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Abstract Let G be a plane graph, let t(G) (resp. t'(G)) be the minimum number
of vertices (resp. edges) that meet all cycles of G, and let v(G) (resp. v'(G)) be the
maximum number of vertex-disjoint (resp. edge-disjoint) cycles in G. In this note we
show that 7 (G) < 3v(G) and t/(G) < 4V'(G) — 1; our proofs are constructive, which
yield polynomial-time algorithms for finding corresponding objects with the desired
properties.
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1 Introduction

Graphs considered in this note are finite and simple. Let G = (V, E) be a graph (undi-
rected or directed). A subset X of V (resp. E) is called a feedback vertex (resp. edge)
set if X intersects every cycle in G. (As usual, by a cycle in a directed graph we mean
a directed one.) Let (G) (resp. t/(G)) be the minimum size of a feedback vertex
(resp. edge) set of G, and let v(G) (resp. v'(G)) be the maximum number of vertex-
disjoint (resp. edge-disjoint) cycles in G. Clearly, v(G) < t(G) and V'(G) < /(G);
these inequalities, however, need not hold equalities in general. Thus a natural ques-
tion to ask is: How large can t(G)/v(G) and v/(G)/v'(G) be? As shown by Erd6s
and Pésa (1965), for any undirected graph G, we have 7(G) = O(v(G)logv(G))
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and this bound is sharp; Erd6s and Pésa (1962) also established essentially the same
result for /(G) and V'(G). The directed case is not so tractable, and good estimates
of the corresponding ratios have yet to be found. Nevertheless, there exists a Ram-
sey type function f(¢) > 0 such that t(G) < f(v(G)) for any directed graph G (the
same result holds for /(G) and v'(G) as well), as conjectured by Younger (1973)
and confirmed by Reed et al. (1996).

Given these large ratios, the problems restricted to some important special graph
classes, in particular, plane graphs, have also attracted much research effort. For a
plane digraph G, Reed and Shepherd (1996) showed that t(G) < 63v(G). Interest-
ingly, by the Lucchesi-Younger theorem (Lucchesi and Younger 1978), the equality
7'(G) =V'(G) always holds. For the undirected case, Kloks et al. (2002) established
that t(G) < 5v(G); they further proposed the following conjecture.

Conjecture 1 Kloks et al. (2002, 2007) For any plane graph G, ©(G) < 2v(G).

It is worthwhile pointing out that the bound in this conjecture, if correct, would
be best possible: For any positive integer k, let H; be a copy of K4 (the complete
graph on four vertices) with vertex set {v; 1, vi 2, Vi 3, vi.4} for 1 <i <k, andlet G be
obtained from the disjoint union of Hy, Ha, ..., Hi by adding k — 1 edges v; 4vi+1,1
for1 <i <k —1.Then 1(G) =2k and v(G) =k.

One purpose of this note is to prove the following theorem.

Theorem 1 For any plane graph G, ©(G) <3v(G).
We shall also establish the following result for the edge version.

Theorem 2 For any plane graph G, t'(G) <4'(G) — 1. Furthermore, the constant
4 is best possible.

We remark that in the literature there are several other approximate min-max rela-
tions that are closely related to our work. For instance, Kral and Voss (2004) studied
the ratio between the minimum size of an odd cycle edge transversal and the maxi-
mum size of a collection of edge-disjoint odd cycles in a plane graph. They proved
that the ratio is at most 2, which is best possible. For the corresponding vertex ver-
sion, Fiorini et al. (2007) discovered that this ratio is at most 10, and conjectured
that the best ratio is 2; they also gave a short proof of the aforementioned Kral-Voss
theorem.

The remainder of this note is organized as follows. In Sect. 2, we present a proof of
Theorem 1 by using a discharging method, establish the upper bound in Theorem 2
based on the four-color theorem, and construct an infinite class of plane graphs to
illustrate that the constant 4 in this bound is best possible. In Sect. 3, we exhibit a
connectivity property enjoyed by a minimal counterexample to the above Kloks-Lee-
Liu conjecture. In Sect. 4, we conclude this note by some remarks.
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2 Proofs

Given a plane graph G, we use d(v) to denote the degree of a vertex v in G, use 8(G)
to denote the minimum degree of G, and use d(f) to denote the degree of a face f
in G (see Bondy and Murty 2008 for the definition). A face f of G is called a k-face
if d(f) =k. A triangle in G is a cycle of length three.

As stated before, we shall prove Theorem 1 by using a discharging method, which
relies heavily on the following structural description.

Lemma 1 Let G = (V, E) be a 2-edge-connected triangle-free plane graph with
8(G) = 3. Then one of the following two cases occurs:

(1) Some 4-face of G contains at least one vertex with degree 3;
(i1) Some 5-face of G contains at least 4 vertices with degree 3.

Proof Let F be the set of all faces of G, and let w be the initial charge function
defined as w(x) = 3d(x) — 12 for each x € V U F'. By Euler’s Formula, we have

D w@)+ Y w(f)=12(E|— V|- |F|)=—24.

veV feF

Now let w* be the new charge function obtained from w by using the discharging
rule:

(R) for each vertex v with d(v) = 3, v gets charge 1 from each of its adjacent faces.
Observe that

e w*(v) =0 for each vertex v with d(v) = 3 (because G is 2-edge-connected);
o w*(v) =w(()=23d() — 12 > 0 for each vertex v with d(v) > 4; and
e w*(f)=w(f)—d(f)=2d(f)— 12 > 0 for each face f withd(f) > 6.

Since

Dwt)+ Y wt(H=) ww+ Y w(f)=-24<0,

veV feF veV feF

G contains a 4- or 5-face f{ such that w*(fy) < 0.

If d(fp) = 4, then w( fp) = 0. Since w*(fo) < 0, rule (R) guarantees the existence
of at least one vertex v on fo with d(v) = 3. Thus fj is as described in (i).

If d(fo) =5, then w( fp) = 3. Since w*(fp) < 0, by rule (R), there exist at least
four vertices on fjy with degree 3. Hence fj is as described in (ii). [l

Now we are ready to establish the main results of this note.

Proof of Theorem 1 For convenience, we call a collection of vertex-disjoint cycles
in G a cycle packing. To prove the theorem, we shall actually exhibit a feedback
vertex set X and a cycle packing C in G such that | X| < 3|C|. To this end, we apply
induction on |V (G)].

Since such X and C can be obtained trivially if |V (G)| < 3, we proceed to the
induction step. Let us make some simple observations about G. We may assume that
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(1) G is connected, for otherwise the existence of such X and C follows instantly
from the induction hypothesis on the components of G.

(2) G is 2-edge-connected. Suppose not, e is a cut edge of G. By (1), G — ¢
contains precisely two components G; and G3. We can thus deduce the statement
from the induction hypotheses on G| and G».

It follows immediately from (2) that

(3) The boundary of each of 4- and 5-faces of G is a cycle.

(4) G is triangle-free. Suppose the contrary: T = abca is a triangle in G. Let G’ =
G — {a, b, c}. Then the induction hypothesis guarantees the existence of a feedback
vertex set X’ and a cycle packing C' in G’ such that |X’| < 3|C’|. Set X = X’ U
{a,b,c} and C =C’ U T. Clearly, X is a feedback vertex set of G and C is a cycle
packing in G. As |X| = |X’'| + 3 < 3|C'| + 3 = 3|C|, we are done.

(5) 8(G) = 3. Otherwise, d(u) <2 for some vertex u. Let v be a neighbor of u.
By (2), we have d(v) > d(u) = 2. Let G’ be the graph obtained from G by contracting
the edge uv. In view of (4), G’ contains no parallel edges. Thus, by the induction
hypothesis, G has a feedback vertex set X’ and a cycle packing C’ such that |X'| <
3|C’|. Let u’ be the vertex of G’ resulted from contracting edge uv, let D’ be the cycle
containing v’ in C’, if any, and let D be the cycle in G obtained from D’ by expanding
' into edge uv. Set X = X' if u’ ¢ X’ and X = (X’ — {u’}) U {v} otherwise, and set
C =’ if no cycle in C" passes through u’ and C = (C' — {D'}) U {D} otherwise.
Clearly, X is a feedback vertex set of G and C is a cycle packing in G. Since | X| =
|X’| and |C’| = |C|, these X and C are as desired.

Combining (2), (4), and (5), we see that G is a 2-edge-connected triangle-free
plane graph with §(G) > 3. By Lemma 1, one of the following two cases occurs.

Case 1. Some 4-face f of G contains at least one vertex with degree 3.

Let Cy = ujupuszu4u; be the facial cycle of f (recall (3)) with d(u1) = 3, and let
G’ = G — {u2, u3, us}. By the induction hypothesis, G’ has a feedback vertex set X’
and a cycle packing C’ such that | X'| < 3|C’|. Note that u; is contained in no cycle in
C’ because its degree in G’ is 1. Set X = X" U{uz, u3, us} and C = C'U{C}. Clearly,
X is a feedback vertex set of G and C is a cycle packing in G. Since | X| = |X'|+3 <
3|C’| + 3 = 3|C|, we are done.

Case 2. Some 5-face g of G contains at least 4 vertices with degree 3.

Let C, = vivav3v4v5v; be the facial cycle of g (recall (3)) with d(v;) = 3 for
i =1,2,3,4, and let G’ = G — {vy, v4, v5}. By the induction hypothesis, G’ has a
feedback vertex set X’ and a cycle packing C’ such that | X’| < 3|C’|. Note that neither
v nor v3 is contained in any cycle in C’ because both of them have degree 1 in G'.
Set X = X" U {v, v4, vs} and C =C" U {C,}. Clearly, X is a feedback vertex set of G
and C is a cycle packing in G. Note that | X| = |X'| +3 < 3|C'| +3=3|C|,so X and
C are as desired. O

Proof of Theorem 2 Clearly, we may assume that G = (V, E) is 2-connected. Thus
the boundary of each face of G is a cycle.

Let X be a feedback edge set of G with minimum size. Then G — X is a spanning
tree of G. So |E| — | X| =|V| — 1. By Euler’s Formula, |F| = |E| — |V| 4 2, where
F is the set of all faces of G. Hence ©/(G) = |X| = |F| — 1.

Consider the dual graph G* of G. By the 4-color theorem, G* contains an inde-
pendent set U with |[U| > |V(G*)|/4 = |F|/4. Now let us view U as a collection of
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faces of G. Note that the faces in U are pairwise edge-disjoint because U is indepen-
dent in G*. Let C be the collection of facial cycles of G such that C € C if and only if
C is the boundary of a face in U. Then cycles in C are pairwise edge-disjoint. Since
VI(G) > |C|=|U| = |F|/4=(z'(G) + 1)/4, we have T/(G) <4/'(G) — 1.

It remains to prove that the constant 4 in the about bound is best possible; this
observation and its proof as described below are due to Daniel Kral.

Let k be a positive integer, let C; = v;,1v; 2 ... v; gv; 1 be acycle of length 8 for 1 <
i <k, and let G be a plane graph obtained from the disjoint union of C1, C», ..., Cx
by adding four edges v; 1Vi+1.1, Vi 3Vi+1,3, Vi, 5Vi+1.5, Vi, 7Vi+1,7 between C; and Cj4
for each odd i with 1 <i <k — 1, and four edges v; 2V;+1.2, Vi 4Vi+1.4, Vi 6Vi+1.6
v; 8Vi+1,8 for each even i with 1 <i <k — 1. Clearly, |F| =4(k — 1) +2 =4k — 2.
So

()T (G)=|F|—1=4k 3.

‘We propose to show that

2)V(G) =k.

Since Cy, C, ..., Cy are disjoint cycles in G, we have v'(G) > k. Let us now
apply induction on k to establish the reverse direction

3)V(G) <k.

The statement holds trivially for £ = 1. So we proceed to the induction step. Let C
be a collection of edge-disjoint cycles in G with maximum size. Since the maximum
degree of G is three, two cycles in G are edge-disjoint if and only if they are vertex-
disjoint. It follows that

(4) cycles in C are pairwise vertex-disjoint.

We may assume that

(5) C;j ¢ Cforany i with 1 <i <k.

Otherwise, let H be the graph obtained from G by deleting all vertices on C;.
In view of (4), all cycles in C — {C;} are contained in H. By induction hypothesis,
V(H)Y<k—1.S0|C|—1<k—1.Thus v'(G) =|C| < k and hence (3) follows.

For convenience, let E; be the set of four edges between C; and C;41. As E; is an
edge cut of G, we have

(6) each cycle in G contains an even number of edges in E;.

(7)Fori=1,2,...,k— 1, at least one edge in E; is outside all cycles in C.

Suppose on the contrary that edges in E; are all contained in cycles in C; let D be
the set of all cycles in C that contain edges in E;. From the structure of G, it is easy to
see that cycles in C — D are all vertex-disjoint from C; U C; 1, and hence all contained
in G — V(C; U Cj41), which is denoted by H. By (6), |D| <2 because |E;| = 4.
Thus the maximality on |C| allows us to assume that D contains precisely two vertex-
disjoint cycles of length six in the subgraph of G induced by all vertices in C1 U C».
By induction hypothesis, v/(H) <k —2. So |C| —2 <k —2. Thus v/(G) = |C| <k
and hence (3) follows.

By (5), each cycle in C contains edges in some E;. By (6) and (7), there is at
most one cycle in C that contains edges in E; for 1 <i <k — 1. Combining these two
observations, we conclude that |C| < k — 1. Therefore (3) and hence (2) is established.

Since k is an arbitrary positive integer, from (1) and (2) we deduce that the constant
4 in our bound is best possible. |
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3 Connectivity

To tackle the Kloks-Lee-Liu conjecture, we have to first lift the minimum degree and
connectivity of G so that this graph can be manipulated in a better way. The following
lemma will surely serve as an important step in the proof of this conjecture, if any.

Lemma 2 Let G be a counterexample to the Kloks-Lee-Liu conjecture with minimum
number of vertices. Then G is 3-connected.

Proof Obviously, G is connected because it is a minimal counterexample to Conjec-
ture 1.

Let us prove that G is 2-connected. Suppose not, u is a cut vertex of G. Let
(G1, Gp) be a l-separator of G with V(G|) N V(G;) = {u}. If G| or G, has a
maximum cycle packing which contains no cycle passing through u, then v(G) =
v(G1) + v(Gy). By the minimality assumption on G, we have 7(G;) < 2v(G;) for
i =1,2. Thus 7(G) < 1(G1) + 1(Gp) < 2(v(G}) + v(Gy)) =2v(G), a contradic-
tion.

So we may assume that each maximum cycle packing of G; contains a cycle
passing through u for i = 1,2. Thus v(G; — u) = v(G;) — 1 for i = 1,2. By the
minimality assumption on G, we obtain t(G; —u) < 2v(G; —u) for i =1,2. It
follows that 7(G) < 7(G1 —u)+1(Gor —u)+1 <2(w(G1 —u)+v(Gr —u))+ 1=
2(w(G1) +v(G)) —3 <2(v(G1) + v(Gr) — 1) <2v(G), this contradiction implies
that G is 2-connected.

To establish 3-connectivity, we assume the contrary: {a, b} is a 2-cut of G. Let
(G1, G2) be a 2-separator of G with V(G1) N V(G2) = {a, b}. We break the remain-
der of the proof into a series of observations.

(D) v(G —{a, b}) =v(G).

Otherwise, v(G — {a,b}) < v(G) — 1. Let X be a minimum feedback vertex
set of G — {a, b}. Then X U {a, b} is a feedback vertex set of G. By the minimal-
ity assumption on G, we have |X| < 2v(G — {a, b}) <2v(G) — 2. Thus 7(G) <
| X U{a, b}| <2v(G), this contradiction yields (1).

(2) v(G1) +v(G2) =v(G).

By (1), v(G) = v(G — {a,b}) = v(G1 — {a,b}) + v(G2 — {a,b}). So v(G) =<
v(G1 — {a, b}) + v(G3). On the other hand, it is clear that v(G) > v(G| — {a, b}) +
v(G7). Hence v(G) = v(G1 — {a, b}) + v(G2), which implies that v(G2) = v(Gy —
{a, b}). Likewise, v(G1) = v(G| — {a, b}). Thus v(G1) 4+ v(G2) = v(G). So (2)
holds.

(3)ab ¢ E(G).

Assume the contrary: a and b are adjacent in G. Let X; be a minimum feedback
vertex set of G; for i = 1, 2. By the minimality assumption on G, we obtain | X;| <
2v(G;) fori =1,2. Asab € E(G), it can be seen that X U X is a feedback vertex
set of G. Thus, using (2), 7(G) < | X1 U Xa| < |X1]| + [ X2| <2(w(G1) +v(Gr)) =
2v(G), a contradiction. So (3) is justified.

@) v(G; +ab) =v(G;) fori =1or2.

Otherwise, v(G; + ab) = v(G;) + 1 for i = 1,2. Let C; be a maximum cycle
packing of G; + ab for i = 1,2. Then ab is contained in a cycle C; from C; for
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i=1,2.SetD=(C,UC, —{Cy, Cr}) U{(C; —ab) U (Cy —ab)}. Obviously, D is a
cycle packing in G. By (2), we thus have v(G 1) +v(G2) +1 =v(G1+ab) +v(Ga+
ab) —1=1C1|+1|C2| — 1 =|D| < v(G) =v(G1)+v(G2), again a contradiction. This
proves (4).

Symmetry and (4) allow us to assume that v(G| + ab) = v(G1). Let X; be a
minimum feedback vertex set of G| + ab, and let X» be a minimum feedback vertex
set of G,. Since a and b are adjacent in G| + ab, it is a routine matter to check that
X1 U X5 is a feedback vertex set of G (in fact every cycle crossing a and b in G
intersects X1). By (2), (G) < [ X1 U Xa| < | X1| + | X2] £2v(Gy +ab) +2v(Go) =
2(v(G1) + v(G2)) =2v(G), this contradiction completes the proof of our lemma. []

4 Concluding remarks

In this note we have established two approximate min-max relations on packing and
covering cycles in plane graphs. We remark that the assertion of Theorem 1 actually
holds for any graph G that can be 2-cell embedded in the projective plane, torus,
and Klein bottle. To justify this, we need to establish a counterpart of Lemma 1 for
a graph G on these surfaces. It can be shown using a discharging method that if
G is 2-cell embedded in the projective plane, then Lemma 1 remains true; if G is
2-cell embedded in the torus or the Klein bottle, then one of the following four cases
occurs:

(1) Some 4-face of G contains at least one vertex with degree 3;

(i) Some 5-face of G contains at least three vertices with degree 3;

(iii) For some 6-face of G, each of its incident vertices is of degree 3;

(iv) Each vertex of G is of degree 4 and each face of G is a 4-face. Moreover, G con-
tains eight distinct vertices vy, vy, ..., vg and three distinct faces fi, f>, f3, such
that d(v;) =4 fori =1,2,...,8, and that C{ = vivpv7vgv1, C2 = V2V3V6V7V2,
and C3 = v3v4v5v6v3 are facial cycles of fi, f2, f3, respectively.

The remainder of the proof goes along the same line as that of Theorem 1.

Despite our effort, the Kloks-Lee-Liu conjecture remains unsolved. To demon-
strate the difficulty of this type of problems, let us take a second look at the proof
of Theorem 2: Is it possible to produce a proof without using the 4-color theorem
(4CT)? Such a proof is very hard to obtain, if not impossible. In fact, a long-standing
open problem in graph theory posed by Erdds is to find a 4CT-free proof of the state-
ment: Every n-vertex plane graph contains an independent set of size at least n /4. We
point out that the Kral-Voss theorem stated in Sect. 1 resembles Theorem 2 in nature,
whose proofs (Kral and Voss 2004; Fiorini et al. 2007) also rely heavily on the 4CT.
We conclude this note by another closely related, innocently looking, yet frustrating
conjecture made by Albertson and Berman (1979): Every n-vertex plane graph has a
feedback vertex set of size at most n/2.

Acknowledgement The authors are indebted to Professor Daniel Kral for discovering that the constant
4 in Theorem 2 is best possible and for allowing them to incorporate his proof into this note.
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