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ABSTRACT. Let p > 3 be a fixed prime. For a supersingular elliptic curve E over F), a result
of Ibukiyama tells us that End(FE) is a maximal order 0(q) (resp. 0'(¢)) in End(F) @ Q
indexed by a (non-unique) prime ¢ satisfying ¢ = 3 mod 8 and the quadratic residue
(B) = —1if 4= ¢ End(E) (resp. 2T € End(E)), where 7 = ((z,y) — (aP,yP) is the

q
absolute Frobenius. Let ¢, denote the minimal ¢ for E whose s-invariant 7 (E) = 7 and

M (p) denote the maximum of ¢, for all supersingular ;s € F,,. Firstly, we determine the
neighborhood of the vertex [E] with 7 ¢ {0,1728} in the supersingular ¢-isogeny graph if
% ¢ End(E) and p > ¢, 0? or 5= € End(E) and p > 4q,¢*: there are either £ — 1 or
£+ 1 neighbors of [E], each of which connects to [E] by one edge and at most two of which
are defined over I,,. We also give examples to illustrate that our bounds are tight. Next,
under GRH, we obtain explicit upper and lower bounds for M (p), which were not studied in
the literature as far as we know. To make the bounds useful, we estimate the number of
supersingular elliptic curves with ¢, < ¢,/p for ¢ = 4 or % In the appendix, we compute
M (p) for all p < 2000 numerically. Our data show that M (p) > \/p except p = 11 or 23 and
M (p) < plog®p for all p.

1. INTRODUCTION

We fix a prime p > 3. Let ¢ # p be another fixed prime. The supersingular f-isogeny
graph ,(F,) is a directed graph, whose set of vertices V,(FF,) are F,-isomorphism classes
of supersingular elliptic curve [E] defined over Fp and whose edges are equivalent classes of
(-isogenies defined over E) between two elliptic curves in the isomorphism classes. As usual

the vertices are represented by z-invariants. As seen in [Piz90], &,(F},) is an expander graph,
thus has good mixing propperties. Actually, finding paths between two vertices in &,(F,) is
at least as hard as computing isogenies between supersingular elliptic curves, which is belived
to be a hard problem. There are numerous works in cryptography based on this problem.
Charles-Lauter-Goren[CLGO09] constructed hash functions from the supersingular isogeny
graphs. Couveignes[Couv97] first proposed isogeny crptosystems, Rostovtsev-Stolbunov[RS06]
designed a public-key cryptosystem based on isogeny, Jao-De Feo [DJP14] designed a Diffie-
Hellman key exchange protocol as a candidate for a post-quantum key exchange, Galbraith-
Petit-Silva|GPS17] proposed an identification scheme and a signature scheme, Castryck-Lange-
Martindale[ CLM18] proposed a non-interactive key exchange in a post-quantum setting.

In 2016, Delfs-Galbraith[DG16] studied the supersingular (-isogeny graph where the iso-
morphism classes and isogenies are all defined over F,. In 2019, Adj[Adj19] computed the
subgraphs &y(F 2, t) with vertices representing elliptic curves of trace t € {0, £p} and edges
are defined over [F,.. They also obtained information for the loops of 7/ =0 and 7 = 1728
when p > 4¢. This bound was improved to p > 3¢ when 7 = 0 by two of us in [OX19]. In
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a subsequent work [LOX20], we determined the neighborhood of [Fyzgs] if p > 4¢? and [Ey)
if p > 3(% in G,(F,). In this note, we shall work on the supersingular elliptic curves with
Z-invariants in F,\{0,1728}. From now on, if 7 € F, is a supersingular z-invariant, we pick
one supersingular elliptic curve E; over F, with 7 (E,) = 7. For any elliptic curve E, the
kernel of an ¢-isogeny starting from E' is a subgroup of E[{] of cardinality ¢, and there are
¢+ 1 distinct subgroups of cardinality ¢ in E[¢]. Thus there are £+ 1 edges connecting [E /] in

(Fy). In Theorem 1.1 we shall determine the neighborhood of [E /| for 7 € F,\{0,1728} in
?g(Fp) when certain bounds are satisfied for the prime p, and in particular we shall determine
the F,-neighbors of [E,]. Moreover, we show that the bounds in Theorem 1.1 are tight. To
state our main results, we need to make some preparation in the following.

It is well-known (see [Si09]) that every supersingular elliptic curve over F,, has z-invariant
in F,2, thus Vy(F,) = Vi(F,2) and further investigation tells us that its cardinality is [ & + ¢
where € = 0, 1 or 2 depending on the class of p mod 12. For supersingular elliptic curves

over F,,, one has (see [DG16] or [Cx89, Theorem 14.18])

sh(=p), ifp=1mod4,
#{s € F, | / is a supersingular invariant} = ¢ h(—p), if p=7mod 8,
2h(—p), if p=3modS§,

where h(—p) is the class number of Q(y/—p). Moreover, when p — oo, by the Brauer-Siegel
Theorem ([Ch96, Theorem 4.9.15]), h(—p) is approximately \/p or 2,/p if p = 3 or 1 mod 4.

For a supersingular elliptic curve E over F,2, its endomorphism ring End(£) is a maximal
order in the unique definite quaternion algebra B, - over Q ramified only at p and oo (see
[Vo]). Furthermore 7 (E) € F, if and only if End(E) contains a root of 2? + p = 0. If
7 € F,\{0,1728} is a supersingular z-invariant, let 7 = ((x,y) — (2?,y”)) be the absolute
Frobenius in End(E,), it can be shown that 7 are the only roots of 22 4+ p in End(E,).

For ¢ a prime satisfying ¢ = 3 mod 8 and the quadratic residue (%) =—1,let H(—q,—p) =
Q(1, 1,7, k) be the quaternion algebra over Q defined by i = —¢q, > = —p and ij = —ji = k.
By computing the discriminant of H(—q, —p) one sees that B, = H(—q, —p). We identify
these two quaternion algebras by the isomorphism. Let

144 54+k ri—k
27 2 7 g

O(q) := Z(1, ) where r* 4+ p = 0 mod ¢,

and allowing also ¢ = 1,
1+5 . ri—k
i
2 AR 2q

Then O(q) and 0'(q) are maximal orders in B, .. Note that the choices of r and 7’ in Z
are not essential, up to isomorphism the orders 0(q) and 0'(q) depend only on ¢ (and of
course p). Then for 7 € I, a supersingular z-invariant, Ibukiyama [Ib82] showed that
End(E ) is isomorphic to 6(q) if = ¢ End(E,) (equivalently, End(E ) N Q(7) = Z[n]) or
0'(q) if 4= € End(E) (equivalently, End(E,) N Q(r) = Z[*$Z]) for some ¢. In particular,
EHd(Eo) = @(3) and El’ld(E1728) = @/(1)

However, ¢ is not unique. Let ¢, be minimal such that End(E,) = 0(q,) or 0'(q,).
Certainly go = 3 and ¢1728 = 1. When ¢, is small compared to p, we can apply the techniques
in our previous work [LOX20] to determine the neighborhood of [E | in the supersingular

0'(q) :== Z(1, ) where p = 3mod 4, r"* +p = 0 mod 4q.
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isogeny graph. Let Hp(x) € Z[x] be the Hilbert class polynomial of an imaginary quadratic
order with discriminant D. Define

5 {1, if (£) =1 and Hp(z) splits into linear factors in Fylx];
D =

—1, otherwise.

We have

Theorem 1.1. Let 7 € F,\{0,1728} be a supersingular 7 -invariant and m be the Frobenius
map of E . Suppose {1 2pq,.

(i) In the case = ¢ End(E,), i.e. End(E,) = 0(q,), if p> q0?, there are 1+ 0_,,
loops of [E ;| and {—0_,, vertices adjacent to [E,] in G,(IF,) and hence each connecting
to [E,] by one edge.

(i) In the case = € End(E;), i.e. End(E,) = 0'(q,), if p > 4q,(?, there are 1 + 6_4,,
loops of [E ;] and £—6_4,, vertices adjacent to [E ;] in Gy(Fy) and hence each connecting

to [E,] by one edge.

In both cases, there are 1 + (_TP) vertices defined over F,, adjacent to [E]| with one F,-edge.

Remark 1.2. Fix ¢ and ¢, the lower bound ¢f? or 4q/? for p is sharp, just like the cases
considered in [LOX20]. We have two examples. In both cases, the result in Theorem 1.1 does
not hold when the bound is not satisfied.

(1) Let ¢ = 11, £ = 13. Then p = 1847 is the largest prime such that (%p) =1 and p < ¢/
Let E : y? = 2% + 1594x + 447, then E is a supersingular elliptic curve defined over Figy7
with End(F) = 0(11). By computation, [E] has three neighbors s7 = 1336, 7> = 319 and
73 = 437 defined over Figy7 in ©13(F1847), which is larger than 1 + (_7”) = 2. Moreover, the
multiplicity of edge between E and FEj,37 is 2, and there are 13 vertices adjacent to [FE].

(2) Let ¢ = 3, £ = 5. Then p = 293 is the largest prime such that (%p) =1 and p < 4q/*.
Let B : y* = 23 + 256x + 73, then E is supersingular over Fag3 with End(E) = 0'(3). [E]
has no loops but one neighbor 77 = 212 defined over Fag3 in &5 (M) which is larger than
1+ (_7") = 0. Moreover, the multiplicity of edge between E and FEs;5 is 2, and there are 5
vertices adjacent to [E].

Unfortunately, numerical evidence tells us that ¢, might be larger than p. Let M (p) =
max{q, | 7 is a supersingular invariant over F,}. In the appendix we collect data of M (p)
for p < 2000, which reveal that M (p) > /p except p = 11 or 23 and M (p) < plog®p for all p.
Under Generalized Riemann Hypothesis (GRH), we obtain the following result.

Theorem 1.3. Let p > 3 be a prime. Assume GRH (Generalized Riemann Hypothesis) holds.
(1) For any constant C > 0, if p is sufficiently large, there exists a supersingular invariant
Z such that g, > C\/p.
(2) For a generic supersingular 7 -invariant 7 € F,\{0,1728}, ¢, < 10000p log* p.
(3) For any supersingular 7 -invariant 7 € F,\{0,1728}, ¢, < 10000plog® p.
(4) Let N(z) = #{q, < x| 1 is a supersingular z-invariant in F,}. Then

(i) If p=1mod 4, thenN(él\/ﬁ)N% as p — oo.

(ii) If p=3 mod 4, then N(‘/Tﬁ) ~ W@ as p — oo and limian(él\/]_o)lf/gﬁp > 2
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2. PRELIMINARIES

2.1. Elliptic curves over finite fields. In this subsection, we introduce some basic knowl-
edge about elliptic curves over finite fields, one can refer to [Si09] for details. Let F be a
finite field of characteristic p > 3, let F be the algebraic closure of F. An elliptic curve E
defined over F is a projective curve with affine model E : 4> = 2® + Az + B where A, B € F
and 4A3 + 27B? # 0. The z-invariant of E is 7 (F) = 1728414;;%. The set of F-rational
points on E is E(F) = {(x,y) € F? : y* = 2® + Ax + B} U {00}, where oo is the point at
infinity. Then E(F) is a finite abelian group.

Let E and E’ be two elliptic curves defined over F. An isogeny ¢ : E — E’ is a morphism
satisfying ¢(o0) = oo. If ¢(E) = {0}, we say ¢ = 0. If ¢ # 0, then ¢ is a surjective
group homomorphism with finite kernel, and we call F and E’ isogenous. The isogeny ¢ is
called an L-isogeny if it is defined over L (i.e. written as rational maps over L), ¢ is called
separable (resp. inseparable) if the corresponding field extension F(E)/¢*F(E’) is separable
(resp. inseparable). The degree of ¢ is the degree of the field extension F(E)/¢*F(E"). If ¢
is separable, in particular if p t deg ¢, then deg(¢) = # ker(¢). If deg(¢) = 1, E and E’ are
isomorphic. Particularly, if 7 (F) = 7 (E'), then E and E’ are isomorphic over F.

An endomorphism of E is an isogeny from F to itself. The set End(F) of all endomorphisms
of E form a ring under the usual addition and composition as multiplication. As in [Si09],
End(F) is either an order in an imaginary quadratic extension of Q or a maximal order in
a quaternion algebra over Q. In the first case F is called ordinary, in the second case E is
called supersingular. Moreover, every supersingular elliptic curve over Fp is isomorphic to
an elliptic curve defined over F,2. Consequently, we may and will assume the supersingular
elliptic curve E we study is defined over F 2.

2.2. Number theoretic background. In this subsection, we introduce some basic knowl-
edge in number theory needed later. Most of it can be found in [Ne99, Cx89, Sul7]. We shall
use big O to denote an order in a number field and calligraphic © to denote an order in a
quaternion algebra over Q as in § 2.3.

For M a number field, let Oy, Iy, Py and hys be the ring of integers, the group of
fractional ideals, the group of principal ideals and the class number of M.

Let M/N be an extension of number fields of degree [M : N] = m. Then Oy is a
free On-module of rank m. Let {e1,--- ,e,} be a basis of Oy over Oy and {0y, ,0,}
be the set of N-embeddings of M in an algebraic closure Q of @, then the discriminant
Dy = (det(o;(ej))i;)* € On. Let O, be the dual Oy-module of Oy under the trace map,
then the different ®,;/y is the inverse of O};, which is an ideal of Oy;. We write Dy = Day.

Proposition 2.1. Suppose M/N is an extension of number fields. Then
Nuyyn(Dayn) = Duyn.

where Nyyn : M — N is the norm map. Moreover,
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(i) If L is an intermediate field in M /N, then

Dnny =Dy - Dryny Dy = (Do) M Npyn (D).
(ii) Let My and My be number fields, N = My N My and M = M;Ms. Suppose M; and
My are linearly disjoint over N, i.e. [M : N] = [M1 : NJ- [M2 : N|. Then

If Dyyyn and Dyg, /v are moreover coprime, then

)[MQ:N] . ( )[MlzN}.

Dun =D /NOumyn,  Duyn = (Daryyn Dyyyn

Proof. All are standard facts, except the first part of (ii), which we prove here for lack (Lf
reference. By (i), Dum/N = Dy Darnv- By assumption, an N-embedding o : My — Q

extends uniquely to an M;-embedding M — Q. If {e1, -+ ,en} is a basis of Oy, over Oy,
let R be the Oyy,-submodule of O M generated by {e1,- -+ ,en}. By definition, under the trace
map of M/M,;, R* is (@MQ/NOM) , O3 s @M/M , hence we have D/, | Dagy/n- O

For a Galois extension M /N of number fields, let p be a prime ideal of Oy and B a prime
of Oy lying above p. Suppose B/p is unramified. The Frobenius automorphism [M—/N] is

B
the unique element o € G = Gal(M/N) such that
o(a) =a™®  mod P for all o € Oy

where N(p) = #(On/p). All [M/ N] when P varies over primes above p, form a conjugate

class in Gal(M/N), which we denote by [M/ N} In the special case that M/N is an abelian
: M/N7 _ [M/N
extension, [T] = [ } is a one-point-set.

For C a conjugacy class in (G, define the function

/N

mc(x, M/N) := #{p | p is unramified in M, | |=C, N(p) <z} (2.2.1)

We have the following explicit Chebotarev density theorem:

Theorem 2.2. For any conjugacy class C' of G = Gal(M/N), the set of primes p in N such

that [M/N] C' is of density }g}

ICl_«
|G| log(z)
More explicitly, let nyy = [M : Q| and dyy = |Dyyl, then under GRH, one has

et )~ [ < V(o Yroma (57 Ly O]

logt log x 8T A7 logx
(2.2.2)

7Tc(£l:, M/N) ~

Proof. The first part can be found in any advanced number theory textbook. The explicit
formula in the second part is a recent result in [GM19]. U

Let K be an imaginary quadratic field. Let O be an order of K. The conductor of O
is f =[Ok : O], and the discriminant of O is D(O) = f?Dy. In general O may not be a
Dedekind domain if f > 1, however for any O-ideal a prime to f, a has a unique decomposition
as a product of prime O-ideals which are prime to f (see [Cx89, Proposition 7.20]).
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Let I(O) be the group of proper fractional O-ideals prime to f and P(O) be the group of
principal fractional O-ideals prime to f, then the ideal class group of O is cl(O) = I(O)/P(O)
and the ideal class number of O is h(O) = #cl(O). Let Ix(f) be the group of fractional
Ok-ideals prime to f and Pg(f) be the principal ideals in Ix(f). Let Pgz(f) be the
group of principal ideals in Pg(f) generated by x with z = n mod fOg for n € Z (and
relatively prime to f). The group cl(O) is canonically isomorphic to the ring class group
Ix(f)/Prz(f). The ring class field L of O is the (unique) abelian extension of K associated
by the existence theorem of class field theory to the ring class group of O. The Artin map
o :cl(0O) = Gal(L/K) is the canonical isomorphism sending the class of p to the Frobenius

automorphism [L/TK] Moreover, the uniqueness implies that L is Galois over Q.

For a lattice A C C, let E) be the elliptic curve over C such that Ey(C) = C/A. Then
Ex 2 Ey (e 7(Ep) = 7(Ey)) if and only if A = AA for some A € C* (i.e. A and A are
homothetic). For O an order in an imaginary quadratic field K, let

Ello(C) := {/(E) | End(E) = O} (= {E | End(E) = 0}/ ~).

Then Ellp(C) = {7/ (Ey) | [b] € cl(O)} and cl(O) acts transitively on Ello(C) by [a] 7 (Ey) =
7 (Ey-1) (see [Sul7, Chapter 18]). On the other hand the Galois group Gal(L/K) acts
naturally on Ellp(C). These two actions are compatible with the canonical isomorphism
o:cl(0) = Gal(L/K) (see [Sul7, Theorem 22.1]).

Now suppose O is of discriminant D. The Hilbert class polynomial Hp(z) is defined as

Hp(z):= [ («—2(B)).
Z(E)€Elo(C)
From [?]|, Hp(x) € Z[x]. The splitting field of Hp(z) over K is exactly the ring class field L
of O. One has the following theorem ([Sul7, Theorem 22.5]):

Theorem 2.3. Let O be an imaginary quadratic order of discriminant D and L its ring class
field. Let £ 1 D be an odd prime which is unramified in L. Then the following are equivalent:
(i) £ is the norm of a principal O-ideal.
(i) The Legendre symbol (£) =1 and Hp(z) splits into linear factors in Fylz].
(iii) ¢ splits completely in L.
(iv) 40 = t*> — v2D for some integers t and v with £ {t.

2.3. Quaternion algebras and maximal orders. Recall that a definite quaternion algebra
over QQ is of the form

H(_a7_b) = Q<17iaj7 k>> ZQ = —a, j2 = _bv k= Z] = _]Z

for some positive integers a and b. A lattice in H(—a, —b) is a Z-submodule of H(—a, —b)
of rank 4 containing a basis of H(—a,—b). There is a canonical involution on H(—a, —b)
defined as

a=x+yi+zj+wk—a=x—yi—zj—wk, forall « € H(—a, —b).

The reduced trace of « is Trd(«) = a + & = 2z and the reduced norm of « is Nrd(«a) = aa =
22 + ay? + b2% + abw?.

Let B, = H(—1,—p) be the unique quaternion algebra over Q ramified only at p
and oo. However, one must keep in mind that there are many pairs of (a,b) such that
B, « = H(—a,—b), but the involution and hence the reduced trace and norm of a € B, »
are independent of the choice of (a, b).
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An order 0 in B, is a lattice which is also a subring of B, . The order O is called
maximal if it is not properly contained in any other order. For two orders © and O’ of B, .,
we say that they are isomorphic if there exists u € B} such that 0" = pop1.

For a sublattice I C B, ., we define the left order of I by O.,(I) = {x € B, | v C I}
and the right order of I by Or(I) = {x € By | [z C I}. If 0 is a maximal order and [ is a
left ideal of O, then O (1) = O and Og(I) is also a maximal order. For I a left ideal of O,
define the reduced norm of I by

Nrd(I) = ged{Nrd(a)| « € I} =/O/1,
and define the conjugation ideal of I by I = {& | o € I'}. Then Nrd(I) = Nrd(/) and
IT = Nrd(I)0 = Nrd(I)Og(I).

2.4. Deuring’s correspondence. Let E be a supersingular elliptic curve over F 2. From [Vol,
End(E) = 0 is a maximal order in B,., = End(F) ® Q. For I a left ideal of O, let

E[I]={P € E(F,) | a(P) = oo for all & € I}, then the quotient map

¢[ EF— Er = E/E[I]
is an isogeny with deg(¢;) = Nrd([). On the other hand, if ¢ : E — E’ is an isogeny of
degree N, then ker ¢ is of order N and I, = {a € 0 | a(P) = oo for all P € kerp} is a

left O-ideal of reduced norm N, and there exists an isomorphism ¢ : E7, = E’ such that
¢ =1 o ¢;. Then the following results of Deuring hold (see [Vo, Chapter 42],[De4l]).

Theorem 2.4. Let E be a supersingular elliptic curve over Fj2, and End(E) = O. Then O
is a mazximal order (up to isomorphism) in By .

(i) There is a 1-to-1 correspondence between left ideals I of O of reduced norm N and
equivalent classes of isogenies ¢ - £ — E' of degree N given by I — [¢;] and [¢] — 1.
(ii) If ¢ : E — E' and I are corresponding to each other, then End(E") = Og(I) is the
right order of I in By . In particular, ¢ € End(E) if and only if I = I, = O¢ is
principal.
(iii) Suppose ¢r: E — Er and ¢y : E — E;j are isogenies corresponding to the left ideals
I and J of O respectively. Then E; = E; if and only if I and J are in the same left
class of O, i.e., J = I for some p € By ..

Conversely, from [Vo, Lemma 42.4.1], let © be a maximal order in B, «,, then O = End(FE)
for some supersingular elliptic curve E over .. More precisely, we have

Lemma 2.5. Let O be a maximal order in B, .. Then there exist one or two supersingular
elliptic curves E up to isomorphism over F,, such that End(E) = 0. There exist two such
elliptic curves if and only if 7 (E) € F2\F,.

Lemma 2.6. Suppose E is a supersingular elliptic curve over F,2. Then E is defined over
F, if only if that End(E) contains an element with minimal polynomial x* + p. Moreover,
if 7(E) # 0,1728, then the absolute Frobenius m = ((z,y) — (2P,y?)) € End(E) is the only
isogeny up to a sign satisfying > +p = 0.

Proof. The equivalence follows from [DG16, Proposition 2.4].

Suppose that ¢ € End(E) satisfying ¢2 = [—p]. Then ¢ = —¢ and ¢ o ¢ = [p]. Since E is
supersingular, E[p] = {oo}, thus ker ¢ = {oo} and ¢ is inseparable. From [Si09, Corollary
2.12], ¢ = XAom, where A € End(F). Then deg(A\) = 1. From [Si09, Corollary 2.4.1],
A € Aut(F) = {£1} when (E) # 0 or 1728. Thus ¢ = £m. O
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Ibukiyama [Ib82] has given an explicit description of all maximal orders O in B, », containing

a root € of 22 + p = 0. Regard 0 and Q(e) as subsets in B, ., then Q(¢) N O is either

Zle) = Z[/=p) or Z[*] = Z[%jp] where in the latter case p = 3 mod 4. Let ¢ be a prime
such that

Ey=-1, ¢=3 mods. (2.4.1)

Then the definite quaternion algebra H(—gq, —p) = Q(1,1, 4, k) with i? = —¢, j> = —p and
k =ij = —ji is also ramified only at p and co and we can identify it with B, ... By (2.4.1),

(%p) = 1. Let r be an integer such that 72 +p =0 mod ¢ and

147 75—k ri—k

O(q) = 7Z(1 )
(@) =21, =5 152
If p=3 mod 4 and we allow ¢ = 1, let ' be an integer such that 7?4+ p=0 mod 4¢ and
147 "i—k
0'(q) = 71, ~ L ; LRy

2 2q

Then O(q) and 0'(q) are maximal orders in B, o, which are independent of the choices of r
and " up to isomorphism. From [Ib82], we have

Theorem 2.7. Assume that O is a mazimal order in B, containing an element € with
minimal polynomial x* + p. Then there exists a prime q satisfying condition (2.4.1) such
that @)% 6(q) if 6NQ(e) = Zle] and O = O'(q) or O'(1) if 6 N Q(e) = Z[**] (hence p =3
mod 4).

Remark 2.8. Given a maximal order O in the form of O(q) or 0'(¢q) in B, by Lemma 2.5,
O corresponds to a supersingular elliptic curve E over [F, such that © = End(E). Chevyrev
and Galbraith [CG14] proposed an algorithm to compute this supersingular elliptic curve
with running time O(p'*e).

Let 7 € F, be a supersingular s-invariant and £, be the corresponding supersingular
elliptic curve defined over IF,. Then End(Ey) = O(3) and End(Ei708) = 0'(1). If 7 #0,1728,
then by Theorem 2.7 and Lemma 2.6, End(E,) = 0(q) if 4= ¢ End(E,) and End(E ) =
0'(q) if 5= € End(E,) for some g satisfying (2.4.1), and we can identify 7 and +j under
this isomorphism. However, ¢ is not unique. By Lemma 1.8 and Proposition 2.1 of [Ib82],
one has

Lemma 2.9. Suppose q1 # g2 are primes satisfying (2.4.1). Let K = Q(j) = Q(/—p)-
Suppose q1 and qo have prime decompositions 10k = q1q1 and ¢2Ox = q20s.

(i) O(q1) = O'(go) if and only if |0(q1)*| = |0'(¢2)*| = 4. Then O(q:1) # O'(q2) if one of
them is isomorphic to End(E) for 7 (E) # 1728.
(ii) O(q1) = O(qz) & the equation x? + 4py* = qiqa is solvable over 7 < either qiqz €

Py 7(2) or a192 € Prz(2);
(iii) O0'(q1) = 0'(qa) & the equation x? + py? = 4q1qo is solvable over Z < either qiqy €

PK(Q) or q1qs € PK(2))
Definition 2.10. For s € F, a supersingular z-invariant, set

q, = min{q | End(E,) = 0(q) or 0'(q)}.

Set
M (p) = max{q, | 7 is a supersingular 7-invariant over F,}.
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Certainly go = 3 and ¢y708 = 1. We shall give the values of M (p) for all primes p < 2000 in
the appendix.

Example 2.11. Let p = 101. We have the following ¢, for supersingular z-invariant 7 in
Fy:

¢57 =11, gs0 = 99, qes = 67,

g6a = 83, g2 = 139, ¢21 = 163.
Thus ¢, can be bigger than p.

3. NEIGHBORHOOD OF SUPERSINGULAR ELLIPTIC CURVES

In this section we assume that
7 € F,\{0,1728} is a supersingular z-invariant, £ = E,, End(E) = 0 and
q=4d4;.
In this case, then

Z[wh if 0= @(Q>;

2

m=%j, 07 ={*l}, R:=0NQ) = {z[@'] if 0= 0'(q).

Lemma 3.1. Suppose £ {2pq. Then in the isogeny graph %,(F,),

(i) if HT’T ¢ O and p > ql, then there are 14 6_, loops over the vertex [E];
(ii) of HT” € 0 and p > 4ql, then there are 1 + 6_4, loops over the vertex [E].

Proof. By Deuring’s correspondence theorem, a loop in ?Z(Fp) corresponds to a principal left
ideal Ocv of reduced norm £. If £T ¢ O, then O = 0(q). For a = o+ Ly + 55z + 1= kw €0,

suppose
(o4 2) (220 g (B) e (542 pa=c
T+ = >+ — = 51T = =t

5 s )1t g) P 5T ) P

If (2,w) # (0,0), then ()2 + (3 + %)% > L, and if p > gf, then p((3)? + (3 + 2)%q) > £,
impossible. Hence z = w = 0. Now We need to solve the equation

Nrd(a)

(:c + g) + % = (3.0.1)

in Z. This is equivalent to the decomposition of the ideal ¢R in the ring R = 6NQ(i) = Z[1F].
Since the discriminant of R is —¢, by Theorem 2.3, (3.0.1) is solvable over Z if and only if
(71) =1 and H_,(x) splits into linear factors in Fy[z]. When this is the case, (3.0.1) has two
pairs of solutions up to units in R* = 6* = {£1}, corresponding to two different principal
left ideals of O of reduced norm ¢. Hence there are two loops over [E].

If HT” € 0, then © = 0'(q). Suppose o = = + lﬂy—l—zz%— rik k € 0 such that

Yy 2 y2p TIU) 2 pw
Nrd —-( —) = — =1
rd(«) r+35) + 4)—|—(z+ 2q> q-+ 1q

If (y,w) # (0,0), then % + i‘;—; > 4o, and if p > 4gf, then p((%)* + (52)*q) > ¢, impossible.
Hence y = w = 0. Now we need to solve the equation

v? 4 22g =1 (3.0.2)
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in Z. This is equivalent to the decomposition of /R in R = 0 N Q(i) = Z[i]. In this case R is
of discriminant —4¢, then by Theorem 2.3, (3.0.2) is solvable over Z if and only of (_74‘1) =1
and H_4,(x) splits into linear factors in F,[z]. When this is the case, (3.0.2)) has two pairs
of solutions up to units in R* = 0*. Thus 0 has two principal left ideals of reduced norm /¢,
corresponding to two loops over [E]. O

Remark 3.2. We remark that the bounds in Lemma 3.1 are also sharp.

(1) Let ¢ = 11, £ = 13. Then p = 127 is the largest prime such that p < ¢f. Let
E : y?> = 23 + 162 + 53, then E is a supersingular elliptic curve defined over Fiy; with
End(F) = 0(11). By computation, [E] has one loop which is larger than 1+ §_;; = 0.

(2) Let ¢ =3, ¢ = 5. Then p = 59 is the largest prime such that (_77)) =1 and p < 4q/.
Let E : y* = 23 + 52z + 15, then E is supersingular over Fs9 with End(E) = 6'(3). By
computation, [E] has one loop which is larger than 1+ §_;5 = 0.

Remark 3.3. When the assumption of the above Lemma is satisfied, by the proof above, if
[E] has two loops, then the corresponding o ¢ End(E) N Q(7) = 6 N Q(j). This means the
loops are not defined over F,, since Endy, (£) C End(E) N Q(n).

Proof of Theorem 1.1. If every edge (except loops) in &,(F,) has multiplicity one, then the
number of vertices adjacent to [E] as predicted by the Theorem is correct. Let X, be the set
of all left O-ideals of reduced norm ¢. The first part of the Theorem is reduced to show that
any non-principal left 0-ideal J € X, of reduced norm ¢ is not equivalent to other ideals in
Xy. We prove this by contradiction.

Assume that there exists some I € X, — {J} and pu € B) such that J = Iu, then
Nrd(p) =1 and lp € J.

If 6 =0(q), write fu = x + %y + J%kz + #w in ©. Then

2 rw > 2%p z w)’
Nrd(fp) = 2 = (v 4+ 5) + (5 + EPL (248 pp=r2
rd(lp) T+ 5 + 5 + . q+ 5 + 5 + . Pq
If (z,w) # (0,0), then (3)* + (5 + ¥)%¢ > ¢, and if p > ¢*, then p((3)> + (5 + %)%q) > &,
impossible. Hence z = w = 0. Now we need to solve the equation

UN\2 Y e
(= + 2) + & —y (3.0.3)
in Z. Note that (z,y) = (£¢,0) are trivial solutions of (3.0.3). In these cases y = £1 and
J = I which is a contradiction. If there is a nontrivial solution of (3.0.3), then fuR = I?
or {uR = 7. Since ¢ = 3 mod 4, the class number of R is odd, [ and [ are both principal
prime ideals of norm ¢ of R. This implies that 6_, = 1 and /R = [ - [ splits in R. Since
(R + ({p)R C J, we have either [ C J or [ C J and hence J = Ol or Ol is a principal left
ideal in X,. This is also a contradiction. The case for O = 0'(q) can be proved similarly and
we omit the proof here.

For the last statement, consider the (-isogenies starting from F, as pointed out in [DG16,
Theorem 2.7], there are exactly 1+ (%p) isogenies defined over ), as the loops are not defined
over [, and the multiplicity of each edge (not including the loops) is one, there are at least
14 (=) neighbors of [E] in &,(F,) defined over F,,. In the following, we will prove that when
p > ¢f? in the first case or p > 4¢/? in the second case, there are exactly 1 + (_77’) neighbors
of [E] defined over F,,.
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Again we only show the case ® = 0(q). The other case follows by the same argument.
For an ideal I € X,, let E; denote the elliptic curve connecting with F by the isogeny ¢;.
Then Ej is defined over F, if and only if Og(/) = End(E;) contains an element p such that
u? = —p according to Theorem 2.4 and Lemma 2.6. Since (0 C Op(I) C %@, we may assume

W= %(a—i—b%—i—cj%k —l—d%) € %@. By pu? = —p, then b = —2a and

dr\? c\ 2 A 9
—a+ — q—l—(—) p+|z+—) pg=pl.
q 2 2 q
Thus p | (—aq+dr). If —aqg+br # 0, when p > ¢f?, then M > pl?, not possible. Hence

—a+ % =0and g |d. Then p=3(5— (5§ + g)i)j with (¢, d) satisfying the equation

2 2
CZ + <§ + g) q="1. (3.0.4)
Each solution of (3.0.4) corresponds to a principal ideal in R = Z[*}*] of norm ¢2. Since the
class number of R is odd when ¢ = 3mod 4, § — (£ + g)i is either =0 or +a?, a2 if R has
a principal ideal Ra of norm ¢. Thus either = +j, or when [E] has loops, u = £¢a2j or
+3a?%).

We now follow the notations and ideas in the proof of [LOX20, Theorem 5|. There is a
ring isomorphism 6 : 0/00 — Ms(F,) by

1 0 . 0 —q . U qu
o) () ()

where (u, v) is a solution of u* 4+ qu* = —p in Fy. Let ¢ : 6 — 0/{0 be the restriction map.
The set X, of the £ + 1 left ideals of My(F,) is

75 = {MZ(IFE)W, Mg(Fg)wa ’ a € Fg}

where w := (8 (1)> and w, = ((1) g) Under the map 6 o, there is a 1-to 1 correspondence

of X, and_yg compatible with multiplication. Thus we only need to check: (i) for which
ideal I € X, I6(j) C I; (ii) when E has loops, for which ideal I € X,, I6(a?j) C (I = {0}
or I6(a?j) = {0}. Since det(6(j)) = p # 0 in Fy, to check (ii), it suffices to check: (iii) for
which ideal I € X,, 16(a?) C I = {0} or I6(a®) = {0}.

When () = 1, we take (u,v) = (u,0) where u? = —p € F,. Then 0(j) = (g _Ou> By
computation,

wl(j) € My(Fp)w, wob(j) € Ma(Fp)wo, wab(j) & Ma(Fp)w, (a # 0).
Hence there are exactly two ideals I; = 00 + O(u + j) and I, = O/ + O(u — j) in X, such

that +j € Or(l1) and Or(I5). They correspond to two edges starting from [E] in G(F},). If

(%) = —1, by computation there is no I € X, such that 76(j) C I.

When [E] has two loops, let @ = z + 1y € R such that aa@ = ¢, then ¢{y, and

0(a?) = <2(a:+%)2 —(az+%)yq)’ o(a?) = (2(1’—1— Ok <x+%)yq).

T\ (+Yy 2@+Y)? —(z+ Yy 2(x+Y)?
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Let b = 2% + 1 in Fy. Then only
w_pf(a?) =0, wh(a®) = 0.

These two ideals correspond to the principal left ideals O« and O« in X,. Thus, except the
loops, there are at most two E; defined over IF,. Since the multiplicity of each edge is one,
there are 1+ (=) neighbors of [E] in &,(F,) defined over F,,. O

Example 3.4. Let p = 311, ¢ = 3, £ = 5. The elliptic curve £ : y? = 23 + 1222 + 185 is
supersingular with End(FE) = 0'(3). In the 5-isogeny graph €5(F311), [E] has no loops (as
(_?3) = —1), and only two neighborhoods s (FE;) = 225, 7 (F2) = 19 defined over F3;; (as

(=2) =1). Moreover End(E;) = 6'(67) and End(E>) = 6'(419).

4. THE BOUND OF ¢, FOR ANY SUPERSINGULAR 7 —INVARIANT 7 IN F,
In this section we identify K = Q(/—p) = Q(j) with class number h = hx. Note that
Ok = Z|v/—p], Dk =—4p (if p=1mod 4),
1 —
Ok = Z[JFT VP Di—=—p (if p=3mod 4).
Let O be the order of K of conductor 2. Then
O—7+420, Z[2\/—p), Tfpz 1 (mod 4),
Z[\/—p], ifp=3 (mod4).
Let Ly and L; be the Hilbert class field and the ring class field of O over K. Then
Gal(L1/K) = cl(0) = Ix(2)/ Pk z(2),
By the inclusion Pk z(2) C Pk(2), L1 O Ly. Moreover, from [Cx89, Theorem 7.24],
2, ifp=1 (mod 4),
1, ifp=7 (mod38).
By properties of class fields, we know that L,/Q and L;/Q are Galois. Let (g be a primitive
eighth root of unity, then Q((s) is a Galois extension of Q. Hence Ly((s) and L;((s) are
also Galois over Q. By [Ib82, Lemma 2.11], we know that if p = 3 mod 4, Ly and Q((s)
are linearly disjoint over Q; if p = 1 mod 4, L1 N Q({s) = Lo N Q(¢s) = Q(v/—1). We have

Figure 1 and 2 about field extensions.
Lemma 4.1. Fori=0 and 1, let n; = [L;i((s) : Q] and d; = | Dy, cy)l-

(i) K((3)/Q is an abelian extension of degree 8 and discriminant 2'5p
(ii) If p = 3 mod 4, then ng = 8h, dy = 2'"p*. If furthermore p = 3 mod 8, then
ny = 24h, dy = 2%hpizh,
(iii) If p=1mod 4, then ng = 4h, ny = 8h, dy = 28"p*" and d; | 2**"p*".

4

Proof. For (i), one just needs to compute the discriminant D ¢,). It is well known D¢,y = 25.
The extension K ((s)/Q((g) is unramified outside p and tamely ramified over all primes above p,
hence the different D k(¢)/0(s) = o) in 0(ce) p? by [Ne99, Theorem 2.6]. By Proposition 2.1(i),
we obtain D (¢)-
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L1(Gs) Li(¢s)
2 4
2 / 1or3
Ly Lo((s)
1 or 3
(Cs) Ly Q(¢)
\ / h
vV=1) K i
2 x
Q Q
FicURE 1. Field extensions FIGURE 2. Field extensions
when p = 1 mod 4 when p = 3 mod 4

The degrees ng and ny follow from the two figures.
Since Ly is the Hilbert class field of K which is the maximal unramified abelian extension
of K, Dr,/k = 1 and by Proposition 2.1(i),
Dr, = (Dg)".
Note that Do) = 2%, Do) = —2°. If p = 3mod 4, then Ly and Q((s) are linearly
disjoint over Q, and Dy, and Dg,) are coprime, by Proposition 2.1(ii), then

dy = D,y = D@ DSl = o160 pith,

If p=1mod 4, Ly and Q((g) are linearly disjoint over Q(1/—1). By computation,

h 4
Nown/0(Projaw1) = 7", Novn/e(Pes)/awT) =2
Thus Dy, jqv/=1) and Dg¢,)/q(/=1) are coprime. By Proposition 2.1(ii), then

do = (Doe))"(Dry)*(Dg(mry) 72" = 2% p".

To compute d;, note that L;/K is ramified only at primes above 2 and Ly/K is unramified,
then L;/Ly and L,({s)/Lo are ramified only at primes above 2. Note that L;/Q is Galois,
Li/Lg is of degree 2 or 3, all primes of Ly above 2 must be totally ramified in L;. We also
know 2 is totally ramified in Q((3)/Q. Let e, f and g be the ramification index, the degree
of the residue extension and the number of primes above 2 in L;((s). Then efg = ny, and
201, (¢s) has the prime decomposition

g
QOLl(Cs) = Hmii'
i=1

If p = 3 mod 8, then primes above 2 are unramified in Ly/Q. We find that e = 12, fg = 2h
and all primes above 2 in Ly((s) are totally (tamely) ramified in L;((s). By [Ne99, Theorem
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2.6], the different of Ly((s)/Lo((s) is

g
DLi(Gs)/LolGs) = H m%,z

i=1
Hence
di = N1, (6)/0(D1a(eo)/Lo(cs)) = 277"

If p = 1 mod 4, then either e = 4 or 8. If e = 4, primes above 2 are unramified in
L1(Cs)/Lo(¢g) and the different of L;((g)/Lo(Cs) is (1). In this case d; = d3. If e = 8, then
fg = h and primes above 2 are wildly ramified in L((s)/Lo((s). By [Ne99, Theorem 2.6],
the different of Lq((s)/Lo(Cgs) is

QLI(Cs )/ Lo(Cs) H‘BM, where 1 < m < 5.

=1

Hence
dy = (do) Ny () /Q(©L1 (¢8)/Lo( CB)) | 221hp4h O
Lemma 4.2. Let q and ¢ be distinct primes. Let o3 = ((s — (3) € Gal(Q((s)/Q). Then

(i) ¢ = 3mod 8 and (%) = —1 if and only if [X<) /Q] € Gal(K((3)/Q) is the unique

element A such that Al = 1Id and Alge) = 03.

(ii) The conditions that q and ¢’ satisfy (2.4.1) and @(
(Cs)/Q] = (Cs)/Q]
q @

~ 0(¢))
/0] _ (L

equivalent to that | = o3 and [2L

Proof. The condition that ¢ = 3 mod 8 is equivalent to [%] =03 € Gal(@(ﬁg)/@). The
condition (£) = —1 is equivalent to that ¢ splits in K| i.e., [KT/Q] = [Kq—/,(@] = 1. So (i) holds.

Let ¢ = qq and ¢ = q'q’ be the factorization of ¢ and ¢’ in K. By Lemma 2.9(ii), the
condition that 0(q) = 0O(¢') is equivalent to

N e i

Let 7 be a lifting of (y/—p +— —/—p) € Gal(K/Q) in Gal(L;/Q) and let Q be a prime of L,
above ¢, then [%] = {[%],T[%@]T_l} (these two probably equal). When [KT/Q] =1, this
set is equal to {[qu/K], [LIC{K]’l}. Hence 0(q) = 0(¢') and (£) = () = —1 is equivalent to
[Ll/Q] _ [Ll/(@]
q q
The case for @’ follows similarly. O

Lemma 4.3. Let v be any element in Gal(K ((3)/Q), Cy and Cy be any conjugacy class in

Gal(Lo(¢s)/Q) and Gal(L1((s)/Q) respectively. Assuming GRH.
(i) For constant ¢ > 0, m,(c\/p, K((s)/Q) ~ 4I£p as p — 00.
(ii) Suppose p > 2000 and x > plog* p, then

log x - Vz —0.90hlog”z, if p=1mod 4;
VT T | Vx—181hlog’z, ifp=3mod4.

é—z‘mwo(@)/@)
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dy log x r—1.88hlog’z, ifp=1mod 4;
(o LG/ Q)L > V7 o=
|C1| Vi Vr —5.48hlogz, if p=3 mod 8.
Suppose p > 2000 and x > plog® p, then

VZ —0.76hlog*x, if p=1mod 4;
VZ — 1.51hlog®x, if p =3 mod 4.

log

i 2

log x S VT — 1.57hlog®x, if p=1mod 4;
vz — 4.60hlog”x, if p= 3 mod 8.

%Wco(fyLO(Cs)/@)

Proof. We shall use the explicit formula (2.2.2) in the Chebotarev density Theorem (Theo-
rem 2.2).
For (i), consider the extension K ((s)/Q, then dx(¢,) = 2'%p* and ng(¢,) = 8. Take z = ¢,/p,

the main term in (2.2.2) is 2¢,/p/ log p, the error term is of order pi log p. When p — oo, we

get (i).
For (ii), consider the case L;/Q and p = 3 mod 8 case. The other cases can be treated
similarly. In this case n; = 24h and d; = 2°2"p'?". Note that if > 2000,

Todt x 2 Todt x
— — + — > .
o logt logx log2 5 log“t ~ logx
By (2.2.2), if z > 2000, then

o (T, L1(Cs)/Q)

log

VT

dy
|G

361 156log2 + 144 26log2+6 61 3
z\/E—hlog%[l ozp , 156log2 + 0g2+ ogp 3
(0]

g x log? z mlogx mloge w

Note that iggp < 1if z > p. When p is fixed and = > plog*p increases, the other terms
g T

inside | ] of the above inequality decrease; when p increases and x = plog? p or plog® p, the
other terms inside [ | also decrease. This leads to the bound in (ii). U

Proof of Theorem 1.3. (1) By the Brauer-Siegel Theorem, the number of supersingular 7 over
IF,, is of order O(h) = O(,/p), but by Lemma 4.3(i), there are only O(%) many ¢ < C\/p
satisfying ¢ = 3 mod 8 and (%) = —1 when p — o0, hence (1) holds.

(2) For p < 2000, we check numerically in the appendix that ¢, < plog®p. Suppose
p > 2000. It suffices to find = such that m¢,(x, L;(¢s)/Q) > 0 for any conjugacy class C;.
By Lemma 4.3(ii), to have 7¢,(z, Li((s)/Q) > 0, it suffices to find = > plog? p, such that
Vx—Chlog?® z > 0 for different C' there. By the Brauer-Siegel Theorem, when p is sufficiently
large, h ~ /p if p =3 mod 4 or 2,/p if p =1 mod 4. Replace h by /p or 2,/p, we just need
to find = > plog*p, such that N 5.48\/ﬁlog2x > (. This is satisfied if p > 2000 and
x = 10000p log* p.

(3) Suppose p > 2000. It suffices to find x such that 7¢,(x, L;(¢s)/Q) > 0 for any conjugacy
class C;. By Lemma 4.3(ii), we just need to find = > plog® p such that v/z — Chlog®x > 0 for
different C' there. By [Ch96, Exercise 5.27], h < /plogp if p = 3 mod 4 and h < \/4plog(4p)
if p=1mod 4. We thus only need to find 2 > plog® p such that /z — él.(i\/z_olog;plog2 x> 0.
Take z = 10000p log® p, we can check \/z — 4.6\/]_910gplog2 x> 0.
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(4) Let ¢1, g2 be two distinct primes satisfying (2.4.1). If (x,y) is an integer solu-
tion of x2 4 4py®> = qiq2, y must be even since ¢1¢» = 1 mod 8 and 2?> = 0,1,4 mod 8.
Thus 22 + 4py? = qiq» has integer solutions is equivalent to z? 4+ 16py? = ¢i¢» has inte-
ger solutions. Thus if both ¢ and ¢ < 4,/p, the equation has no integer solution and

O(q1) 2 O0(q2) by Lemma 2.9(ii). Similarly by Lemma 2.9(iii), if both ¢; and ¢, < */7]3,

the equation z? + py? = 4q1qo has no integer solutions, and 0'(q;) ¥ 0'(q2). Then if
p=1mod 4, N(4,/5) = 7a(dy/F, K(Gs)/Q)- 1 p = 3 mod 4, N(5/F) = 27a(3/5, K (Cs)/Q)
and N(4,/p) > ma(4y/p, K((z)/Q) + WA(%\/T?» K(¢s)/Q). D
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APPENDIX A. COMPARING M (p) WITH /p AND plog? p WHEN p < 2000

For a prime p > 3, let M(p) be the maximal value of ¢, for all supersingular invariants 7
over F, defined in § 1. The following two tables list the values of M(p) for all p < 2000 and
compare it with \/p and plog? p.

In the following we present our algorithms to compute Table 1 and Table 2. For a finite
set A, let |A| denote the cardinality of A.

Algorithm 1

Input: Prime p = 1 mod 4.
Output: The value M (p).
Procedure:

(1) Compute the set SSj(p) of all supersingular z-invariants in F,.

(2) Set SE(p) = the empty set.

(3) For prime 3 < ¢ < plog®p such that (%p) = 1 and ¢ = 3 mod 8, compute the
Z-invariant 7, € F}, such that End(E,,) = 0(q). More precisely,
(3.1) let v(d) be the set of roots of Hilbert class polynomial H,; in F,,. Compute v(—¢),

v(~4p) and v(—(*7)).

(3.2) compute A = v(—q) Nv(—4p) N v(—(%%p))), if |A| = 1, return A, otherwise
return A = the empty set.
(4) Set SE(p) = SE(p) U A. Repeat Step 3 until | SE(p)| = | SSj(p)|. Return gq.

Remark A.1. Recall that when p = 1 mod 4, for a supersingular elliptic curve E defined

[

over F,, we have End(E) = 0(q) for some ¢ satisfying

(7])) =1and ¢ =3 mod 8 (A.0.1)

Here we do a loop for ¢ satisfying (A.0.1) in an ascending order, and compute the corresponding

7-invariant 7, then make them into a set. In this way, if in some step, we get the equality
SE(p) = SSj(p), then we get the maximal ¢ .

One thing needed to explain is the following: in Step 3, we compute the associated

supersingular z-invariant 7, of ¢ by computing the common roots of H_,, H_4, and H (402 4p)

in F,. Since by [CG14, Theorem 3], 7, is aroot of H_; if and only if 67 (¢) = Z(i, j—k, @)
has an element of reduced norm d. This is the case since 7,27, # € 07(q) are of reduced
norm ¢, 4p and @ respectively. Thus if v(—q) N v(—4p) N v(—(@)) has just one
element, it must be 7,. If it has more than one element, we quit this ¢ and do Step 3 for
the next ¢. Thus the output of algorithm 1 is equal or larger than the real M(p). But in our

experiment, we find the intersection of these three sets always has one element. Anyway, the
data in Table 1 and Table 2 is enough to show that M(p) < plog® p.

Algorithm 2

Input: Prime p = 3 mod 4.
Output: The value M (p).
Procedure:

(1) Compute the set SSj(p) of all supersingular s-invariants with 7 € IF, \ {1728}.
(2) Set SE(p) and XE(p) to be the empty sets.
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(3) For all prime 3 < ¢ < plog?p such that (%p) =1 and ¢ = 3 mod 8, do
(3.1) compute the z-invariant 7, € IF, such that End(E,,) = O(q) as in Algorithm 1.
If 7, # 1728, set SE(p) = SE(p) U {7, }, otherwise, set SE(p) = SE(p) U0
(3.2) compute the prime ideal decomposition of ¢ in K = Q(v/—p): (¢) = q192. If q4
is not principal, set XE(p) = XE(p) U {[q1], [q2]} where [q;] and [gs] are the ideal

classes in the class group of K. Otherwise, set XE(p) = XE(p) U 0.

(4) Compare | SSj(p)| and | SE(p)| + @. If they are equal, return ¢q. Otherwise repeat

Step 3.

Remark A.2. When p = 3 mod 4, for a supersingular elliptic curve £ defined over F,, we
have End(F) = 0(q) or 0'(q) for some q satisfying (A.0.1), and for 7 # 1728, O(q) 2 0'(q)
by Lemma 2.9(i). Here, we do a loop for ¢ satisfying (A.0.1) in an ascending order. First we
compute the 7' —invariant 7, such that End(E ) = 0(q) for each ¢ as in algorithm 1. For
the z-invariant of 0’'(q), if we compute the other three Hilbert class polynomials as in the
case of O(q), the running time is very expensive, thus we use another way. We define a set
XE(p) consisting of ideal classes [q;] and [qo] if they are not equal, and each correspond to one
supersingular z-invariant 7’ such that End(E,/) = 0'(q), if [q1] = [q2] = 1, they correspond
to 7 = 1728 by Lemma 2.9(iii). Thus when |SSj(p)| = |SE(p,r)| + &2’”)', we obtain the
maximal ¢,.
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TABLE 1. The data of prime p = 1 mod 4
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p|M(p)| M TELL p[Mp) | EE[ S pM(p) | SE| UL
5| 3| 1.34]0.232] 557| 491| 20.80 0.022 | 1193 | 1483 | 42.94] 0.025
13| 11| 3.05|0129| 569 | 4219 |176.87 | 0.184 1201 | 283| 8.17| 0.005
17| 11| 267| 0081| 577| 331| 1378 | 0.014 | 1213| 619| 17.77| 0.010
20| 19| 353 0.058| 593| 587| 24.11| 0.024 | 1217 | 1499 | 42.97 | 0.024
37| 19| 312 0039| 601| 811| 33.08| 0.033 | 1229 | 1987 | 56.68 | 0.032
41| 211| 32.95| 0.373| 613| 307 | 12.40| 0.012 | 1237 | 739| 21.01 | 0.012
53| 67| 920 0.080| 617| 379| 15.26| 0.015 | 1249 | 2003 | 56.68 | 0.032
61| 59| 755 0.057| 641| 1787 | 70.58 | 0.067 | 1277 | 1499 | 41.95 | 0.023
73| 43| 503 0032| 653 491| 19.21| 0.018 | 1289 | 1091 | 30.39 | 0.017
89| 163 17.28| 0.091| 661| 571| 22.21| 0.020 1207 | 179| 4.97 | 0.003
97| 59| 599| 0.020| 673| 107| 412 0.004 | 1301 | 4523 | 125.40 | 0.068
101| 163 | 1622 | 0.076 || 677| 2203 | 84.67| 0.077 | 1321 | 787| 21.65 | 0.012
109 59| 5650025 701|1259| 47.55| 0.042 | 1361 | 4027 | 109.16 | 0.057
113 67| 6300027 709| 379| 14.23| 0.012 | 1373 | s27| 22.32| 0.012
137| 83| 7.090025| 733 419| 1548 | 0.013 [ 1381 | 691 | 1859 | 0.010
149 | 619 | 50.71| 0.166 || 757| 379| 13.77| 0.011 | 1409 | 1619 | 43.13 | 0.022
157 | 107| 854 0027| 761| 2003 | 72.61| 0.060 | 1429 | 739 | 1955 | 0.010
173 | 307 | 2334 0.067 || 769| 827| 29.82| 0.024 | 1433 | 1907 | 50.38 | 0.025
181| 163 | 12.12| 0.033 | 773| 547| 19.67| 0.016 | 1481 | 4019 | 104.43 | 0.051
193 19| 1370004 | 797| 1987 | 70.38| 0.056 | 1489 | 883 | 22.88 | 0.011
197 | 179 | 12.75 | 0.033 || 809 | 1171| 41.17| 0.032 | 1493 | 947 | 24551 | 0.012
229 | 179 | 11.83 | 0.026 | 821| 1051 | 36.68 | 0.028 | 1549 | 787 | 20.00 | 0.009
233 | 139| 9110020 829 827 2872 0.022| 1553 | 1427 | 36.21| 0.017
241| 307| 19.78| 0.042 | 853| 491 16.81| 0.013 | 1597 | 11| 20.20 | 0.009
257 | 547 | 3412 0.069 | 857 | 1627 | 55.58 | 0.042 | 1601 | 2707 | 67.65 | 0.031
269 | 739 | 45.06 | 0.088 | 877| 443 14.96| 0.011| 1609 | 1571 | 39.17 | 0.018
277 | 139| .35 0.016 | 881| 1723 | 58.05| 0.043 | 1613 | 2027 | 50.47 | 0.023
281 | 691 | 41.22| 0.077 | 929| 1579 | 51.81| 0.036 | 1621 | 811 | 20.14 | 0.009
293 | 691 | 40.37| 0.073 | 937| 659 21.53| 0.015 | 1637 | 1259 | 31.12| 0.014
313 | 179| 10.12| 0.017 | 941 | 4603 | 150.05 | 0.104 | 1657 | 947| 23.26| 0.010
317 | 211| 11.85| 0.020 | 953 | 859 | 27.83| 0.019| 1669 | 971| 23.77| 0.011
337 | 67| 3.65| 0006 977| 683| 21.85| 0.015| 1693 | 971| 23.60| 0.010
349 | 499 | 26.71| 0.042 | 997| 571 | 18.08| 0.012| 1697 | 1019| 24.74| 0.011
353 | 419| 22.30| 0.034 | 1009 | 571 | 17.98 | 0.012||1709 | 2179 | 52.71 0.023
373 | 211| 10.93| 0.016 | 1013 | 827 | 25.98 | 0.017 || 1721 | 4019 | 96.88 | 0.042
380 | 1051 | 53.20| 0.076 | 1021 | 587 | 18.37 | 0.012| /1733 | 1451 | 34.86 | 0.015
397 | 227| 11.39| 0.016 | 1033 | 227| 7.06| 0.005 || 1741 | 1019 | 24.42| 0.011
401| 251| 12.53| 0.017 | 1049 | 3011 | 92.97 | 0.059 | 1753 | 1019 | 24.34| 0.010
09| 331 1637 0.022 | 1061| 691| 21.21 0.013 | 1777 | 1019 | 24.17 | 0.010
421| 211| 10.28| 0.014 | 1069 | 1579 | 48.29 | 0.030 | 1789 | 907 | 21.44| 0.009
433| 251| 12.06| 0.016 | 1093 | 547 | 1655 | 0.010 | 1801 | 859| 20.24 | 0.008
449 | 659 | 31.10| 0.039 | 1097 | 2371 | 7159 | 0.044 || 1861 | 4219 | 97.80 | 0.040
457 | 83| 3.88| 0.005 | 1109 | 2851 | 85.61 | 0.052|| 1873 | 331| 7.65| 0.003
461| 1531 | 71.31| 0.088 | 1117 | 563 | 16.85 | 0.010 | 1877 | 1123 | 25.92| 0.011
500 | 3023 | 173.88 | 0.198 | 1129 | 211 | 6.28 | 0.004 | 1889 | 4523 | 104.07 | 0.042
521 | 2243 | 98.27| 0.110 | 1153 | 659 | 19.41| 0.011 | 1901 | 3019 | 69.24 | 0.028
541 | 283| 1217 0.013 | 1181 | 4019 | 116.95 | 0.068 || 1913 | 1483 | 33.91 | 0.014
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TABLE 2. The data of prime p = 3 mod 4

M M M M M M

p M) | TR eE | p M) | SRS e[ Me) | TR R
7 31 1.13] 0.113 | 563 | 1259 | 53.06 | 0.056 || 1291 | 739 | 20.57 | 0.011
11 31 090 | 0.047 | 571 | 179 | 7.49| 0.008 || 1303 | 227 | 6.29 | 0.003
19 11| 2.52] 0.067 | 587 | 419| 17.29 | 0.018 || 1307 | 2099 | 58.06 | 0.031
23 31 0.63] 0.013| 599 | 859 | 35.10 | 0.035 | 1319 | 1723 | 47.44| 0.025
31 191 3.41| 0.052| 607 | 347 | 14.08 | 0.014 || 1327 | 211 5.79 | 0.003
43 11| 1.68| 0.018 || 619 | 443 | 17.81 | 0.017 || 1367 | 811 | 21.93 | 0.011
47 59| 8.61| 0.085| 631| 163 6.49 | 0.006 || 1399 | 859 | 22.97| 0.012
99 | 30713997 | 0313 | 643 | 379 | 14.95| 0.014 || 1423 | 251 6.65 | 0.003
67 19| 2.32| 0.016 | 647 | 1163 | 45.72 | 0.043 || 1427 | 3083 | 81.61 | 0.041
71 431 5.10 | 0.033 | 659 | 907 | 35.33| 0.033 || 1439 | 1451 | 38.25 | 0.019
79 19| 2.14| 0.013 || 683 | 467 | 17.87| 0.016 || 1447 | 1163 | 30.57 | 0.015
83| 131 ]14.38| 0.081 | 691 | 419 | 15.94| 0.014 || 1451 | 883 | 23.18 | 0.011
103 59 | 5.81| 0.027 || 719 | 1459 | 54.41 | 0.047 || 1459 | 1579 | 41.34 | 0.020
107 83| 8.02| 0.036 | 727| 419 | 1554 | 0.013 || 1471 | 619 | 16.14 | 0.008
127 19| 1.69| 0.006 | 739 | 283 | 10.41| 0.009 || 1483 | 1051 | 27.29 | 0.013
131 379 |33.11| 0.122 ) 743 | 523 | 19.19 | 0.016 || 1487 | 2339 | 60.66 | 0.029
139 | 107 | 9.08 | 0.032 || 751 | 163 5.95 | 0.005 || 1499 | 1667 | 43.06 | 0.021
151 43| 3.50 | 0.011 || 787 | 467 | 16.65| 0.013 || 1511 | 1979 | 50.91 | 0.024
163 43| 3.37| 0.010 | 811 | 499 | 17.52| 0.014 || 1523 | 907 | 23.24 | 0.011
167 | 211 |16.33 | 0.048 || 823 | 131 4.57 | 0.004 | 1531 | 3907 | 99.85 | 0.047
179 | 227 |16.97 | 0.047 || 827 | 491 | 17.07 | 0.013 || 1543 | 883 | 22.48| 0.011
191 251 | 18.16 | 0.048 || 839 | 3467 | 119.69 | 0.091 || 1559 | 2531 | 64.10 | 0.030
199 | 227 |16.09 | 0.041 || 859 | 499 | 17.03 | 0.013 || 1567 | 907 | 22.91 | 0.011
211 59| 4.06 | 0.010 | 863 | 547 | 18.62| 0.014 || 1571 | 6947 | 175.27 | 0.082
223 | 131 | 877 | 0.020 || 883 | 227 | 7.64| 0.006| 1579 | 563 | 14.17 | 0.007
227 139] 9.23| 0.021 || 887 | 971 | 32.60 | 0.024 || 1583 | 3557 | 89.40 | 0.041
239 | 571136.93| 0.080 || 907 | 227 | 7.54| 0.005 | 1607 | 1597 | 39.84 | 0.018
251 | 947 |59.77 | 0.124 || 911 | 1291 | 42.77| 0.031 | 1619 | 2339 | 58.13 | 0.026
263 | 33112041 | 0.041| 919 | 443 | 14.61| 0.010 || 1627 | 947 | 23.48 | 0.011
271 179 110.87 | 0.021 || 947 | 563 | 18.30| 0.013 | 1663 | 331 | 8.12| 0.004
283 | 163 | 9.69| 0.018 || 967 | 139 | 4.47| 0.003 || 1667 | 2027 | 49.65 | 0.022
307 | 179 10.22 | 0.018 || 971 | 4051 | 130.00 | 0.088 || 1699 | 971 | 23.56 | 0.010
311 | 571|32.38| 0.056 || 983 | 619 | 19.74| 0.013 || 1723 | 443 | 10.67 | 0.005
331 83| 4.56 | 0.007 | 991 | 211 6.70 | 0.004 || 1747 | 443 | 10.60 | 0.005
347 | 251 |13.47 | 0.021 || 1019 | 3011 | 94.32 | 0.062 || 1759 | 691 | 16.48 | 0.007
359 | 467 |24.65| 0.038 || 1031 | 1907 | 59.39 | 0.038 || 1783 | 1019 | 24.13 | 0.010
367 | 211 |11.01 | 0.016 | 1039 | 1307 | 40.55 | 0.026 || 1787 | 1163 | 27.51 | 0.012
379 | 107 | 5.50 | 0.008 || 1051 | 283 8.73 | 0.006 || 1811 | 4987 | 117.19 | 0.049
383 | 491 |25.09| 0.036 || 1063 | 883 | 27.08 | 0.017 || 1823 | 1931 | 45.23 | 0.019
419 | 1427 | 69.71 | 0.093 || 1087 | 139 | 4.22| 0.003 || 1831 | 379 8.86 | 0.004
431 | 547 |26.35| 0.034 || 1091 | 3331 | 100.85 | 0.062 || 1847 | 2003 | 46.61 | 0.019
439 | 307 | 14.65| 0.019 || 1103 | 947 | 28.51 | 0.017 || 1867 | 1091 | 25.25| 0.010
443 | 331 |15.73 | 0.020 || 1123 | 643 | 19.19 | 0.012 | 1871 | 2803 | 64.80 | 0.026
463 67| 3.11| 0.004 || 1151 | 2339 | 68.94 | 0.041 || 1879 | 2251 | 51.93 | 0.021
467 | 947 | 43.82 | 0.054 | 1163 | 691 | 20.26 | 0.012 || 1907 | 2267 | 51.91 | 0.021
479 | 7873596 | 0.043 || 1171 | 1163 | 33.99 | 0.020 || 1931 | 5347 | 121.68 | 0.048
487 83| 3.76 | 0.004 || 1187 | 947 | 27.49 | 0.016 || 1951 | 1747 | 39.55 | 0.016
491 | 1187 | 53.57 | 0.063 || 1223 | 1163 | 33.26 | 0.019 || 1979 | 3571 | 80.27 | 0.031
499 | 131 | 5.86| 0.007 || 1231 | 859 | 24.48 | 0.014 || 1987 | 1187 | 26.63 | 0.010
503 | 811 |36.16 | 0.042 || 1259 | 3347 | 94.33 | 0.052 || 1999 | 659 | 14.74 | 0.006
523 | 331 | 14.47| 0.016 || 1279 | 1019 | 28.49 | 0.016

547 | 139 ] 5.94| 0.006 || 1283 | 1051 | 29.34 | 0.016




