
DHash: A Cache-Friendly TCP Lookup
Algorithm for Fast Network Processing

Kai Zhang1, Junchang Wang2, Bei Hua3, Li Lu4
University of Science and Technology of China(USTC), Hefei, Anhui, 230027, China

Suzhou Institute for Advanced Study, USTC, Suzhou, Jiangsu, 215123, China
{1kay21s, 2wangjc, 4luly9527}@mail.ustc.edu.cn, 3bhua@ustc.edu.cn

Abstract—A typical hash based TCP lookup algorithm
is hard to make a trade-off between speed and space. This
paper presents DHash, a high-efficient TCP lookup algo-
rithm that aims at supporting large number of sessions in
high speed networks. DHash achieves this goal by designing
a compact and cache-friendly lookup data structure that
well fits the modern computer architectures. To show the
power of DHash, we implement it in a user-space TCP/IP
stack, and then parallelize the stack on the Intel multi-
core processors. Experiments show that DHash is able to
achieve 16.3Mpps while handling one million concurrent
sessions on our parallel platform.

Index Terms—TCP lookup; Cache-friendly Hash Table;
High-performance Network Processing;

I. INTRODUCTION

Developing PC-based network devices with off-the-
shelf commodity hardware and general-purpose operat-
ing system is attractive due to low cost per performance
and easy programmability. However, keeping them at
high speed (e.g., 10Gbps) is challenging. Recently soft-
ware routers built on commodity PCs have achieved
noticeable performance [17] [10], whereas the same
thing does not happen on layer 4+ devices such as
servers, application-layer firewalls, intrusion detection
systems, proxies, and load balancers, etc. These devices
differ from routers in that they mainly work upon TCP
layer to do stateful packet processing which imposes
significant overhead on system.

TCB (Transmission Control Block) is a data structure
used to maintain the state of each TCP session. In a typ-
ical TCP implementation, TCBs are organized in a hash
table with conflicts resolved by linked lists. Generally,
the size of a TCB is 280∼1300 bytes [7]. When there are
a great number of concurrent sessions, e.g., one million
sessions – a general metric for nowadays commodity
high-end network devices [6] [1], TCBs will take up
280MB∼1.3GB memory space. Since the scale of the
last level cache(LLC) is typically 10MB in mainstream
commodity processors, the memory footprint of TCBs
is tens of hundreds of times the size of LLC. With such

This paper is supported by the Fundamental Research Funds for the
Central Universities under Grant No.WK0110000007.

a huge working set, almost each search step along a
linked list will incur a LLC miss. Previous research-
es [8] [21] [26] have identified that packet processing
time is dominated by CPU stalls on main memory access,
other than the execution of instructions. Consequently,
even minor memory accesses may increase the packet
processing time significantly. In addition, in a 10Gbps
network, the time budget for a minimum Ethernet packet
(64 bytes) is only 67ns which roughly equals to the time
of a DRAM access, therefore the bottleneck of TCB
lookup needs to be removed straight away.

This paper presents DHash (Digest Hash), a cache-
friendly TCB lookup algorithm that speeds up TCB
lookup by decoupling it from TCB access. Instead of
organizing TCBs in a hash table and identifying each
TCB with its session identifier, i.e., the 4-tuple (source IP
address, destination IP address, source port, destination
port), DHash uses a short signature that is the digest of
session identifier to mark a session, and only includes
session signatures in the hash table. With only short
signatures rather than full TCBs storing in the lookup
table, table size is greatly reduced, and cache locality is
improved. With this cache-friendly design, our algorithm
can achieve high performance on modern computer
architectures.

As one single core is incapable of handling a great
number of sessions at very high speed, to verify DHash
in a challenging environment, we implement DHash in
an open source TCP/IP stack and parallelize the stack on
multicore architectures (in the experiments, we use an
eight-core server). By adopting a series of parallelizing
and optimizing techniques, especially the connection-
affinity principle that distributes all the packets of a
session to the same core, the parallelized TCP/IP stack
achieves scalable performance improvements on the plat-
form. The parallelizing work shows that DHash is easy
to parallelize and scales well with the core number, both
of which are important features for migrating legacy
network applications to multicore architectures.

This paper has the following two major contributions:
• A novel hash table data structure and algorithm

called DHash is designed specifically for fast TCB

38th Annual IEEE Conference on Local Computer Networks

978-1-4799-0537-9/13/$31.00 ©2013 IEEE 295

lookup. It is equivalent to a hash table with very
low load factor, but consumes much less memory
space compared with traditional hash table.

• A parallelized TCP/IP stack enhanced with DHash
is built on a multicore server. It can handle one
million TCP sessions at 16.3Mpps, which is higher
than 14.88Mpps - the maximum packet throughput
on a 10Gbps link.

To the best of our knowledge, no literature has report-
ed a TCB lookup algorithm achieving this speed with
such a large scale.

Road map of the paper is as follows. Section II
summarizes our experimental study on traditional TCB
lookup algorithm and surveys related work. Section III
elaborates the design and implementation of DHash,
whose theoretical analysis is given in Section IV. Sec-
tion V gives the single core performance of DHash.
Section VI describes a parallel run-time system reports
DHash’s parallel performance. Section VII concludes
this paper.

II. BACKGROUND AND RELATED WORK

Network equipments are known to spend a significant
portion of time on protocol processing. Performance
characterization of TCP/IP stack has been studied inten-
sively [21] [18] [5]. This section analyzes existing TCP
lookup algorithms and outlines the related works.

A. Bottleneck of Traditional TCP Implementation

Hash table is the most widely used method to organize
TCBs in current TCP implementations. When a TCP
packet arrives, its TCP session identifier (i.e., the 4-
tuple) is used to generate a hash value, which in turn
is used to locate a hash bucket, and then used to search
along a conflict linked list. Hash table is a good candidate
for fast lookup only when the load factor is low. In the
case of millions of concurrent TCP sessions, the size of
TCB hash table would be exceptionally large if the load
factor is kept low; however, restricting hash table size
may greatly increase hash collisions, which counteract
the benefit of hash table.

TABLE I
RATIO OF PROCESSING TIME TAKEN BY DIFFERENT PROCESSING

FUNCTIONS

Number of I/O IP TCP TCB
Session Cost Proc. (w/o TCB) Proc.

10 4.1% 4.6% 32.5% 58.8%
131,072 0.14% 0.16% 1.1% 98.6%

We set up a testing environment with a TCP/IP
implementation from Libnids 1.24 (with 1040 buckets
as its default implementation) [2], and an optimized NIC
driver from IOEngine [17]. We measure the processing

time of the constituent modules with 10 and 131,072
sessions, respectively. The functions include packet I/O,
IP processing, TCP processing excluding TCB lookup,
and TCB lookup.

Experimental results are shown in Table I, where
TCB lookup is the most significant bottleneck in the
bottom four layers of the stack, which takes 58.8% of the
total processing time with 10 sessions, and 98.6% with
131,072 sessions. The experimental data also denotes
that TCB lookup time is sensitive to the number of
TCP sessions, indicating that the traditional TCB lookup
algorithm lacks scalability.

B. Related Work

Previous studies [21] [25] [26] reveal that system
performance deteriorates rapidly with enlarged number
of TCP sessions, because TCB working set grows in
proportion to the number of sessions, resulting in poor
spatial locality. Furthermore, as TCB access lacks tem-
poral locality when a large number of sessions are
active, simply increasing the cache size has limited
benefits [21].

To improve the worst-case performance of hash table
lookup, some optimized implementations [19] [16] [13]
are proposed to reduce both access time and memory
usage. However, none of them was designed from the
very beginning to fit the features of modern computer
architectures, especially the effective use of cache which
dominates the application performance in real systems.
HashCache [4] implements a fixed-size, non-chained
hash table in disk that maps the cached object name to
the location of the corresponding file on disk. Different
from a normal hash table, new object is simply written
over a previous object if the table overflows.

Many hardware solutions are proposed to speed up
TCB lookup. Liao et al. [12] design a server-dedicated
hardware TCB cache by utilizing the characteristics of
web sessions. Fong [11] designs a complex function
that transforms the session signature and TCB location
into a 32-bit code which are stored in a specialized
hardware TCB cache. TOE [20] [22] [23] is another kind
of hardware solution that offloads TCP processing into
NIC to free up CPU cycles and reduce PCI traffic. Due to
limited resource, all of the above solutions are designed
to process only a small number of sessions (less than
100K) and is very expensive to expand. In addition to the
difficult trade-off between performance and price, hard-
ware solutions require modifying existing network stack
implementations, which makes the technology difficult
to deploy.

III. DESIGN SPACE EXPLORATION

Our goal is to design an efficient TCB lookup algorith-
m that is capable of handling one million TCP sessions

38th Annual IEEE Conference on Local Computer Networks

296

in 10Gbps networks, and a cache-friendly TCB lookup
algorithm called DHash is designed.

A. Data Structure

The linearly growing TCB working set, which stems
from tight coupling of TCB lookup and TCB access
via a shared hash table, is the root of low performance
and poor scalability of existing TCB lookup algorithm.
Based on this observation, our first design point is to
decouple TCB lookup from TCB access by designing a
novel lookup data structure, and making it as compact
as possible.

Linked list usually has low spatial locality, especially
in a system with insufficient last-level cache. Therefore,
our second design point is to replace the linked list
with continuous storage space in resolving conflicts. We
divide the hash bucket into fixed-sized slots to store the
matching keywords. To make good use of cache, hash
buckets are set to be the size of a cache line (64 bytes
in mainstream commodity processors), and meanwhile
each of them is initialized to be cache line aligned.

To make the lookup table compact, our third design
point is to compress the information as much as pos-
sible. A 32-bit signature rather than the 96-bit session
identifier is used as the matching keyword of a session.
Furthermore, TCB locations are not explicitly stored in
the lookup table, but calculated from the location of
their corresponding slots. In DHash, A TCB array is
pre-allocated and mapped as follows: the jth slot in the
ith hash bucket is mapped to a TCB whose index is
i×ElemPerBucket+j in the array.

j

i

16

...

Lookup Table

TCB Index = i * 16 + j

, SPort, DPort)

Hash(SIP, DIP

TCB Array

Cache

Memory

Conflict List

Fig. 1. Data Structure of DHash

Figure 1 sketches DHash’s TCB lookup data structure
for processors with 64-byte cache line size. TCP session
identifier is used as the input of the hash function. Each
hash bucket contains 16 slots, and each slot is 32 bits
long. The TCB array is pre-allocated, where the first N
elements (N equals to the number of slots in the hash
table) have static one-to-one mapping to the slots in
lookup table, and the rest ones are reserved as a TCB
pool for future allocation. When the number of conflicted
TCBs is larger than the maximum number of slots in a

hash bucket, extra TCBs are allocated from the TCB
pool, and their locations are explicitly stored along with
their signatures in the corresponding conflict list.

B. Signature Algorithm

Using shorter signatures reduces hash table size and
speeds up lookup, but it may also introduce false posi-
tive, i.e., different session identifiers happen to have the
same signature. Therefore, whenever a session signature
is matched in the lookup table, the corresponding TCB
is accessed and the 4-tuple is compared to confirm an
actual match. As false positive causes extra memory
accesses, low false positive rate is the most important
characteristic of a signature algorithm. In addition, be-
cause signature algorithm must be performed on each
TCP packet, low computational overhead is the second
important requirement.

We aim at designing fast and simple signature
algorithms, and here are four example signature
algorithms with popular fast hash operations: XOR
and CRC32 (x86 processors have incorporated
CRC32 instruction in the SSE4.2 instruction
set). 1) The first algorithm simply performs
XOR on the 4-tuple to get the signature, i.e.,
(SrcIP ⊕DestIP ⊕SrcPort ⊕DestPort). 2) The second
algorithm firstly performs (SrcIP ⊕DestIP) and
(SrcPort ⊕DestPort) separately, and then concatenates
them to calculate the CRC value. 3) The third algorithm
inverts the order of CRC and XOR operation. It
firstly performs CRC(SrcIP|DestIP|SrcPort ⊕DestPort)
and CRC(DestIP|SrcIP|SrcPort ⊕DestPort), and
then performs XOR to get the signature. All
the three algorithms are symmetric. 4) The
fourth algorithm solely uses CRC. It firstly
performs CRC(SrcIP|DestIP|SrcPort|DestPort) and
CRC(DestIP|SrcIP|DestPort|SrcPort) separately, then
concatenates the most significant 16 bits from the two
CRC values to form a 32-bit signature.

As zero is used to mark an empty slot, a specific
32 bits numeric value is assigned as the signature if
the calculated result is zero. For asymmetric signature
algorithms, when the calculated signature doesn’t match
for the first time, we swap the signature’s upper and
lower 16 bits and do the comparison again. We will
measure the false positive rate of each signature algo-
rithm in Section VI-C, and give the theoretical analysis
on DHash’s false positive rate in Section IV.

C. Reduce Comparison Times with Major Location

When a hash bucket is hit, signatures in it are com-
pared one by one to find a match. If the comparison
always begins with the first slot, the average number of
comparisons is eight, i.e., half of the slot number in a
bucket. To reduce the number of comparisons, we adopt

38th Annual IEEE Conference on Local Computer Networks

297

3. Search from Beginning

1. Major Location

2. Search to End

4. Search in Conflict List

Fig. 2. Procedure of Finding a Session

a mechanism similar to Major Location [24] to arrange
for the storage of signatures in the hash bucket. The
basic notion is that each TCB signature has a preferred
slot to store, and the lookup process begins with that slot
hoping to locate it quickly.

(Sig & 0x0F) (1)

(Sig & 0x0F)⊕ ((Sig & 0xF0000) >> 16) (2)

When a session identifier is hashed to a bucket, its
major location is calculated and served as the starting
point of the search. With 16 slots, 4 bits are needed
to indicate a location. To make the two directions of
a TCP session search from the same starting point,
major location should be symmetric. There are several
ways to obtain symmetric major location. For symmetric
signature algorithms, any 4 bits of the signature can be
extracted to form the major location. Function (1) is
an example that takes the last 4 bits of a symmetric
signature to form the major location. For asymmetric
signature algorithms (e.g., Algorithm 4), function (2)
gives a possible method that takes bits 0-3 and bits 16-
19 of the signature and XOR them to form the major
location.

D. Detailed Algorithm Description

1) Find a Session: Figure 2 illustrates the procedure
of finding a session. When a TCP packet is received, its
session identifier is used to calculate the hash index and
session signature, and then major location is calculated
from the session signature (Fig.2-1). Signature compari-
son begins with the slot indicated by major location and
moves towards the end of the bucket (Fig.2-2); it wraps
back at the end of the bucket and restarts from the first
slot (Fig.2-3) if necessary. When a signature is matched,
the corresponding TCB is accessed, and the complete
4-tuple is further compared. If this is a false positive,
search procedure continues. If no match is found in the

hash bucket (Fig.2-4), the corresponding conflict list (if
any) is checked. The procedure returns with an index of
TCB or NOT FOUND.

2) Add a Session: The procedure of adding a session,
whose mission is to find an empty slot, is similar to that
of finding a session. When an empty slot is found in the
hash bucket, the new session signature is stored in it, and
its corresponding TCB is returned. If no empty slot is
found in the hash bucket, an empty TCB is obtained from
the TCB pool, and a new element containing session
signature and TCB location is linked to the conflict list.

3) Delete a Session: When a session is closed, its
TCB must be released. If the signature is found in hash
bucket, this session can be deleted by clearing the slot
to zero. If the session signature is found in the conflict
list, DHash first puts TCB back into the pool, and then
removes the list element.

IV. THEORETICAL ANALYSIS OF DHASH

We start with the equivalent hash tables shown in
Figure 3. Table-A is a two-level hash table formed by two
hash functions, where the first level table has N buckets
and each second level table has 2b buckets. Table-A is
equivalent to a one-level hash table with N ∗ 2b buckets
(Table-B).

2
b

2
bN

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2
b

2
b

2
b

2
b

Table-A Table-B

N*2
b

Fig. 3. Equivalent Data Structures

In the case of DHash, the signature algorithm can be
considered as the second hash function that generates b
bits as the hash index. However, the hash index is not
used for locating a hash bucket, but is recorded to identi-
fy an object, which can be viewed as resolving conflicts
with open addressing. Therefore, the false positive rate
in each bucket in DHash equals to the conflict rate of
the second level hash table in Table-A.

A. Load Factor
Performance of a hash table largely depends on its

load factor. Because Table-B is an equivalent data struc-

38th Annual IEEE Conference on Local Computer Networks

298

ture to DHash’s lookup table, the load factor of DHash
equals to that of Table-B, where N is the number of
bucket in the lookup table and b is 32.

If M TCP sessions have been maintained in the
lookup table and the load is uniformly distributed, the
load factor of the DHash’s lookup table can be calculated
as (M/N) ∗ (1/2b). In DHash, b = 32 and M/N is no
more than 16, so we get

(M/N) ∗ (1/2b) ≤ 3.72 ∗ 10−9

In other words, DHash is equivalent to a hash table with
extremely low load factor.

DHash greatly reduces the memory consumption than
the traditional hash table. For example, with one million
elements, to obtain a load factor of 3.72 ∗ 10−9, a
traditional hash table needs 2, 000 TB for the bucket
headers in a 64-bit system, while DHash is pre-allocated
with only 4.5MB ((64 + 8) ∗ 62, 500 Bytes) in total.

B. False Positive Rate

As mentioned before, the false positive rate in each
hash bucket in DHash equals to the conflict rate of the
second level hash table in Table-A. Each second level
hash table in Table-A has n = 232 buckets, and the
average number of session signatures contained in the
table is no more than 16. Assume k session signatures
have been maintained in the second level hash table, and
Ek is defined as the event that k sessions do not collide
in the table, its probability is calculated as

Pr{Ek} = 1 ·
(n− 1

n

)(n− 2

n

)
· · ·

(n− k + 1

n

)
= 1 ·

(
1− 1

n

)(
1− 2

n

)
· · ·

(
1− k − 1

n

)
With n = 232 and k <= 16, the items

− 1
n ,−

2
n , ...,−

k−1
n can be considered as infinitesimal,

and the approximation of ex by 1 + x is quite good:
ex = 1 + x+Θ(x2) [9]. Therefore,

Pr{Ek} ≈ e−
1
n e−

2
n · · · e−

k−1
n = e−

∑k−1
i=1 i/n

= e−k(k−1)/2n ≈ 1− k(k − 1)/2n

According to inclusion-exclusion principle, the proba-
bility that at least two sessions conflict equals to 1 minus
the probability that no sessions conflict. The expected
false positive rate in each hash bucket in DHash is

1− Pr{Ek} ≈ k(k − 1)/2n ≤ 2.79 ∗ 10−8

To sum up, DHash achieves extremely low false
positive rate and load factor with much lower memory
consumption compared with traditional hash tables.

V. SINGLE CORE PERFORMANCE OF DHASH

To evaluate the performance of DHash, we borrow the
open source TCP/IP stack from Libnids, and substitute

DHash for the original TCP lookup algrotihm. The
sequential performance of the system is evaluated in this
section, and a parallel version is built and evaluate in
Section VI.

A. System Configuration
We build the runtime system on a server equipped

with two Intel E5620 quad-core processors running
at 2.4GHz. Each processor has an integrated memory
controller that supports 1066MHz DDR3 memory and is
installed with 4GB memory. Each processor has a 12MB
L3 cache that is shared by all the cores within that pro-
cessor. The two processors are connected via QuickPath
Interconnect (QPI) at 5.86GT/s. The operating system
is 64-bit Fedora 14 with a stock Linux kernel (version
2.6.39.2). To obtain the maximum processing speed of
DHash, packets are read from memory instead of the real
NIC. Both the runtime system and DHash are compiled
by GCC 4.5.1 with -O2 option.

To reduce the access to extra conflict lists, the expect-
ed number of sessions hashed to each bucket in DHash
should be no more than 16. To support one million TCP
sessions and cope with some load imbalance, we set
the hash table size to 100, 000 buckets, which makes
the expected number of sessions in each bucket to be
10. Therefore, the lookup table is pre-allocated 6.4MB
memory space. Totally 7.2MB memory space is pre-
allocated for DHash, including 0.8MB memory space
for TCB pool.

Based on the analysis in Section IV, with M = 106

TCP sessions and N = 105 hash buckets (Section V-A),
the load factor of the lookup table is M/(N ∗ 2b) =
106/(105∗232) ≈ 2.3∗10−9. The expected false positive
rate of each bucket (k = M/N = 10 and n = 232) is
1 − Pr{Ek} ≈ k(k − 1)/2n ≈ 1.05 × 10−8. And the
expected false positive rate of DHash (k = 106, n =
105×232) is 1−Pr{Ek} ≈ k(k−1)/2n ≈ 1.16×10−3.

B. Trace File
Evaluation of DHash needs very large packet trace

files that contain millions of concurrent TCP sessions.
However, such trace can only be collected from Internet
backbone or very large data center, and is not publicly
available due to privacy and business secret protection.
Therefore, we synthesize packet trace files with real-
world session identifiers obtained from our campus gate-
way and MIT Lincoln Lab [3] to form different number
of concurrent sessions. To simulate the worst-case traffic
pattern, the TCB reusing distances in the synthesized
trace files are maximized to stress DHash, i.e., in a trace
file with N TCP sessions, every two packets from the
same session are separated by N-1 packets from other
sessions.

In the generated trace files, each session has 20
packets that cover the life cycle of a TCP session.

38th Annual IEEE Conference on Local Computer Networks

299

TABLE II
CHARACTERISTICS OF TRACE FILES

Pkt. Pkt. Max. TCP Avg. TCP
Num. Len. Sessions Sessions

File-1 5,242,880 67B 262,144 249,036
File-2 10,485,760 67B 524,288 498,073
File-3 20,971,520 67B 1,048,576 996,189

Three trace files are generated with different sizes, whose
characteristics are shown in Table II. Column Pkt. Num.
is the total number of packets in the trace file, and Pkt.
Len. is the average packet size. The last two columns are
the maximum and average number of concurrent sessions
at run time.

C. DHash Lookup Performance

This section evaluates DHash’s lookup performance
and compares it with that of the original algorithm with
the three trace files. The average DHash lookup time
(in nanoseconds) of DHash is measured and shown in
Figure 4, where Orig.(N Bucket - M Memory) represents
the original algorithm with N buckets which take M
memory space for bucket headers.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3

T
C

B
 L

o
o
k
u
p
 T

im
e
 (

n
s
)

Trace File

DHash(7.2MB Memory)
Orig.(1.5M Bucket - 12MB Memory)

Orig.(1M Bucket - 8MB Memory)
Orig.(0.5M Bucket - 4MB Memory)

Orig.(0.1M Bucket - 0.8MB Memory)

Fig. 4. TCB Loopup Performance

Experimental data shows that performance of original
algorithm varies significantly with the TCP session num-
ber, whereas performance of DHash is very stable. This
scale insensitive feature is very important for a working
system to provide predictable performance for practical
applications.

We noticed that the sequential implementation of
DHash only achieves 3.3Mpps with File-3, probably due
to insufficient power of one single core. To evaluate
Dhash in a more challenging environment, we parallelize
the TCP/IP stack with Dhash on a commodity multicore
server [14] [15], and test the system with File-3 again
in the next section.

VI. PARALLEL PERFORMANCE OF DHASH

A. Parallel Runtime System Setup

The parallel runtime system is built on the pipelined
Run-To-Completion model shown in Figure 5. Each
pipeline is divided into two stages named Input (IP)
and Application (AP), which are assigned to different
cores. Connection affinity is applied as an important
principle in workload distributing, which guarantees that
packets belonging to the same session are processed by
the same AP core. Therefore, a symmetric hash function
is used in the load balancing module. According to the
system configuration, processing of a packet roughly
includes three functional modules: (1) packet input and
load balancing; (2) L3 processing including IP header
validation and defragmentation; (3) TCP processing.

Fig. 5. The Pipelined RTC Model of the Parallel System

To decide on how many pipelines to use, the average
execution time of each pipeline functional module is
measured. In addition, as load balance (LB) that dis-
patches packets and FIFO that connects neighboring
cores also sit on the data path, their costs are measured as
well. The execution time shown in Table III is obtained
when File-1 (see section V-B) is used as the input.
Packets are loaded into memory in advance, and then
fed into system for processing.

TABLE III
AVERAGE EXECUTION TIME OF KEY MODULES

(CPU Cycle) Pcap LB FIFO L3 TCP
Ex. Time 35 30 50 100 700

Let TIP , TFIFO, and TAP represent the execution
time of IP stage, enqueue/dequeue operation, and AP

38th Annual IEEE Conference on Local Computer Networks

300

stage, respectively. Using the data in Table III, TIP and
TAP can be calculated as follows:

TIP = TPcap + TLB = 65(cycles)

TAP = TL3 + TTCP = 800(cycles)

Assuming that packets are evenly distributed among
the AP cores, optimally seven pipelines are needed to
make the IP stage and AP stage balance, since (65+50 =
115) ≈ ((800 + 50)/7 = 121). However, as there are
only eight cores in our server and one core is reserved for
OS, maximally six pipelines are used in our experiments.

B. Parallel Performance

For performance comparison, File-3, which contains
one million concurrent TCP sessions, is used as input.
Hash table size of DHash is set to be 100,000 buckets,
as described in Section V-A. TCP implementation from
Libnids is used as the traditional algorithm. As the
default TCB lookup implementation in Libnids is se-
quential and only has 1040 buckets, for fair comparison,
we parallelize it on our parallel framework and tune
the hash table size to achieve maximum performance.
For example, we increase the hash table size to 10,000,
100,000, 1,000,000 buckets, and so on. Figure 6 shows
the performance of DHash and traditional TCB lookup
algorithm with different hash table sizes. The horizontal
axis represents the number of cores used, and the vertical
axis represents the system performance in Mpps.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7

P
e
rf

o
rm

a
n
c
e
 (

M
p
p
s
)

Number of Cores

1040-libnids default
10,000 Buckets

100,000 Buckets

1,000,000 Buckets
Origin Maximum Perf.

DHash Perf.

14.88Mpps Line Rate

Fig. 6. System Performance with DHash and Original TCB Lookup
Algorithm

In the case of traditional algorithm, system perfor-
mance rises with the increase of hash table size until a
threshold is reached (1.5 million buckets in our experi-
ment). The reason is that the average length of conflict
list gets shorter when larger hash table is used; however,
when the hash table size exceeds the size of last level
cache, cache thrashing happens. A maximum throughput
of 13.90Mpps is achieved with seven cores and about

1.5 million hash buckets (about 12MB). Nevertheless,
the throughput is still lower than 14.88Mpps, which is
the maximum packet rate on a 10Gbps Ethernet link.

DHash achieves 15.2Mpps on six cores and 16.3Mpps
on seven cores, and takes up 7.5MB memory space
(including lookup table and conflict lists) in total. Of
the one million sessions, only 11,413 TCB signatures
(about 1%) enter the conflict lists, therefore accessing
conflict lists can be considered as a rare case.

C. Impact of Signature Algorithm

This section measures the false positive rate of the
four signature algorithms presented in Section III-B, and
evaluates its impact on system performance.

TABLE IV
COMPARISON OF SIGNATURE ALGORITHMS

Alg.1 Alg.2 Alg.3 Alg.4
Perf.(Mpps) 15.9 16.1 15.2 16.3

False Positive
Rate(%) 0.18 0.10 0.33 0

Experimental data on the four algorithms listed in
Table IV shows that higher false positive rate leads to
lower system performance, which is sensible as false
positive incurs extra memory access. All the four algo-
rithms have very low false positive rate, which are on
the same order of magnitude as the theoretical analysis
result in Section IV.

It is worth noting that the experimental data in Ta-
ble IV should be taken as a qualitative assessment, since
it may bear some relationship to the trace files, and we
do not intend to make a good-bad assessment of the four
algorithms here.

D. Improvement Made by Major Location

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7

P
e

rf
o

rm
a

n
c
e

 (
M

p
p

s
)

Number of Cores

Baseline
+Major Location

Fig. 7. Improvement Made by Major Location

38th Annual IEEE Conference on Local Computer Networks

301

Performance reported so far is obtained when the
major location scheme is applied. This section evaluates
the performance improvement made by major location.
Figure 7 shows the system throughput achieved with and
without major location scheme when different number
of cores are used. It shows that on average 10% perfor-
mance improvement is achieved with this scheme.

TABLE V
MAJOR LOCATION EVALUATION

Perf. First Hit Average
(Mpps) Ratio Comparison Times

w/o ML 15.7 - 6.8
w ML 16.3 67% 3.0

Table V compares the maximum performance (with
six pipelines), first hit ratio (only major location scheme
applies), and average comparison times of the two
schemes. After major location is applied, the first hit
ratio is as high as 67%, which reduces the average
comparison times from 6.8 to 3.0 and leads to 0.6Mpps
throughput improvement.

VII. CONCLUSION

This paper presents DHash, a software-based high
performance TCB lookup algorithm that aims at handling
large number of TCP sessions in high speed networks.
Two optimization techniques are employed in the design
and implementation of DHash. The first is to reduce
the memory footprint of TCB lookup data structure by
decoupling TCB lookup with TCB access, and replacing
full TCB identifiers with shorter session signatures in
lookup table. The second is to increase the memory ac-
cess efficiency by replacing random access with sequen-
tial access when solving hash collisions. Experiments
show that DHash is less sensitive to increased session
number, and can achieve 16.3Mpps on our parallel
platform.

REFERENCES

[1] “Cisco Catalyst 6500 Series Content Switching Module,”
”http://www.cisco.com/en/US/products/hw/modules/ps2706/
products data sheet09186a00800887f3.html”.

[2] “Libnids,” ”http://libnids.sourceforge.net/”.
[3] “MIT Lincoln Lab,” ”http://www.ll.mit.edu/mission/

communications/ist/corpora/ideval/data/index.html”.
[4] A. Badam, K. Park, V. S. Pai, and L. L. Peterson, “Hashcache:

Cache storage for the next billion,” in USENIX Symposium on
Networked Systems Design and Implementation, 2009.

[5] N. L. Binkert, L. R. Hsu, A. G. Saidi, R. G. Dreslinski, A. L.
Schultz, and S. K. Reinhardt, “Performance analysis of system
overheads in tcp/ip workloads,” in Proc. 14th Ann. Intl Conf.
on Parallel Architectures and Compilation Techniques, 2005, pp.
218–228.

[6] Cisco, “Cisco Firewall Services Module for Cisco Catalyst
6500 and Cisco 7600 Series,” ”http://www.cisco.com/en/
US/prod/collateral/modules/ps2706/ps4452/product data
sheet0900aecd803e69c3.html”.

[7] Cisco Corporation, “Defenses Against TCP SYN Flooding
Attacks,” 2010, ”http://www.cisco.com/web/about/ac123/ac147/
archived issues/ipj 9-4/syn flooding attacks.html”.

[8] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis
of tcp processing overhead,” IEEE Communications Magazine,
vol. 27, pp. 23–29, 1989.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 3rd ed. The MIT Press, 2009.

[10] M. Dobrescu, N. Egi, K. Argyraki, B. gon Chun, K. Fall, G. Ian-
naccone, A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks:
Exploiting parallelism to scale software routers,” in Proceedings
of the 22nd ACM Symposium on Operating Systems Principles,
2009.

[11] Fong Pong, “Fast and robust tcp session lookup by digest hash,”
in Proceedings of the 12rd IEEE International Conference on
Parallel and Distributed Systems, 2006.

[12] G. Liao, L. N. Bhuyan, W. Wu, H. Yu, and S. R. King, “A new
tcb cache to efficiently manage tcp sessions for web servers,”
in ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, 2010.

[13] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar, “Chisel:
A storageefficient, collision-free hash-based network processing
architecture,” in Proceedings of The 33rd Annual International
Symposium on Computer Architecture (ISCA 33. IEEE Computer
Society, 2006, pp. 203–215.

[14] J. Wang, H. Cheng, B. Hua, and X. Tang, “Practice of paralleliz-
ing network applications on multi-core architectures,” in Proceed-
ings of the 23rd International Conference on Supercomputing,
2009, pp. 204–213.

[15] K. Zhang, J. Wang, B. Hua, and X. Tang, “Building high-
performance application protocol parsers on multi-core architec-
tures,” in Proceedings of the 17th IEEE International Conference
on Parallel and Distributed Systems, 2011.

[16] S. Kumar, “Segmented hash: An efficient hash table imple-
mentation for high performance networking subsystems,” in
Proceedings Symposium on Architecture for Networking and
Communications Systems (ANCS’05, 2005, pp. 91–103.

[17] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A gpu-
accelerated software router,” in Proceedings of the SIGCOMM’10
Conference, 2010.

[18] S. Makineni and R. Iyer, “Architectural characterization of tcp/ip
packet processing on the pentium m microprocessor,” in Pro-
ceedings of 10th International Symposium on High-Performance
Computer Architecture, 2004.

[19] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast
hash table lookup using extended bloom filter: an aid to network
processing,” in Proceedings of the SIGCOMM’05 Conference,
2005, pp. 181–192.

[20] H. Wilson, J. Xu, and N. Borkar, “A tcp offload accelerator for
10 gb/s ethernet in 90-nm cmos,” in IEEE Journal of Solid-State
Circuits, 2003.

[21] H. youb Kim and S. Rixner, “Performance characterization of
the freebsd network stack,” Rice University, Tech. Rep., 2005.

[22] H. youb Kim and S. Rixner, “Connection handoff policies for
tcp offload network interfaces,” in Proceedings of 7th USENIX
Symposium on Operating Systems Design and Implementation,
2006.

[23] H. youb Kim and S. Rixner, “Tcp offload through connection
handoff,” in Proceedings of EuroSys Conference, 2006.

[24] C. Zhang, X. Zhang, and Y. Yan, “Two fast and high-associativity
cache schemes,” in Proc. 30th IEEE/ACM International Sympo-
sium on Microarchitecture, 1997.

[25] L. Zhao, R. Illikkal, S. Makineni, and L. Bhuyan, “Tcp/ip
cache characterization in commercial server workloads,” in Proc.
Seventh Workshop on Computer Architecture Evaluation using
Commercial Workloads, 2004.

[26] L. Zhao, S. Makineni, R. Illikkal, R. Iyer, and L. Bhuyan,
“Efficient caching techniques for server network acceleration,”
in 2004 Advanced Networking and Communications Hardware
Workshop, 2004.

38th Annual IEEE Conference on Local Computer Networks

302

