Advances in Space Research, 75*(6), 1428–1440. https://doi.org/10.1016/j.asr.2024.10.024
22. Liu, Y., Weng, F., Tang, F., Li, R., Xu, Y., Han, Y., Yang, J., & Liu, Q. (2024). Simulations of microwave land surface emissivity using FengYun-3D microwave radiation imager data: A case in the Tibetan Plateau. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17*, 12651–12664. https://doi.org/10.1109/JSTARS.2024.3478350
23. Liang, Z., Gu, D., Zhang, M., Yang, N., Zhao, C., Li, R., Wang, Q., Ye, Y., Liu, J., Li, X., et al. (2024). Diurnal carbon monoxide retrieval from FY-4B/GIIRS using a novel machine learning method. *Journal of Remote Sensing, 4*, Article 0289. https://doi.org/10.34133/remotesensing.0289
24. Duan, J., Fu, Y., Hu, J., & Li, R. (2024). Observed response of microwave land surface emissivity to antecedent rainfall in Hainan Island. *International Journal of Remote Sensing, 45*(22), 8155–8176. https://doi.org/10.1080/01431161.2024.2416591
25. Zhu, H., Yang, S., Zhao, H., Wang, Y., & Li, R. (2024). Complex interplay of sulfate aerosols and meteorology conditions on precipitation and latent heat vertical structure. *npj Climate and Atmospheric Science, 7*(1), 65. https://doi.org/10.1038/s41612-024-00743-w
26. Zhao, H., Yang, S., Wu, Q., Chen, L., Zhang, P., & Li, R. (2024). Optimizing satellite-based latent heating rate profiling using a convolutional neural network heating (CNNH) algorithm. *IEEE Transactions on Geoscience and Remote Sensing, 62*, 1–15. https://doi.org/10.1109/TGRS.2024.3466952
27. Fu, Y., Hu, J., Duan, J., Liu, Q., Song, W., & Li, R. (2024). Satellite microwave measurements complementary to fire weather improve the assessment of fires among different biomes in Southeast Asia. *Environment International, 184*, 108439. https://doi.org/10.1016/j.envint.2024.108439
28. Wang, Y., Li, R., Song, B., & Hu, J. (2024). Divergent responses of summer terrestrial evapotranspiration to cloud increase in East Asia. *Journal of Geophysical Research: Atmospheres, 129*(1), e2023JD039246. https://doi.org/10.1029/2023JD039246
29. Li, R., Li, Z., Zhao, K., & Sun, Y. (2023). Research directions and keywords under the secondary application codes of the atmospheric sciences discipline of the National Natural Science Foundation of China: D0509 Atmospheric observation, remote sensing and detection technology and methods [国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0509大气观测、遥感和探测技术与方法]. *Chinese Journal of Atmospheric Sciences, 47*(1), 174–184. https://doi.org/10.3878/j.issn.1006-9895.2212.22309 (In Chinese).
30. Li, R., Li, Z., Zhao, K., & Sun, Y. (2023). Research directions and keywords under the secondary application codes of the atmospheric sciences discipline of the National Natural Science Foundation of China: D0509 Atmospheric observation, remote sensing and detection technology and methods [国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0509大气观测、遥感和探测技术与方法]. *Chinese Journal of Atmospheric Sciences (in Chinese), 47*(1), 174–184. https://doi.org/10.3878/j.issn.1006-9895.2212.22309 (In Chinese).
31. Zhao, H., Li, R., Zhang, P., Fu, Y., Yang, S., Huang, C., & Li, D. (2023). Satellite-based fully connected neural network heating (FCNH) algorithm for estimating latent heating rate inside storms. *Journal of Geophysical Research: Atmospheres, 128*(23), e2022JD038448. https://doi.org/10.1029/2022JD038448
32. Fu, Y., Hu, J., Song, W., Cheng, Y., & Li, R. (2023). Satellite observed response of fire dynamics to vegetation water content and weather conditions in Southeast Asia. *ISPRS Journal of Photogrammetry and Remote Sensing, 202*, 230–245. https://doi.org/10.1016/j.isprsjprs.2023.06.001
33. Wang, Y., Hu, J., Li, R., Song, B., & Hailemariam, M. (2023). Remote sensing of daily evapotranspiration and gross primary productivity of four forest ecosystems in East Asia using satellite multi-channel passive microwave measurements. *Agricultural and Forest Meteorology, 339*, 109595. https://doi.org/10.1016/j.agrformet.2023.109595
34. Wang, Y., Hu, J., Li, R., Song, B., Hailemariam, M., Fu, Y., & Duan, J. (2023). Increasing cloud coverage deteriorates evapotranspiration estimating accuracy from satellite, reanalysis and land surface models over East Asia. *Geophysical Research Letters, 50*(6), e2022GL102706. https://doi.org/10.1029/2022GL102706
35. Mai, L., Yang, S., Wang, Y., & Li, R. (2023). Impacts of shape assumptions on Z–R relationship and satellite remote sensing clouds based on model simulations and GPM observations. *Remote Sensing, 15*(6), 1556. https://doi.org/10.3390/rs15061556
36. Zhu, H., Li, R., Yang, S., Zhao, C., Jiang, Z., & Huang, C. (2023). The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations. *Atmospheric Chemistry and Physics, 23*(4), 2421–2437. https://doi.org/10.5194/acp-23-2421-2023
37. Fu, Y., Li, R., Hu, J., Wang, Y., & Duan, J. (2022). Dataset of top-down nitrogen oxides fire emission estimation in northeastern Asia. *Data in Brief, 45*, 108734. https://doi.org/10.1016/j.dib.2022.108734
38. Sun, N., Fu, Y., Zhong, L., & Li, R. (2022). Aerosol effects on the vertical structure of precipitation in East China. *npj Climate and Atmospheric Science, 5*(1), 60. https://doi.org/10.1038/s41612-022-00284-0
39. Wang, M., Fu, Y., Zhao, C., Zhong, L., Li, R., Wang, D., Qiu, X., & Zhou, S. (2022). Characteristics of summer cloud precipitation along latitude 30°N in East Asia derived from Tropical Rainfall Measuring Mission Precipitation Radar and Visible and Infrared Scanner measurements. *International Journal of Climatology, 42*(10), 5373–5392. https://doi.org/10.1002/joc.7538
40. Kabeja, C., Li, R., Rwabuhungu Rwatangabo, D. E., & Duan, J. (2022). Monitoring land use/cover changes by using multi-temporal remote sensing for urban hydrological assessment: A case study in Beijing, China. *Remote Sensing, 14*(17), 4273. https://doi.org/10.3390/rs14174273
41. Fu, Y., Li, R., Hu, J., Wang, Y., & Duan, J. (2022). Investigating the impacts of satellite fire observation accuracy on the top-down nitrogen oxides emission estimation in northeastern Asia. *Environment International, 169*, 107498. https://doi.org/10.1016/j.envint.2022.107498
42. He, T.-L., Jones, D. B. A., Miyazaki, K., Bowman, K. W., Jiang, Z., Chen, X., Li, R., Zhang, Y., & Li, K. (2022). Inverse modeling of Chinese NOx emissions using deep learning: Integrating in situ observations with a satellite-based chemical reanalysis. *Atmospheric Chemistry and Physics, 22*(22), 14831–14851. https://doi.org/10.5194/acp-22-14831-2022
43. Wang, R., Zhou, R., Yang, S., Li, R., Pu, J., Liu, K., & Deng, Y. (2022). A new algorithm for estimating low cloud base height in Southwest China. *Journal of Applied Meteorology and Climatology, 61*(9), 1137–1152. https://doi.org/10.1175/JAMC-D-21-0221.1
44. Zhang, Y., Hu, J., Gu, D., Bo, H., Fu, Y., Wang, Y., & Li, R. (2022). Simulation of isoprene emission with satellite microwave emissivity difference vegetation index as water stress factor in southeastern China during 2008. *Remote Sensing, 14*(7), 1740. https://doi.org/10.3390/rs14071740
45. Zhou, R., Yan, T., Yang, S., Fu, Y., Huang, C., Zhu, H., & Li, R. (2022). Characteristics of cloud, precipitation and latent heat in a mid-latitude front system mixed with dust storm as seen from GPM satellite observations and WRF simulations. *Journal of University of Science and Technology of China, 52*(2), 98–110. https://doi.org/10.52396/JUSTC-2021-0238
46. Chen, J., Jiang, Z., Li, R., Liao, C., Miyazaki, K., & Jones, D. B. A. (2022). Large discrepancy between observed and modeled wintertime tropospheric NO2 variabilities due to COVID-19 controls in China. *Environmental Research Letters, 17*(3), 035007. https://doi.org/10.1088/1748-9326/ac4ec0
47. Li, R., Fu, Y., Bergeron, Y., Valeria, O., Chavardès, R. D., Hu, J., Wang, Y., Duan, J., Li, D., & Cheng, Y. (2022). Assessing forest fire properties in Northeastern Asia and Southern China with satellite microwave Emissivity Difference Vegetation Index (EDVI). *ISPRS Journal of Photogrammetry and Remote Sensing, 183*, 54–65. https://doi.org/10.1016/j.isprsjprs.2021.10.019
48. Li, R., Hu, J., Wu, S., Zhang, P., Letu, H., Wang, Y., Wang, X., Fu, Y., Zhou, R., & Sun, L. (2022). Spatiotemporal variations of microwave land surface emissivity (MLSE) over China derived from 4-Year recalibrated Fengyun 3B MWRI data. *Advances in Atmospheric Sciences, 39*(5), 829–845. https://doi.org/10.1007/s00376-022-1314-0
49. Wang, Y., Li, R., Hu, J., Fu, Y., Duan, J., Cheng, Y., & Song, B. (2022). Evaluation of evapotranspiration under cloud impact over continental China using ground observations and multiple satellite optic and microwave measurements. *Agricultural and Forest Meteorology, 314*, 108806. https://doi.org/10.1016/j.agrformet.2021.108806
50. Li, G., Chen, H., Xu, M., Zhao, C., Zhong, L., Li, R., Fu, Y., & Gao, Y. (2022). Impacts of topographical complexity on modeling moisture transport and precipitation over the Tibet Plateau in summer. *Advances in Atmospheric Sciences, 39*(7), 1151–1166. https://doi.org/10.1007/s00376-022-1409-7
51. Wang, M., Fu, Y., Zhao, C., Zhong, L., Li, R., Wang, D., Qiu, X., & Zhou, S. (2022). Characteristics of summer cloud precipitation along latitude 30°N in East Asia derived from TRMM PR and VIRS measurements. *International Journal of Climatology, 42*(10), 5373–5392. https://doi.org/10.1002/joc.7538
52. Zhao, Y., Zhong, L., Yuan, R., Zhao, C., Li, R., Wang, Y., Lian, Y., & Richardson, M. (2021). Simulation of Martian dust effects on polar CO2 ice caps and atmospheric circulation using the MarsWRF model. *Journal of Geophysical Research: Planets, 126*(11), e2021JE006937. https://doi.org/10.1029/2021JE006937
53. Wang, Y., Li, R., Hu, J., Fu, Y., Duan, J., Cheng, Y., & Song, B. (2021). Understanding the non-linear response of summer evapotranspiration to clouds in a temperate forest under the impact of vegetation water content. *Journal of Geophysical Research: Atmospheres, 126*(22), e2021JD035239. https://doi.org/10.1029/2021JD035239
54. Wang, Z., Huang, J., Ryzhkova, N., Li, J., Kryshen, A., Voronin, V., Li, R., Bergeron, Y., & Drobyshev, I. (2021). 352 years long fire history of a Siberian boreal forest and its primary driving factor. *Global and Planetary Change, 207*, 103653. https://doi.org/10.1016/j.gloplacha.2021.103653
55. Wang, Y., Li, R., Hu, J., Fu, Y., Duan, J., & Cheng, Y. (2021). Daily estimation of gross primary production under all sky using a light use efficiency model coupled with satellite passive microwave measurements. *Remote Sensing of Environment, 267*, 112721. https://doi.org/10.1016/j.rse.2021.112721
56. Hu, J., Fu, Y., Zhang, P., Min, Q., Gao, Z., Wu, S., & Li, R. (2021). Satellite retrieval of microwave land surface emissivity under clear and cloudy skies in China using observations from AMSR-E and MODIS. *Remote Sensing, 13*(19), 3980. https://doi.org/10.3390/rs13193980
57. Xu, M., Zhao, C., Gu, J., Feng, J., Hagos, S., Leung, L. R., & Li, R. (2021). Convection-permitting hindcasting of diurnal variation of Mei-yu rainfall over East China with a global variable-resolution model. *Journal of Geophysical Research: Atmospheres, 126*(21), e2021JD034823. https://doi.org/10.1029/2021JD034823
58. Sun, N., Fu, Y., Zhong, L., Zhao, C., & Li, R. (2021). The impact of convective overshooting on the thermal structure over the Tibetan Plateau in summer based on TRMM, COSMIC, radiosonde and reanalysis data. *Journal of Climate, 34*(18), 7629–7646. https://doi.org/10.1175/JCLI-D-20-0849.1
59. Chen, X., Jiang, Z., Shen, Y., Li, R., Fu, Y., Liu, J., Han, H., Liao, H., Cheng, X., Jones, D., Worden, H., & González Abad, G. (2021). Chinese regulations are working—why is surface ozone over industrialized areas still high? Applying lessons from Northeast US air quality evolution. *Geophysical Research Letters, 48*(19), e2021GL092816. https://doi.org/10.1029/2021GL092816
60. Wang, Y., Li, R., Hu, J., Wang, X., Kabeja, C., Min, Q., & Wang, Y. (2021). Evaluations of MODIS and microwave based satellite evapotranspiration products under varied cloud conditions over East Asia forests. *Remote Sensing of Environment, 264*, 112606. https://doi.org/10.1016/j.rse.2021.112606
61. Zhang, Y., Bo, H., Jiang, Z., Wang, Y., Fu, Y., Cao, B., Wang, X., Chen, J., & Li, R. (2021). Untangle contributions of meteorology condition and human mobility to tropospheric NO2 in Chinese mainland during COVID-19 pandemic in early 2020. *National Science Review, 8*(9), nwab061. https://doi.org/10.1093/nsr/nwab061
62. Li, R., Fu, Y., & Huang, C. (2021). Review of satellite retrieval of latent heating released from precipitation by Look-Up Table and physical retrieval methods [卫星遥感降水潜热的查表法和物理反演法简介]. *Torrential Rain and Disasters, 40*(3), 259–270. (In Chinese).
63. Li, R., Fu, Y., & Huang, C. (2021). Review of satellite retrieval of latent heating released from precipitation by Look-Up Table and physical retrieval methods. *Torrential Rain and Disasters, 40*(3), 259–270. (In Chinese).
64. Hu, J., Li, R., Wang, Y., Wang, Y., & Fu, Y. (2020). Characteristics comparison of the satellite multi-channel microwave emissivity difference vegetation index (EDVI) over different types of vegetation regions [卫星遥感多通道微波比辐射率植被指数(EDVI)在不同类型植被区的特点比较]. *Journal of University of Science and Technology of China, 50*(4), 528–541. (In Chinese).
65. Fu, Y., Li, R., Wang, X., Bergeron, Y., Valeria, O., Chavardès, R. D., Wang, Y., & Hu, J. (2020). Fire detection and fire radiative power in forests and low-biomass lands in Northeast Asia: MODIS versus VIIRS fire products. *Remote Sensing, 12*(18), 2870. https://doi.org/10.3390/rs12182870
66. Zhang, M., Zhao, C., Cong, Z., Du, Q., Xu, M., Chen, Y., Chen, M., Li, R., Fu, Y., Zhong, L., Kang, S., Zhao, D., & Yang, Y. (2020). Impact of topography on black carbon transport to the southern Tibetan Plateau during the pre-monsoon season and its climatic implication. *Atmospheric Chemistry and Physics, 20*(10), 5923–5943. https://doi.org/10.5194/acp-20-5923-2020
67. Kabeja, C., Li, R., Guo, J., Rwatangabo, D. E. R., Manyifika, M., Gao, Z., Wang, Y., & Zhang, Y. (2020). The impact of reforestation induced land cover change (1990–2017) on flood peak discharge using HEC-HMS hydrological model and satellite observations: A study in two mountain basins, China. *Water, 12*(5), 1347. https://doi.org/10.3390/w12051347
68. Li, R., Wang, Y.-P., Hu, J., Wang, Y., Min, Q., Bergeron, Y., Valeria, O., Gao, Z., Liu, J., & Fu, Y. (2020). Spatiotemporal variations of satellite microwave emissivity difference vegetation index in China under clear and cloudy skies. *Earth and Space Science, 7*(5), e2020EA001145. https://doi.org/10.1029/2020EA001145
69. Wu, B., Wang, Y., Zou, C., Li, R., Liu, S., Liu, G., & Fu, F. (2020). A fundamental climate data record derived from AMSR-E, MWRI, and AMSR2. *IEEE Transactions on Geoscience and Remote Sensing, 58*(9), 6583–6594. https://doi.org/10.1109/TGRS.2020.2966055
70. Zhang, Y., Wang, Y., Liu, G., Guo, J., Yang, Y., Li, R., Fu, Y., & Liu, L. (2019). Satellite-based assessment of various cloud microphysics schemes in simulating typhoon hydrometeors. *Advances in Meteorology, 2019*, Article 3168478. https://doi.org/10.1155/2019/3168478
71. Wang, Y., Li, R., Min, Q., Fu, Y., Wang, Y., Zhong, L., & Fu, Y.-Y. (2019). A three-source satellite algorithm for retrieving all-sky evapotranspiration rate using combined optical and microwave vegetation index at twenty AsiaFlux sites. *Remote Sensing of Environment, 235*, 111463. https://doi.org/10.1016/j.rse.2019.111463
72. Li, R., Shao, W., Guo, J., Fu, Y., Liu, G., Wang, Y., & Li, W. (2019). A simplified algorithm to estimate latent heating rate using vertical rainfall profiles over the Tibetan Plateau. *Journal of Geophysical Research: Atmospheres, 124*(2), 942–963. https://doi.org/10.1029/2018JD029297
73. Zhang, Y., Li, R., Min, Q., Bo, H., Fu, Y., Wang, Y., & Gao, Z. (2019). The controlling factors of atmospheric formaldehyde (HCHO) in Amazon as seen from satellite. *Earth and Space Science, 6*(7), 1125–1138. https://doi.org/10.1029/2019EA000627
74. Wang, Y., Li, R., Min, Q., Zhang, L., Yu, G., & Bergeron, Y. (2019). Estimation of vegetation evapotranspiration rate over three forest sites in ChinaFLUX using satellite microwave vegetation water content index. *Remote Sensing, 11*(11), 1359. https://doi.org/10.3390/rs11111359
75. Li, R., Bo, H., & Wang, Y. (2019). Slowing-down reduction and possible reversal trend of tropospheric NO2 over China during 2016 to 2019. arXiv:1907.06525v1 [physics.ao-ph].
76. Wang, R., Xian, T., Wang, M., Chen, F., Yang, Y., Zhang, X., Li, R., Zhong, L., Zhao, C., & Fu, Y. (2019). Relationship between extreme precipitation and temperature in two different regions: The Tibetan Plateau and Middle-East China. *Journal of Meteorological Research, 33*(5), 870–884. https://doi.org/10.1007/s13351-019-8181-3
77. Fu, Y., Li, R., Huang, J., Bergeron, Y., Fu, Y., Wang, Y., & Gao, Z. (2018). Satellite observed impacts of wildfires on regional atmosphere composition and the shortwave radiative forcing: A multiple case study. *Journal of Geophysical Research: Atmospheres, 123*(15), 8326–8343. https://doi.org/10.1029/2017JD027927
78. Dong, X., Li, R., Wang, Y., Fu, Y., & Zhao, C. (2018). Potential impacts of Sahara dust aerosol on rainfall vertical structure over the Atlantic Ocean as identified from EOF analysis. *Journal of Geophysical Research: Atmospheres, 123*(19), 10,791-10,806. https://doi.org/10.1029/2018JD028500
79. Lu, Y., Fu, Y., Yang, Y., Li, R., Qiu, X., & Cai, H. (2018). Assessment of longwave radiative forcing of nighttime cirrus based on CloudSat and CALIPSO measurements and singlecolumn radiative transfer simulations. *Journal of Quantitative Spectroscopy and Radiative Transfer, 217*, 156–169. https://doi.org/10.1016/j.jqsrt.2018.09.019
80. Fu, Y., Pan, X., Xian, T., Liu, G., Zhong, L., Liu, Q., Li, R., Wang, Y., & Ma, M. (2018). Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. *Climate Dynamics, 51*(5), 1971–1989. https://doi.org/10.1007/s00382-017-3992-3
81. Liu, J., Fu, Y., Li, R., Wang, Y., & Fu, Y. (2018). Effects of cloud and atmosphere on passive microwave remote sensing of snow depth over the Tibetan Plateau [青藏高原云和大气对被动微波遥感积雪雪深的影响]. *Plateau Meteorology, 37*(2), 305–316. (In Chinese).
82. Wang, Y., Han, T., Guo, J., Jiang, K., Li, R., Shao, W., & Liu, G. (2018). Simulation study of spaceborne Ku-, Ka-, and W-band triple-frequency radar for probing the three-dimensional structure of clouds and precipitation [星载Ku、Ka、W三频雷达探测云和降水三维结构的模拟仿真研究]. *Chinese Science Bulletin, 63*(14), 1401–1414. (In Chinese).
83. Geng, R., Wang, Y., Fu, Y., Li, R., & Liu, G. (2018). Comparisons of climatological characteristics among several hydrometeor data over China and its adjacent regions [中国及其周边地区多种水凝物资料的气候态特征比较]. *Acta Meteorologica Sinica, 76*(1), 134–147. (In Chinese).
84. Wang, R., Fu, Y., Xian, T., Chen, F., Yuan, R., Li, R., & Liu, G. (2017). Evaluation of atmospheric precipitable water characteristics and trends in mainland China from 1995 to 2012. *Journal of Climate, 30*(21), 8673–8688. https://doi.org/10.1175/JCLI-D-16-0433.1
85. Li, R., Li, W., Fu, Y., et al. (2017). Uncertainties in atmospheric diabatic heating over the Tibetan Plateau in ERA40 and NCEP reanalysis data [青藏高原ERA40 和NCEP 大气非绝热加热的不确定性]. *Chinese Science Bulletin, 62*(4), 420–431. (In Chinese).
86. Li, R., Dong, X., Guo, J., Fu, Y., Wang, Y., & Min, Q. (2017). The implications of dust ice nuclei effect on cloud top temperature in a complex mesoscale convective system. *Scientific Reports, 7*(1), 13826. https://doi.org/10.1038/s41598-017-12681-0
87. Li, R., Li, J., Liu, Z., Hua, J., Wang, Y., & Wang, W. (2016). Correlation study of aerosol optical depth, NO2, and SO2 over China from satellite remote sensing [卫星遥感研究中国气溶胶光学厚度、NO2和SO2的相关性]. *Chinese Science Bulletin, 61*(21), 2524–2536. (In Chinese).
88. Fu, Y., Pan, X., Liu, G., Li, R., & Zhong, L. (2016). Classification of summer precipitation over the Tibetan Plateau based on cloud top brightness temperature and precipitation echo top height [基于云亮温和降水回波顶高度分类的夏季青藏高原降水研究]. *Chinese Journal of Atmospheric Sciences, 40*(1), 102–120. (In Chinese).
89. Fu, Y., Chen, F., Liu, G., Yang, Y., Yuan, R., Li, R., Liu, Q., Wang, Y., Zhong, L., & Sun, L. (2016). Recent trends of summer convective and stratiform precipitation in Mid-Eastern China. *Scientific Reports, 6*(1), 33044. https://doi.org/10.1038/srep33044
90. Li, R., Guo, J., Fu, Y., Min, Q., Wang, Y., Gao, X., & Dong, X. (2015). Estimating the vertical profiles of cloud water content in warm rain clouds. *Journal of Geophysical Research: Atmospheres, 120*(18), 9486–9502. https://doi.org/10.1002/2015JD023489
91. Wang, Y., Zhang, Y., Fu, Y., Li, R., & Yang, Y. (2015). A climatological comparison of column-integrated water vapor for the third-generation reanalysis datasets. *Science China Earth Sciences, 58*(9), 1615–1626. https://doi.org/10.1007/s11430-015-5183-6
92. Yin, B., Li, S., Li, R., Min, Q., & Duan, M. (2015). Interannual variation of cloud optical properties at ACRF Manus and Nauru sites from MFRSR measurements. *Journal of Quantitative Spectroscopy and Radiative Transfer, 153*, 29–37. https://doi.org/10.1016/j.jqsrt.2014.09.012
93. Li, R., Cai, H., Fu, Y., Wang, Y., Min, Q., Guo, J.-C., & Dong, X. (2014). Optical properties and longwave radiative forcing in the lateral boundary of cirrus cloud. *Geophysical Research Letters, 41*(10), 3666–3675. https://doi.org/10.1002/2014GL059432
94. Min, Q., Li, R., Lin, B., Joseph, E., Morris, V., Hu, Y., Li, S., & Wang, S. (2014). Impacts of mineral dust on ice clouds in tropical deep convection systems. *Atmospheric Research, 143*, 64–72. https://doi.org/10.1016/j.atmosres.2014.01.022
95. Liu, X., Liu, Q., Fu, Y., & Li, R. (2014). Daytime precipitation identification scheme based on multiple cloud parameters retrieved from visible and infrared measurements. *Science China Earth Sciences, 57*(9), 2112–2124. https://doi.org/10.1007/s11430-014-4848-x
96. Li, R., & Min, Q. (2013). Dynamic response of microwave land surface properties to precipitation in Amazon rainforest. *Remote Sensing of Environment, 133*, 183–192. https://doi.org/10.1016/j.rse.2013.02.011
97. Min, Q., Li, R., Wu, X., & Fu, Y. (2013). Retrieving latent heating vertical structure from cloud and precipitation profiles – Part I: Warm rain processes. *Journal of Quantitative Spectroscopy and Radiative Transfer, 122*, 31–46. https://doi.org/10.1016/j.jqsrt.2012.11.030
98. Li, R., Min, Q., Wu, X., & Fu, Y. (2013). Retrieving latent heating vertical structure from cloud and precipitation profiles – Part II: Deep convective and stratiform rain processes. *Journal of Quantitative Spectroscopy and Radiative Transfer, 122*, 47–63. https://doi.org/10.1016/j.jqsrt.2012.11.029
99. Fu, Y., Liu, Q., Gao, Y., Hong, X., Zi, Y., Zheng, Y., Li, R., & Heng, Z. (2013). A feasible method for merging the TRMM microwave imager and precipitation radar data. *Journal of Quantitative Spectroscopy and Radiative Transfer, 122*, 155–169. https://doi.org/10.1016/j.jqsrt.2012.08.019
100. Li, R., Min, Q., & Fu, Y. (2011). 1997/1998 El Niño induced changes in rainfall vertical structure in East Pacific. *Journal of Climate, 24*(24), 6373–6391. https://doi.org/10.1175/JCLI-D-11-00002.1
101. Lin, Y., Min, Q., Zhuang, G., Wang, Z., Gong, W., & Li, R. (2011). Spatial features of rain frequency change and pollution and associated aerosols. *Atmospheric Chemistry and Physics, 11*(15), 7715–7726. https://doi.org/10.5194/acp-11-7715-2011
102. Li, R., & Min, Q. (2010). Impacts of mineral dust on the vertical structure of precipitation. *Journal of Geophysical Research: Atmospheres, 115*(D9), D09203. https://doi.org/10.1029/2009JD011925
103. Min, Q., & Li, R. (2010). Longwave indirect effect of mineral dusts on ice clouds. *Atmospheric Chemistry and Physics, 10*(15), 7753–7761. https://doi.org/10.5194/acp-10-7753-2010
104. Li, R., Min, Q., & Harrison, L. C. (2010). A case study: The indirect aerosol effects of mineral dust on warm clouds. *Journal of the Atmospheric Sciences, 67*(3), 805–816. https://doi.org/10.1175/2009JAS3235.1
105. Min, Q., Lin, B., & Li, R. (2010). Remote sensing vegetation hydrological states using passive microwave measurements. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3*(1), 124–131. https://doi.org/10.1109/JSTARS.2009.2038901
106. Gong, W., Min, Q., Li, R., Teller, A., Joseph, E., & Morris, V. (2010). Detailed cloud resolving model simulations of the impacts of Saharan air layer dust on tropical deep convection – Part 1: Dust acts as ice nuclei. *Atmospheric Chemistry and Physics, 10*(22), 11017–11036. https://doi.org/10.5194/acp-10-11017-2010
107. Fu, Y., Feng, S., Liu, P., Cao, A., Liu, X., Li, R., Liu, Q., & Wang, Y. (2010). Analysis of anvils of Asian summer cumulonimbus clouds using TRMM PR data [热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧]. *Acta Meteorologica Sinica, 68*(2), 195–206. (In Chinese).
108. Fu, Y., Liu, Q., Wang, Y., Sun, L., Li, R., Ma, M., & Liu, G. (2010). The instruments onboard the Tropical Rainfall Measuring Mission (TRMM) satellite and their applications in precipitation analysis [热带测雨卫星搭载的仪器及其探测结果在降水分析中的应用]. *Strategic Study of CAE, 14*(5), 43–50. (In Chinese).
109. Min, Q.-L., Li, R., Lin, B., Joseph, E., Wang, S., Hu, Y., Morris, V., & Chang, F. (2009). Evidence of mineral dust altering cloud microphysics and precipitation. *Atmospheric Chemistry and Physics, 9*(9), 3223–3231. https://doi.org/10.5194/acp-9-3223-2009
110. Li, R., Min, Q., & Lin, B. (2009). Estimation of evapotranspiration in a mid-latitude forest using the Microwave Emissivity Difference Vegetation Index (EDVI). *Remote Sensing of Environment, 113*(9), 2011–2018. https://doi.org/10.1016/j.rse.2009.05.007
111. Fu, Y., Feng, J., Zhu, H., Li, R., & Liu, D. (2005). Structural characteristics of convective precipitation under the western Pacific subtropical high: A case study [西太平洋副热带高压下热对流降水结构特征的个例分析]. *Acta Meteorologica Sinica, 63*(5), 750–761. (In Chinese).
112. Fu, Y., Liu, G., Wu, G., Yu, R., Xu, Y., Wang, Y., Li, R., & Liu, Q. (2006). Tower mast of precipitation over the central Tibetan Plateau summer. *Geophysical Research Letters, 33*(5), L05802. https://doi.org/10.1029/2005GL024713
113. Li, R., & Fu, Y. (2005). Tropical precipitation estimated by GPCP and TRMM PR observations. *Advances in Atmospheric Sciences, 22*(6), 852–864. https://doi.org/10.1007/BF02918685
114. Li, R., & Fu, Y. (2005). A study of the precipitation structure during the later period of the 1997/1998 El Niño over the tropical Pacific using TRMM PR data [利用热带测雨卫星的测雨雷达资料对1997/1998 年EL Nino 后期热带太平洋降水结构的研究]. *Chinese Journal of Atmospheric Sciences, 29*(2), 225–235. (In Chinese).
115. Li, R., & Fu, Y. (2005). A comparison analysis of tropical monthly precipitation between GPCP and TRMM PR [GPCP和TRMM PR热带月平均降水的差异分析]. *Acta Meteorologica Sinica, 63*(2), 146–160. (In Chinese).
Corresponding author indicated by asterisk ().*
VII. National Invention Patents
Patent Title: Method for Estimating Vegetation Gross Primary Productivity Based on Satellite Passive Microwave Remote Sensing
Inventors: Wang Yipu; Li Rui; Hu Jiheng
Patent No.: ZL20211070505.1
Status: Granted (2023-08-29)
Patent Title: Method for Estimating Forest Fire Frequency and Intensity Using Satellite Microwave Index and Meteorological Index
Inventors: Li Rui; Fu Yuyun; Hu Jiheng; Duan Jiawei
Patent No.: ZL202111202411.5
Status: Granted (2023-08-29)
Patent Title: Method and System for Retrieving Latent Heating Vertical Profiles via Satellite Remote Sensing
Inventors: Zhao Hongwei; Li Rui; Xu Xuanye
Patent No.: ZL202411076241.4
Status: Granted (2024-11-05)
ZipCode :
PostalAddress :
Telephone :
Email :
[1] 中国气象学会 常任理事
[2] 世界气象组织(WMO)天气研究计划(WWRP)中国委员会委员、观测新技术科学工作组组长
[3] 国际气象学和大气科学协会(IAMAS)中国委员会委员
[4] 教育部大气科学教学指导委员会委员
[5] 安徽省气象学会副理事长
[6] 加拿大魁北克大学森林研究所兼职教授、博导(2016-2023)
[7] 风云降水卫星科学应用专家委员会秘书长
Description of Research Group:https://fengyun.ustc.edu.cn/main.htm