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Abstract

Bollobás and Thomason conjectured that the vertices of any r-uniform hypergraph with
m edges can be partitioned into r sets so that each set meets at least rm/(2r−1) edges. For
r = 3, Bollobás, Reed and Thomason proved the lower bound (1−1/e)m/3 ≈ 0.21m, which
was improved to (5/9)m by Bollobás and Scott (while the conjectured bound is 0.6m). In
this paper, we show that any 3-uniform hypergraph with m edges can be partitioned into
3 sets, each of which meets at least 0.65m − O(m6/7) edges. In particular, this Bollobás-
Thomason conjecture holds when r = 3 and m is large.
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1 Introduction

Let G be a graph or hypergraph, and let S, T ⊆ V (G) with S ∩ T = ∅. We write eG(S) :=
|{e ∈ E(G) : e ⊆ S}|, eG(S, T ) := |{e ∈ E(G) : e∩S 6= ∅ 6= e∩T}|, and dG(S) := |{e ∈ E(G) :
e ∩ S 6= ∅}|. When understood, the reference to G in the subscript may be dropped.

An example of classical graph partitioning problems is the well known Maximum Bipartite

Subgraph Problem: Given a graph G find a partition V1, V2 of V (G) maximizing e(V1, V2).
There is an extensive body of work on this problem, from various perspectives, see [10]. Note
that the Maximum Bipartite Subgraph Problem asks for a partition of an input graph that
optimizes only one quantity.

Any problem that asks for partitions of graphs or hypergraphs to optimize several quantities
simultaneously is said to be a judicious partitioning problem. The Bottleneck Bipartition

Problem is one such example: Given a graph G find a partition V1, V2 of V (G) minimizing
max{e(V1), e(V2)}, or equivalently, maximizing min{d(V1), d(V2)} (since d(Vi) = |E(G)| −
e(V3−i) for i = 1, 2). This problem was raised by Entringer, and is shown to be NP-hard
in [12]. In [1] it is shown that the Maximum Bipartite Subgraph Problem and the Bottleneck
Bipartition Problem are related. We refer the reader to [6,11] for other interesting partitioning
problems.

Note that if V1, V2 is a partition of a graph G maximizing e(V1, V2), then each v ∈ Vi has
at least as many neighbors in V3−i as in Vi. So e(V1, V2) ≥ 2e(Vi) for i = 1, 2, which implies
e(Vi) ≤ m/3, where m is the number of edges in G. Hence d(Vi) ≥ m − m/3 = 2m/3 for
i = 1, 2. In an attempt to extend this to hypergraphs, Bollobás and Thomason made the
following conjecture; see [5].

Conjecture 1.1 (Bollobás and Thomason) For any integer r ≥ 3, the vertex set of any r-
uniform hypergraph with m edges admits a partition V1, . . . , Vr such that for i = 1, . . . ,m,

d(Vi) ≥
r

2r − 1
m.

The conjectured bound is the best possible for complete r-uniform graphs on 2r−1 vertices.
To see this, note that such a graph has m =

(

2r−1
r

)

edges, and any r-partition of such a

graph has a partition set with just one vertex, which meets
(

2r−2
r−1

)

edges. Bollobás, Reed and
Thomason [3] proved that every 3-uniform hypergraph with m edges has a partition V1, V2, V3

such that d(Vi) ≥ (1 − 1/e)m ≈ 0.21m (here e is the base of the natural logarithm). In [5],
this bound is improved to (5/9)m by Bollobás and Scott. Note that the bound for r = 3 in
Conjecture 1.1 is 0.6m. Halesgrave [7] extended an idea of Bollobás and Scott in [5] and solved
the r = 3 case completely. (Bollobás informed us that Halesgrave actually did it in 2006.) For
large graphs, this bound may be improved. In this paper, we prove the following result, which
implies Conjecture 1.1 for r = 3 and m large.

Theorem 1.2 Every 3-uniform hypergraph with m edges has a partition into sets V1, V2, V3

such that for i = 1, 2, 3,
d(Vi) ≥ 0.65m − o(m).

We use an approach developed by Bollobás and Scott [4, 6]. The idea is to partition the
large degree vertices first, and then partition the remaining vertices using a random process.
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The key is to find appropriate probabilities for this random process which result in the desired
bounds on the expectations of d(Vi). An application of Azuma-Hoeffding inequality then allows
us to bound the deviations from these expectations.

We organize our paper as follows. In Section 2, we first state two lemmas, Lemmas 2.1
and 2.2, which assert that certain inequalities hold. We then use these two lemmas to prove
Lemma 2.3 which, in turn, is used to prove Theorem 1.2. In Lemma 2.3, we need to bound three
quantities simultaneously. In Section 3, we prove two lemmas that can be used to bound two
quantities simultaneously. These lemmas will then be used in Section 4 to prove Lemmas 2.1
and 2.2. We conclude with Section 5 by mentioning two related problems.

2 Proof of Theorem 1.2

As mentioned in the introduction, we need two lemmas which provide inequalities needed for
our proof. The meaning of the parameters in these lemmas will be clear from the proof of
Lemma 2.3; each is related to the number of edges of a certain type. The first lemma tries to
bound three quantities fi(pi), i = 1, 2, 3. It says that, under certain conditions, there exist pi

such that either all three functions are bounded from above, or can be made equal. We use
R

+ to denote the set of nonnegative reals.

Lemma 2.1 Let bij , xi, ai, c ∈ R
+, 1 ≤ i 6= j ≤ 3, such that bij = bji, bij ≥ max{2xi, 2xj},

and b12 + b23 + b31 + x1 + x2 + x3 + a1 + a2 + a3 + c = 1. For any permutation ijk of {1, 2, 3},
let

fi := (1 − pi)(bjk + xj + xk) + (1 − pi)
2(aj + ak) + (1 − pi)

3c.

Then there exists p1, p2, p3 ∈ [0, 1] with p1 + p2 + p3 = 1 such that

(i) fi ≤ 0.35 for i = 1, 2, 3, or

(ii) f1 = f2 = f3 and pi ∈ (0, 1) for i = 1, 2, 3.

The second lemma (when combined with Lemma 2.1) deals with the case c = 0 of
Lemma 2.3.

Lemma 2.2 Let ai, xi, bij ∈ R
+, 1 ≤ i 6= j ≤ 3, such that bij = bji, bij ≥ max{2xi, 2xj} and

b12 + b23 + b31 + x1 + x2 + x3 + a1 + a2 + a3 = 1. For any permutation ijk of {1, 2, 3}, let

fk := (1 − pk)(bij + xi + xj) + (1 − pk)
2(ai + aj)

Suppose there exist p1, p2, p3 ∈ (0, 1) such that p1 + p2 + p3 = 1 and f1 = f2 = f3. Then for

such p1, p2, p3, we have fk ≤ 0.35 for k = 1, 2, 3.

The proofs of the above two lemmas will be the context of Sections 3 and 4. We can now
prove the main lemma.

Lemma 2.3 Let bij , xi, ai, c ∈ R
+, 1 ≤ i 6= j ≤ 3, such that bij = bji, bij ≥ max{2xi, 2xj}

and b12 + b23 + b31 + x1 + x2 + x3 + a1 + a2 + a3 + c = 1. Then there exist p1, p2, p3 ∈ [0, 1]
with p1 + p2 + p3 = 1 such that for any {i, j, k} = {1, 2, 3},

fi := (1 − pi)(bjk + xj + xk) + (1 − pi)
2(aj + ak) + (1 − pi)

3c ≤ 0.35.

3



Proof. By Lemma 2.1, we may assume that there exist p1, p2, p3 ∈ (0, 1) with p1 + p2 + p3 = 1
such that f1 = f2 = f3. Let D be the set of points (a1, a2, a3, x1, x2, x3, b12, b23, b31, c, p1, p2, p3) ∈
[0, 1]13 satisfying

bij ≥ max{2xi, 2xj},
b12 + b23 + b31 + x1 + x2 + x3 + a1 + a2 + a3 + c = 1,

p1 + p2 + p3 = 1,

pi ∈ [0, 1] for i = 1, 2, 3, and

f1 = f2 = f3.

Note that D 6= ∅ and D is a compact subset of [0, 1]13. So f1(v) has an absolute maximum
over D . Let M denote all v ∈ D for which f1(v) is the maximum of f1 over D . It suffices to
show that there is some v ∈ M such that fi(v) ≤ 0.35 for i = 1, 2, 3. Let

v := (a1, a2, a3, x1, x2, x3, b12, b23, b31, c, p1, p2, p3) ∈ M .

We claim that v may be chosen so that c = 0. For, suppose c 6= 0. Define

v′ := (a1 + p1c, a2 + p2c, a3 + p3c, x1, x2, x3, b12, b23, b31, 0, p1, p2, p3).

It is easy to check that v′ ∈ D and fi(v
′) = fi(v) for i = 1, 2, 3. Since v ∈ M , we have

v′ ∈ M . Now it follows from Lemma 2.2 that for any i = 1, 2, 3, fi(v) = fi(v
′) ≤ 0.35.

We also need the following lemma, which is easy to prove. Let G be a graph (multiple
edges allowed) and let w : E(G) → R

+. For any S ⊆ V (G), we write w(S) =
∑

e⊆S w(e). For
any S, T ⊆ V (G) with S ∩ T = ∅, we use (S, T ) to denote the set of edges st with s ∈ S and
t ∈ T ; and write w(S, T ) =

∑

e∈(S,T ) w(e).

Lemma 2.4 Let G be a graph and let w : E(G) → R
+, and let V (G) = V1 ∪ . . . ∪ Vk be a

k-partition minimizing
∑k

i=1 w(Vi). Then for any 1 ≤ i 6= j ≤ k

w(Vi, Vj) ≥ max{2w(Vi), 2w(Vj)}.

Proof. For any v ∈ Vi and for any j ∈ {1, . . . , k} \ {i}, we have

∑

{uv∈E(G):u∈Vi−v}
w(uv) ≤

∑

{uv∈E(G):u∈Vj}
w(uv).

Summing over v ∈ Vi, we get 2w(Vi) ≤ w(Vi, Vj).

Finally we need the Azuma-Hoeffding inequality [2, 8] to bound deviations. We use the
version given in [4].

Lemma 2.5 Let Z1, . . . , Zn be independent random variables taking values in {1, . . . , k}, let

Z := (Z1, . . . , Zn), and let f : {1, . . . , k}n → N such that |f(Y ) − f(Y ′)| ≤ ci for any Y, Y ′ ∈
{1, . . . , k}n which differ only in the ith coordinate. Then for any z > 0,

P (f(Z) ≥ E(f(Z)) + z) ≤ exp

(

−z2

2
∑k

i=1 c2
i

)

,
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P (f(Z) ≤ E(f(Z)) − z) ≤ exp

(

−z2

2
∑k

i=1 c2
i

)

.

Now Theorem 1.2 is a consequence of the following result.

Theorem 2.6 Let G be a 3-uniform hypergraph with m edges. Then there is a partition

V (G) = V1 ∪ V2 ∪ V3 such that, for i = 1, 2, 3,

d(Vi) ≥ 0.65m − O(m6/7).

Proof. We may assume that G is connected; as otherwise, we may simply consider the indi-
vidual components. Hence every vertex of G has positive degree.

Let V (G) = {v1, . . . , vn} such that d(v1) ≥ d(v2) ≥ . . . ≥ d(vn). Let U1 := {v1, . . . , vt} and
U2 := V (G) \ U1, with t = ⌊mα⌋ and 0 < α < 1/3. Since m ≤

(n
3

)

and t < m1/3, we have
t ≤ n − 2 for n ≥ 3 (by a simple calculation). Moreover,

mαd(vt+1) ≤ (1 + t)d(vt+1) ≤
t+1
∑

i=1

d(v) <
∑

v∈V (G)

d(v) = 3m;

so d(vt+1) < 3m1−α. Hence

n
∑

i=t+1

d(vi)
2 < 3m1−α

n
∑

i=1

d(vi) = 9m2−α.

For any partition U1 = X1 ∪ X2 ∪ X3 and for 1 ≤ i 6= j ≤ 3, define

xi = |{e ∈ E(G) : |e ∩ Xi| = 2, |e ∩ U2| = 1}|,
ai = |{e ∈ E(G) : |e ∩ Xi| = 1, |e ∩ U2| = 2}|,
bij = |{e ∈ E(G) : |e ∩ Xi| = |e ∩ Xj | = |e ∩ U2| = 1}|,
c = |{e ∈ E(G) : |e ∩ U2| = 3}|.

Then m = e(U1) + b12 + b23 + b13 + x1 + x2 + x3 + a1 + a2 + a3 + c.
By Lemma 2.4, we may choose the partition U1 = X1∪X2∪X3 such that for 1 ≤ i 6= j ≤ 3,

bij ≥ max{2xi, 2xj}.

For 1 ≤ i ≤ 3, assign color i to the vertices in Xi. We extend the coloring to U2 as follows: each
vertex in U2 is independently colored i with probability pi for 1 ≤ i ≤ 3, where p1 +p2 +p3 = 1
and pi will be determined by an application of Lemma 2.3.

For i = 1, 2, 3, let Vi be the vertices with color i, and let

yi = |{e ∈ E(G) : e ⊆ U1 and e ∩ Xi 6= ∅}.

Then, for any permutation ijk of {1, 2, 3},

E(d(Vi)) = bij + bik +xi +ai + pi(bjk +xj +xk)+ (1− (1− pi)
2)(aj +ak)+ (1− (1− pi)

3)c+ yi.

5



Thus

fi := m − E(d(Vi)) − e(U1) + yi = (1 − pi)(bjk + xj + xk) + (1 − pi)
2(aj + ak) + (1 − pi)

3c,

and
α := m − e(U1) = b12 + b23 + b31 + a1 + a2 + a3 + x1 + x2 + x3 + c.

By applying Lemma 2.3 (with bij/α, ai/α, xi/α, c/α as bij, ai, xi, c, respectively), there exist
pi ∈ [0, 1] with p1 + p2 + p3 = 1 such that for 1 ≤ i ≤ 3, fi/α ≤ 0.35. So

fi ≤ 0.35(m − e(U1)).

Hence
E(d(Vi)) = m − fi − e(U1) + yi ≥ 0.65m − 0.65e(U1) + yi.

Changing the color of any vj , t + 1 ≤ j ≤ n, affects d(Vi) by at most d(vj). So by
Lemma 2.5, we have for i = 1, 2, 3,

P(d(Vi) < E(d(Vi)) − z) ≤ exp

(

−z2

2
∑n

j=t+1 d(vj)2

)

< exp

( −z2

18m2−α

)

.

Taking z =
√

18 ln 3m1−α/2, we have for i = 1, 2, 3,

P(d(Vi) < E(d(Vi)) − z) < 1/3.

Therefore, there exists a partition V (G) = V1 ∪ V2 ∪ V3 such that for i = 1, 2, 3,

d(Vi) ≥ E(d(Vi)) − z ≥ 0.65m − 0.65e(U1) + yi − z ≥ 0.65m − 0.65e(U1) − z.

Since |U1| = t ≤ mα, e(U1) = O(m3α). So

0.65e(U1) + z = O(m3α) +
√

18 ln 2m1−α/2.

Choosing α = 2
7 to minimize max{3α, 1 − α/2}, we have the desired bound.

3 Bounding two quantities

In this section, we prove two lemmas to be used in our proofs of Lemmas 2.1 and 2.2. The
first is a slight variation of the main lemma in [4]. The difference is that here we relax the
constraint z ≥ max{2x, 2y} in [4] to z ≥ x + y; as a consequence we have a weaker bound.
Our proof mimics that in [4], where a more general result is proved.

Lemma 3.1 Let a, b, x, y, z, e ∈ R
+ such that z ≥ x + y and a + b + x + y + z + e = 1. Then

there exists p ∈ (0, 1) such that

p2a + px + p3e ≤ 1/7, and (1 − p)2b + (1 − p)y + (1 − p)3e ≤ 1/7.
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Proof. For convenience, let

f1 := p2a + px + p3e, and f2 := (1 − p)2b + (1 − p)y + (1 − p)3e.

Note that f1 and f2 are continuous functions of p on [0, 1]. We may assume that

(1) a + x + e > 0 and b + y + e > 0.

Otherwise, by symmetry, we may assume a+x+e = 0. Then a = x = e = 0 and f1 = 0 < 1/7.
Since f2 is a continuous function of p, there exist 0 < ǫ < 1 such that |f2(ǫ) − f2(1)| < 1/7.
Thus, because f2(1) = 0, we have f2(ǫ) < 1/7. So letting p = ǫ, the assertion of the lemma
holds. Thus we may assume (1).

By (1), f1(1) = a+ x+ e > 0 and f2(0) = b+ y + e > 0. Therefore, since f1(0) = 0 = f2(1)
and because f1(p) (respectively, f2(p)) is increasing (respectively, decreasing) and continuous
on [0, 1], we have

(2) for any a, b, x, y, z, e satisfying (1), there exists a unique p ∈ (0, 1) such that f1 = f2.

We call v := (a, b, x, y, z, e, p) ∈ [0, 1]7 a satisfying point if a, b, x, y, z, e, p ∈ R
+, a+ b+x+

y + z + e = 1, z ≥ x + y, p ∈ [0, 1], and f1 = f2. (In fact, p ∈ (0, 1) by (2).) Let D denote the
set of all satisfying points. Note that D is a compact subset of [0, 1]7. A point in D is said to
be a maximal point if the value of f1 at that point is the maximum of f1 over D . Let M be
the set of maximal points, which is nonempty since D 6= ∅ (by (1) and (2)) and D is compact.

It then suffices to show that f1(v) ≤ 1/7 for any v ∈ M . We do so by looking for a special
maximal point. First, we show that

(3) there exists (a, b, x, y, z, e, p) ∈ M such that e = 0, z = x + y, and ab = 0.

Let v := (a, b, x, y, z, e, p) ∈ M . If e > 0, then let v′ := (a + pe, b + (1 − p)e, x, y, z, 0, p). It is
easy to check that v′ ∈ D and fi(v

′) = fi(v) for i = 1, 2. Hence v′ ∈ M , since v ∈ M and
f1(v

′) = f1(v). So we may assume e = 0.
We may assume z = x + y. For, otherwise, assume z > x + y. Let v′ := (a + z − −x −

y, b, x, y, x+ y, 0, p′) with p′ ∈ [0, 1], which satisfies (1). So by (2), we may choose p′ ∈ (0, 1) so
that f1(v

′) = f2(v
′); then v′ ∈ D . If p′ < p, then f2(v

′) > f2(v), contradicting the assumption
that v ∈ M . So p′ ≥ p. Then

f1(v
′) − f1(v) ≥ p2(z − x − y) > 0, and

f2(v
′) − f2(v) = b((1 − p′)2 − (1 − p)2) + y((1 − p′) − (1 − p))

= −(p′ − p)((2 − p − p′)b + y)

≤ 0.

Hence f1(v
′) > f1(v) = f2(v) ≥ f2(v

′), a contradiction.
Now suppose a > 0 and b > 0. Let ε = min{pa, (1 − p)b}, and let

v′ = (a′, b′, x′, y′, z′, e′, p′) := (a − ε

p
, b − ε

1 − p
, x + ε, y + ε, z + 2ε, 0, p).
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It is easy to see that e′ = 0, z′ = x′ + y′, a′b′ = 0, and fi(v
′) = fi(v) for i = 1, 2 (and hence

f1(v
′) = f2(v

′)). Since a + b + x + y + z = 1,

a′ + b′ + x′ + y′ + z′ = 1 + 4ε −
(

ε

p
+

ε

1 − p

)

.

Since p(1 − p) ≤ 1/4 (with equality iff p = 1/2),

4ε ≤ ε

p
+

ε

1 − p

So we have a′ + b′ + x′ + y′ + z′ ≤ 1.
If a′ + b′ +x′ + y′ + z′ = 1 then p = 1/2 and v′ ∈ D . Since fi(v

′) = fi(v), we have v′ ∈ M ;
and hence (3) holds with v′. We may thus assume that a′ + b′ + x′ + y′ + z′ < 1. Let

α =
ε

p
+

ε

1 − p
− 4ε,

and let
v′′ := (a′′, b′′, x′′, y′′, z′′, e′′, p′′) = (a′ + α, b′, x′, y′, z′, 0, p′′)

with p′′ ∈ [0, 1].
Note that e′′ = 0, z′′ = x′′ + y′′, a′′ + b′′ + x′′ + y′′ + z′′ = 1, and v′′ satisfies (1). So

by (2), we may choose p′′ ∈ (0, 1) such that f1(v
′′) = f2(v

′′), and hence v′′ ∈ D . If p′′ ≥ p′

then f1(v
′′) > f1(v

′) = f1(v) (since a′′ > a′ and f1 increases with p). If p′′ < p′ then
f2(v

′′) > f2(v
′) = f2(v) (since f2 decreases with p). In either case, we obtain a contradiction

to the assumption that v ∈ M . Thus, (3) holds.

Let M ′ = {(a, b, x, y, z, e, p) ∈ M : a = b = e = 0 and z = x + y}. We may assume that

(4) M ′ = ∅.

For otherwise, let v = (0, 0, x, y, x + y, 0, p) ∈ M ′. Then f1(v) = px, f2(v) = (1 − p)y, and
x + y = 1/2. Since f1(v) = f2(v), we have px = (1 − p)(1/2 − x). Hence, p = 1 − 2x, and
f1(v) = x(1− 2x) = 1/8− 2(1/4 − x)2 ≤ 1/8 < 1/7. So the assertion of the lemma holds; and
thus we may assume (4).

By (3) and (4), we may assume without losing generality that there exists v = (0, b, x, y, x+
y, 0, p) ∈ M such that b 6= 0. Then b + 2(x + y) = 1, and hence x = (1 − b)/2 − y. So

f1(v) = xp = (1 − b)p/2 − yp, and f2(v) = y(1 − p) + b(1 − p)2.

Since v ∈ M , f1(v) is the maximum value of f1 over D subject to g := f1 − f2 = 0, where
f1, f2, g are considered as functions of b, y, p.

Case 1. y 6= 0.
Then y ∈ (0, 1) and b ∈ (0, 1); so v is a critical point of f1 (as a function of b, y). Hence v

must satisfy ∂f1/∂b = λ∂g/∂b and ∂f1/∂y = λ∂g/∂y, where λ is a Lagrange multiplier. Thus

p = λ
(

p + 2(1 − p)2
)

, and p = λ (p + (1 − p)) = λ.
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Since p ∈ (0, 1), we have λ 6= 0. So from the above equations we deduce that (1 − p) =
2(1 − p)2. Again since p 6= 1, we have p = 1/2. Let

v′ := (a′, b′, x′, y′, z′, e′, p′) = (0, 0, x, y + b/2, z + b/2, 0, p).

Then a′ + b′ + x′ + y′ + z′ + e′ = 1, z′ = x′ + y′, and f1(v
′) = f1(v). Since p = 1/2,

f2(v
′) = (1 − p)(y + b/2) = (1 − p)y + (1 − p)b/2 = (1 − p)y + (1 − p)2b = f2(v).

This implies v′ ∈ M ′, contradicting (4).

Case 2. y = 0.
Then f1(v) = (1 − b)p/2 and f2(v) = b(1 − p)2. By (1) and (2) and since f1(v) = f2(v),

we have b ∈ (0, 1) and p ∈ (0, 1). Since f1(v) is the maximum of f1 over D subject to
g := f1 − f2 = 0 (considered as functions of p and b), v satisfies ∂f1/∂p = λ∂g/∂p and
∂f1/∂b = λ∂g/∂b for some λ. Therefore,

(1 − b)/2 = λ ((1 − b)/2 + 2b(1 − p)) , and p/2 = λ
(

p/2 + (1 − p)2
)

.

Since p ∈ (0, 1), we have λ 6= 0; so we derive from above that b = (1 − p)/(1 + p). From
f1(v) = f2(v), we deduce b = p

p+2(1−p)2
. Hence

p

p + 2(1 − p)2
=

1 − p

1 + p
.

Simplifying this we get p3 − 2p2 + 3p − 1 = 0. Since the function p3 − 2p2 + 3p − 1 is always
increasing and takes value 0.036125 when p = 9/20, so p < 9/20.

We now claim that f1 ≤ 1/7. For otherwise, we have f1 > 1/7, i.e.,

(1 − b)p

2
=

p2

1 + p
> 1/7.

But this gives p > 1+
√

29
14 > 9/20, a contradiction.

In the next lemma we show that under certain conditions two functions can be made equal
and bounded from above. The proof is similar to that of Lemma 3.1.

Lemma 3.2 Let D denote the set of all points (a, b, x, y, e, p) such that a, b, x, y, e ∈ R
+,

p ∈ [0.18, 1], a+b+2(x+y+e) = 1, and p2a+px+p3e = (1.18−p)2b+(1.18−p)y+(1.18−p)3e.
Suppose D 6= ∅. Then for any (a, b, x, y, e, p) ∈ D , p2a + px + p3e ≤ (1.182/8)(1 − 0.82e).

Proof. For convenience, let

g1(a, b, x, y, e, p) := p2a + px + p3e, and

g2(a, b, x, y, e, p) := (1.18 − p)2b + (1.18 − p)y + (1.18 − p)3e.

A point v := (a, b, x, y, e, p) ∈ D is said to be maximal if g1(v) is the maximum of g1 over D .
Let M denote the set of all maximal points. Since D is compact and D 6= ∅, M 6= ∅. Let
M := g(v) for v ∈ M . We claim that
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(1) for any v = (a, b, x, y, e, p) ∈ D , we have e = 0 and g1(v) ≤ M(1 − 0.82e).

It is clear that (1) holds when e = 0. So assume e 6= 0. Let

v′ := (a′, b′, x′, y′, e′, p′) =

(

a + pe

1 − 0.82e
,
b + (1.18 − p)e

1 − 0.82e
,

x

1 − 0.82e
,

y

1 − 0.82e
, 0, p

)

.

Then a′ + b′ + 2(x′ + y′ + e′) = 1, and g1(v
′) = g1(v)/(1− 0.82e) = g2(v)/(1− 0.82e) = g2(v

′);
so v′ ∈ D . Now g1(v) = g1(v

′)(1 − 0.82e) ≤ M(1 − 0.82e), proving (1).

Therefore, it suffices to prove that M ≤ 1.182/8. Let M ′ = {(a, b, x, y, e, p) ∈ M : x =
y = e = 0}. We may assume

(2) M ′ = ∅.

For, suppose there exists some v = (a, b, x, y, e, p) ∈ M ′. Then a + b = 1,

g1(v) = p2a, and g2(v) = (1.18 − p)2b.

Since g1(v) = g2(v), we have

b =
p2

p2 + (1.18 − p)2
.

Note that for any s, t ∈ R
+, we have 2

√
st ≤ s+ t and 2st ≤ s2 + t2; so 8s2t2 ≤ (s+ t)2(s2 + t2),

which implies
s2t2

s2 + t2
≤ 1

2

(

s + t

2

)2

.

Thus

M = g2(v) =
p2 (1.18 − p)2

p2 + (1.18 − p)2
≤ 1

2

(

1.18

2

)2

=
1.182

8
,

and the assertion of the lemma holds. So we may assume (2).

By (1) and (2), there exists v = (a, b, x, y, e, p) ∈ M such that e = 0, and x 6= 0 or y 6= 0.
We now show that v may be chosen so that

(3) y = 0.

For, suppose y 6= 0. Since a + b + 2(x + y + e) = 1 and e = 0, x = (1 − a − b − 2y)/2. So

g1(v) = p2a + p
1 − a − b − 2y

2
, and

g2(v) = (1.18 − p)2 b + (1.18 − p) y.

Suppose b 6= 0. Then since we assume y 6= 0 and because v ∈ M , v is a critical point of g1

subject to g := g1 − g2 = 0, where g1, g2, g are considered as functions of b and y. By applying
the method of Lagrange multipliers, we have ∂g1/∂b = λ∂g/∂b and ∂g1/∂y = λ∂g/∂y. Hence

−p

2
= λ

(

−p

2
− (1.18 − p)2

)

, and − p = λ (−p − (1.18 − p)) .

10



Since p ∈ [0.18, 1], λ 6= 0. Hence from the above expressions we deduce that (1.18 − p)2 =
(1.18 − p)/2. So p = 0.68, since p ∈ [0.18, 1]. Let

v′ := (a′, b′, x′, y′, e′, p′) = (a, b + 2y, x, 0, 0, p).

Then

a′ + b′ + 2(x′ + y′ + e′) = a + b + 2(x + y) = 1,

g1(v
′) = p2a + px = g1(v), and

g2(v
′) = (1.18 − p)2b′ = (1.18 − p)2b + 2(1.18 − p)2y = (1.18 − p)2b + (1.18 − p)y = g2(v).

The last equality holds because p = 0.68. So g1(v
′) = g2(v

′) = g1(v). This means that
v′ ∈ M , with e′ = 0 and y′ = 0; and (3) holds by replacing v with v′.

Now suppose a = 0 and b = 0. Then g1(v) = p(1 − 2y)/2 and g2(v) = (1.18 − p)y. So
g1(v) = g2(v) implies y = p/2.36. Hence,

M = g1(v) =
p

2
− p2

2.36
=

1.18

8
− 1

2 × 1.18

(

p − 1.18

2

)2

≤ 1.18

8
<

1.182

8
,

and the assertion of the lemma holds.
So we may assume a 6= 0 and b = 0. Then

g1(v) = p2a + p(1 − a − 2y)/2, and g2(v) = (1.18 − p)y.

Now v must be a critical point of g1 subject to g := g1 − g2 = 0, where g1, g2, g are considered
as functions of a and y. So there exists λ (Lagrange multiplier) such that ∂g1/∂a = λ∂g/∂a
and ∂g1/∂y = λ∂g/∂y. This gives

p2 − p

2
= λ

(

p2 − p

2

)

, and − p = λ (−p − (1.18 − p)) = −1.18λ.

Since p ∈ [0.18, 1], λ 6= 1 (from the second equation) and p = 1/2 (from the first equation).
Hence, g1(v) = (1−2y)/4 and g2(v) = 0.68y. Since g1(v) = g2(v), we have (1−2y)/4 = 0.68y,
and so y = 1/4.72. Hence M = g2(v) = 0.68/4.72 < 1.182/8. This completes the proof of (3).

By (2) and (3), x 6= 0 and v = (a, b, x, 0, 0, p). Hence x = (1 − a − b)/2,

g1(v) = p2a + p
1 − a − b

2
, and g2(v) = (1.18 − p)2b.

Note that when b = 0, we have M = g2(v) = 0 < 1.182/8. Hence, we may assume

(4) b 6= 0.

We consider two cases: a 6= 0, and a = 0.

Case 1. a 6= 0.
Then v is a critical point of g1 subject to g := g1 − g2 = 0, all considered as functions of a

and b. So there exists λ such that ∂g1/∂a = λ∂g/∂a and ∂g1/∂b = λ∂g/∂b, which give

p2 − p

2
= λ

(

p2 − p

2

)

, and − p

2
= λ

(

−p

2
− (1.18 − p)2

)

.
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Since p ∈ [0.18, 1], we have λ 6= 1 from the second equation; so p2 − p/2 = 0 (from the first
equation), which implies p = 1/2. Define

v′ := (a′, b′, x′, y′, e′, p′) = (a + 2x, b, 0, 0, 0, p).

Then a′ + b′ + 2(x′ + y′ + e′) = a + b + 2x = 1 and g2(v) = g2(v
′). Also, because p = 1/2,

g1(v
′) = p2a′ = p2a + 2p2x = p2a + px = g1(v). Therefore, v′ ∈ M ′, contradicting (2).

Case 2. a = 0.
Then g1(v) = p(1 − b)/2 and g2(v) = (1.18 − p)2b. Since g1(v) = g2(v), we have

b =
p/2

(1.18 − p)2 + p/2
.

If p = 0.18 then b = 0.18/2.18; so M = g2(v) = b < 1.182/8. If p = 1 then b = 1/1.0648; so
M = g2(v) = 0.182b < 1.182/8. Hence we may assume p ∈ (0.18, 1).

Since b 6= 0 (by (4)) and p ∈ (0.18, 1), v is a critical point of g1 subject to g := g1 − g2 = 0,
all considered as functions of b and p. So there exists λ such that ∂g1/∂b = λ∂g/∂b and
∂g1/∂p = λ∂g/∂p, which gives

−p

2
= λ

(

−p

2
− (1.18 − p)2

)

and
1 − b

2
= λ

(

1 − b

2
+ 2b (1.18 − p)

)

.

Since p ∈ (0.18, 1), we have λ 6= 0 (from the first equation). So

p

2

(

1 − b

2
+ 2b (1.18 − p)

)

=
1 − b

2

(p

2
+ (1.18 − p)2

)

.

By a simple calculation, we derive

b =
1.18 − p

1.18 + p
.

Therefore, we have (1.18 − p)3 = p2.
Note that h(p) := (1.18 − p)3 − p2 is a decreasing function over (0.18, 1), and a simple

calculation shows h(0.53) = −0.006275 < 0. So p < 0.53. Also note that g1(v) = p2/(1.18+p)
is an increasing function over (0.18, 1). So

g1(v) =
p2

1.18 + p
<

(0.53)2

1.18 + 0.53
< 0.165 <

1.182

8
.

This completes the proof of the lemma.

4 Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. For any permutation ijk of {1, 2, 3}, let

αi := bjk + xj + xk, βi := aj + ak, and γi := αi + βi + c.

Then for i = 1, 2, 3,
fi(pi) = (1 − pi)αi + (1 − pi)

2βi + (1 − pi)
3c.

By symmetry, we may assume that
γ1 ≤ γ2 ≤ γ3.

We may further assume that
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(1) γ1 ≥ 0.35.

For, suppose γ1 < 0.35. Let p1 = 0; then f1 = γ1 < 0.35. We wish to apply Lemma 3.1 to
show that there exist p2, p3 ∈ (0, 1) such that p2 + p3 = 1 and f2 = f3 ≤ 0.35. Let

m = α2 + α3 + β2 + β3 + (α2 + α3) + c.

Let x = α2/m, y = α3/m, a = β2/m, b = β3/m, z = (α2 + α3)/m, and e = c/m. Then
a + b + x + y + z + e = 1 and z ≥ x + y. Thus by Lemma 3.1, there exist p2, p3 ∈ (0, 1) such
that p2 + p3 = 1 and f2/m = f3/m ≤ 1/7.

Note that

m = 2(b13 + x1 + x3 + b12 + x1 + x2) + (a1 + a2 + a1 + a3) + c ≤ 2 + 2x1.

Since bij ≥ max{2xi, 2xj} for 1 ≤ i 6= j ≤ 3, we have 5x1 ≤ x1 +b12 +b13 ≤ 1. Hence x1 ≤ 1/5,
and so m ≤ 12/5. Therefore, f2 = f3 ≤ (12/5)/7 < 0.35; so (i) holds and we may assume (1).

We now write fi(pi) for fi, considering it as a function of pi over [0, 1] (while fixing the other
parameters). Differentiating with respect to pi, we have f ′

i(pi) = −αi−2(1−pi)βi−3(1−pi)
2c ≤

0 and f ′′
i (pi) = 2βi + 6(1− pi)c ≥ 0. Note from (1) that f ′(pi) < 0 with the possible exception

when pi = 1. So

(2) each fi(pi) is both decreasing and convex over [0, 1].

Because of (2), we approximate fi(pi) (for each i) with the line hi(pi) through the the
points (0, fi(0)) and (1, fi(1)) in the Euclidean plane. Hence hi(pi) = (1 − pi)γi. It is also
convenient to consider the reflection of f3(p3) with respect to the line p3 = 1/2, namely
f4(p3) = f3(1 − p3) = p3α3 + p2

3β3 + p3
3c. Let h4(p3) = γ3p3, which is the reflection of h3(p3)

with respect to the line p3 = 1/2.
By (2) and by definition, we have

(3) f4(p3) is convex and increasing over [0, 1]; and for i = 1, 2, 3, 4, fi(pi) ≤ hi(pi) when
pi ∈ [0, 1].

For each 0 ≤ α ≤ γ1 and for i = 1, 2, 3, 4, let pi(α) denote the unique root of fi(pi) = α in
[0, 1], and qi(α) the unique root of hi(qi) = α in [0, 1]. Note that from (2) and (3), we have

(4) for α ∈ [0, γ1] and for i = 1, 2, 3, pi(α) ≤ qi(α), pi(α) and qi(α) decreases with α; and
p4(α) and q4(α) increases with α.

Let (a, b) be the point where f2 and f4 intersect, that is, f2(a) = f4(a) = b; so p2(b) =
p4(b) = a. Let (a′, b′) be the point where h2 and h4 intersect, i.e., h2(a

′) = h4(a
′) = b′. By (2)

and (3), we have b ≤ b′. By solving h2(a
′) = h4(a

′) = b′, we have

a′ =
γ2

γ2 + γ3
, and b′ =

γ2γ3

γ2 + γ3
.

Since h3(1 − a′) = h4(a
′) = b′ and by definition, we have q3(b

′) = 1 − q2(b
′); and so q2(b

′) +
q3(b

′) = 1.
We may assume
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(5) b′ = γ2γ3

γ2+γ3
≥ γ1.

For, suppose b′ < γ1. Then b < γ1; so pi(b) is defined for i = 1, 2, 3, 4. Since f3 and
f4 are reflections through the line p3 = 1/2, p3(b) + p4(b) = 1. Since p2(b) = p4(b) = a and
p1(b) > 0, we have p1(b)+p2(b)+p3(b) = p1(b)+1 > 1. Also, p1(γ1) = 0, and p2(γ1)+p3(γ1) ≤
q2(γ1)+q3(γ1) < q2(b

′)+q3(b
′) = 1; so p1(γ1)+p2(γ1)+p3(γ1) < 1. Since p1(α)+p2(α)+p3(α)

is a decreasing function of α, there exists α ∈ (b, γ1) (and hence by (4), pi(α) ∈ (0, 1) for
i = 1, 2, 3) such that p1(α) + p2(α) + p3(α) = 1; so (ii) holds with fi(pi) = α for i = 1, 2, 3.

We claim that

(6) γ1 ≤ 1/2, 0.4 ≤ γ2 ≤ 1, 0.7 ≤ γ3 ≤ 1, γ2 + γ3 ≥ 1.4, and c −∑1≤i<j≤3 bij ≥ −0.25.

By (5), γ2γ3

γ2+γ3
≥ γ1. So by Cauchy-Schwarz,

γ2 + γ3 ≥ 4
1
γ2

+ 1
γ3

≥ 4γ1.

Hence by (1), γ2 + γ3 ≥ 1.4. Then γ2 ≥ 0.4 and, since γ3 ≥ γ2, γ3 ≥ (γ2 + γ3)/2 ≥ 0.7. Since

γ1 + γ2 + γ3 = 2 + c −
∑

1≤i<j≤3

bij,

we have 5γ1 ≤ γ1 + γ2 + γ3 = 2 + c−∑i<j bij , and so γ1 ≤ 2/5 + (c−∑i<j bij)/5. Therefore,
since γ2 + γ3 ≤ 2,

2 + c −
∑

i<j

bij = γ1 + γ2 + γ3 ≤ 2 +
2

5
+

c −∑i<j bij

5
.

So c −∑i<j bij ≤ 1/2, which in turn implies 5γ1 ≤ 2 + c −∑i<j bij ≤ 5/2. Thus, γ1 ≤ 1
2 . By

(1), 1.75 ≤ 5γ1 ≤ 2 + c −∑i<j bij, which implies c −∑i<j bij ≥ −0.25.

We also claim that

(7) xi ≤ 1.25/9, for i = 1, 2, 3.

Since bij ≥ 2xi and bij ≥ 2xj , c + 5xi ≤ 1. By (6), c −∑ bij ≥ −0.25; so c − 4xi ≥ −0.25.
Hence 1 − 5xi ≥ 4xi − 0.25, which gives (7).

We now prove that

(8) f1(0.18) ≤ 0.35.

This is true if γ1 ≤ 0.35/0.82 as f1(0.18) ≤ 0.82γ1. So we may assume that γ1 > 0.35/0.82.
From the proof of (6) we see that c ≥∑i<j bij + 5γ1 − 2. Then, since b12 ≥ 2x2, b13 ≥ 2x3 and
α1 = b23 + x2 + x3, we have c ≥ α1 + 5γ1 − 2. Also, γ1 ≥ α1 + c. So γ1 − α1 ≥ α1 + 5γ1 − 2.
Therefore, 2γ1 + α1 ≤ 1. Hence, since γ1 > 0.35/0.82, we have α1 ≤ 1 − 0.7/0.82 and
c ≥ 5γ1 − 2 ≥ 5× (0.35/0.82)− 2 = 0.11/0.82. This implies that 0.82α1 +0.823c < 0.7(α1 + c).
Hence, since 0.822 < 0.7, f1(0.18) < 0.7γ1 ≤ 0.35 (as γ1 ≤ 1/2 by (6)). So we have (8).
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Now let p1 = 0.18; then by (8), f1(p1) ≤ 0.35. We wish to apply Lemma 3.2 to prove the
existence of p2 and p3 such that p2 + p3 = 1− p1 = 0.82, f2(p2) ≤ 0.35 and f3(p3) ≤ 0.35. Let
1 − p2 = p and 1 − p3 = 1.18 − p. Let

m = β2 + β3 + 2(α2 + α3 + c),

and let a = β2/m, b = β3/m, x = α2/m, y = α3/m, e = c/m, g1(p) = f2(p)/m, and
g2(p) = f3(p)/m. Then a + b + 2(x + y + e) = 1,

g1(p) = p2a + px + p3e, and g2(p) = (1.18 − p)2b + (1.18 − p)y + (1.18 − p)3e.

Note that

m = 2a1 + a2 + a3 + 2(b12 + b13 + 2x1 + x2 + x3 + c) = 2 + 2x1 − (a2 + a3 + 2b23) ≤ 2 + 2x1,

and

m = 2 + 2x1 − (a2 + a3 + 2b23)

= 2 + 2x1 − γ1 + x2 + x3 + c − b23

≤ 2 + 2x1 − γ1 + c (since b23 ≥ max{2x1, 2x3})
≤ 2 + 2(1.25/9) − 0.35 + c (by (1) and (7)).

We claim that

(9) γ2/m > 0.18 and γ3/m > 0.18.

By (7), m ≤ 2 + 2(1.25/9); so by (6), γ3/m ≥ 0.7/(2 + 2.5/9) > 0.18. If γ2 ≥ 0.5, then
γ2/m ≥ 0.5/(2 + 2.5/9) > 0.18. So we may assume that γ2 < 0.5. Then by (6), γ3 > 0.9.
Hence, 2x1 ≤ b13 ≤ b13 + b23 + x3 + a3 = 1 − γ3 < 0.1. So m ≤ 2 + 2x1 < 2.1 and, by (6),
γ2/m ≥ 0.4/2.1 > 0.18. Thus, we have (9).

In order to apply Lemma 3.2, we need to show that there exists p ∈ [0.18, 1] such that
g1(p) = g2(p). To see this, consider g1, g2 as functions of p. By (9), we note that

g1(0.18) ≤ 0.18(a + x + e) ≤ 0.18, and

g2(0.18) = b + y + e = γ3/m > 0.18.

So g1(0.18) < g2(0.18). Similarly, we can show g1(1) > 0.18 ≥ g2(1). By (2), g1(p) is an
increasing function, and g2(p) is a decreasing function. So there exists p ∈ (0.18, 1) such that
g1(p) = g2(p).

We can now apply Lemma 3.2. As a consequence, g1(p) = g2(p) ≤ (1.182/8)(1− 0.82e), so
f2(p) = f3(p) ≤ (1.182/8)(m − 0.82c). If c ≤ 0.35 then, since m ≤ 2 + 2(1.25/9) − 0.35 + c,

f2(p) = f3(p) ≤ 1.182

8
(2 + 2.5/9 − 0.35 + 0.18 × 0.35) < 0.347 < 0.35.

So we may assume c > 0.35. Then, since m ≤ 2 + 2x1 ≤ 2 + 2.5/9 by (7),

f2(p) = f3(p) ≤ 1.182

8
(2 + 2.5/9 − 0.82 × 0.35) < 0.35.
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Note that p2 = 1 − p and p3 = p − 0.18. Since p ∈ (0.18, 1), we have p2, p3 ∈ (0, 1). Clearly,
p1 + p2 + p3 = 1. So (i) holds, which completes the proof of the lemma.

In order to prove Lemma 2.2, we first deal with the special case when bij = xi + xj for
1 ≤ i < j ≤ 3.

Lemma 4.1 Let bi, yi ∈ R
+ for i = 1, 2, 3 such that

∑3
i=1(3yi + bi) = 2. Suppose there exist

qi ∈ (0, 1), i = 1, 2, 3, such that q1 +q2 +q3 = 2 and 2y1q1 +b1q
2
1 = 2y2q2 +b2q

2
2 = 2y3q3 +b3q

2
3.

Then for i = 1, 2, 3, 2yiqi + biq
2
i ≤ 0.35.

Proof. For convenience, let fi := 2yiqi + biq
2
i , i = 1, 2, 3. Let D denote the set of all points

(b1, b2, b3, y1, y2, y3, q1, q2, q3) such that bi, yi ∈ R
+ and qi ∈ [0, 1] for i = 1, 2, 3,

3
∑

i=1

(3yi + bi) = 2,

q1 + q2 + q3 = 2, and

f1 = f2 = f3.

So D is a compact subset of [0, 2]3 × [0, 2/3]3 × [0, 1]3. Note that D 6= ∅ by assumption of the
lemma. Let

v := (b1, b2, b3, y1, y2, y3, q1, q2, q3) ∈ D

such that f1(v) is the maximum of f1 over D . It suffices to show that f1(v) ≤ 0.35.
We may assume that qi 6= 0 for i = 1, 2, 3; as otherwise we have fi(v) = 0 < 0.35 for

i = 1, 2, 3. Thus, since f1 = f2 = f3, we see that if fi = 0 for some i ∈ {1, 2, 3} then
bi = yi = 0 for i = 1, 2, 3, contradicting the condition that

∑3
i=1(3yi + bi) = 2. Hence, we have

(1) for each i ∈ {1, 2, 3}, qi > 0, and bi > 0 or yi > 0.

We may assume that

(2) there exists some i ∈ {1, 2, 3} such that bi > 0.

For, suppose bi = 0 for i = 1, 2, 3. Then fi = 2yiqi and yi > 0 (by (1)) for i = 1, 2, 3, and
y1 + y2 + y3 = 2/3. Hence, by Cauchy-Schwarz,

1

y1
+

1

y2
+

1

y3
≥ 9

y1 + y2 + y3
=

27

2
.

Setting f1 = f2 = f3 = α, we have qi = α/2yi for i = 1, 2, 3. Therefore, since q1 + q2 + q3 = 2,

α =
4

1
y1

+ 1
y2

+ 1
y3

≤ 8

27
< 0.35.

We may also assume that

(3) there exists some j ∈ {1, 2, 3} such that yj > 0.
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For, otherwise, y1 = y2 = y3 = 0. Then fi = biq
2
i and bi > 0 (by (1)) for i = 1, 2, 3, and

b1 + b2 + b3 = 2. Setting f1 = f2 = f2 = α, we have qi =
√

α/bi. Since q1 + q2 + q3 = 2, we
have (by Cauchy-Schwarz),

α =
4

(

1√
b1

+ 1√
b2

+ 1√
b3

)2 ≤ 4

81

(

√

b1 +
√

b2 +
√

b3

)2
≤ 4

9

b1 + b2 + b3

3
=

8

27
< 0.35.

We may further assume that

(4) there exists some i ∈ {1, 2, 3} such that biyi 6= 0.

Otherwise, we have two cases (by symmetry): y1 = y2 = b3 = 0, or b1 = b2 = y3 = 0
First, assume y1 = y2 = b3 = 0. Then, b1 > 0, b2 > 0, y3 > 0, b1 + b2 + 3y3 = 2,

f1 = b1q
2
1 , f2 = b2q

2
2, and f3 = 2y3q3.

Setting α = f1 = f2 = f3 and using q1 + q2 + q3 = 2, we have

√
α√
b1

+

√
α√
b2

+
α

2y3
= 2.

So √
α =

4
√

(1/
√

b1 + 1/
√

b2)2 + 4/y3 + (1/
√

b1 + 1/
√

b2)
.

Note that
(

1√
b1

+
1√
b2

)2

≥ 4√
b1b2

≥ 8

b1 + b2
=

8

2 − 3y3
,

so √
α ≤ 4

√

8
2−3y3

+ 4
y3

+
√

8
2−3y3

.

Let f(y3) :=
√

8/(2 − 3y3) + 4/y3 +
√

8/(2 − 3y3). Note that y3 ∈ (0, 2/3), and

f(y3) ≥























√
4 + 20 +

√
4, if y3 ∈ (0, 1/5];

√

8/(7/5) + 16 +
√

8/(7/5), if y3 ∈ (1/5, 1/4];
√

8/(5/4) + 12 +
√

8/(5/4), if y3 ∈ (1/4, 1/3];√
8 + 8 +

√
8, if y3 ∈ (1/3, 1/2];√

16 + 6 +
√

16, if y3 ∈ (1/2, 2/3).

Therefore, f(y3) ≥ 6.819, and hence α ≤ (4/6.819)2 < 0.35
Now assume b1 = b2 = y3 = 0. Then y1 > 0, y2 > 0, b3 > 0, 3(y1 + y2) + b3 = 2,

f1 = 2y1q1, f2 = 2y2q2, and f3 = b3q
2
3.

Again, setting α = f1 = f2 = f3 and using q1 + q2 + q3 = 2, we have

α

2y1
+

α

2y2
+

√
α√
b3

= 2,

17



So √
α =

4
√

1/b3 + 4(1/y1 + 1/y2) + 1/
√

b3

.

Note that 1/y1 + 1/y2 ≥ 4/(y1 + y2) = 12/(2 − b3). Hence

√
α ≤ 4

√

1/b3 + 48/(2 − b3) + 1/
√

b3

.

Let g(b3) :=
√

1/b3 + 48/(2 − b3) + 1/
√

b3. Note that b3 ∈ (0, 2), and

g(b3) ≥



























√

3 + 48/(2 − 0) +
√

3, if b3 ∈ (0, 1/3];
√

2 + 48/(2 − 1/3) +
√

2, if b3 ∈ (1/3, 1/2];
√

3/2 + 48/(2 − 1/2) +
√

3/2, if b3 ∈ (1/2, 2/3];
√

2/3 + 48/(2 − 2/3) +
√

2/3, if b3 ∈ (2/3, 3/2];
√

1/2 + 48/(2 − 3/2) +
√

1/2, if b3 ∈ (3/2, 2).

Therefore, g(b3) ≥ 6.87, and hence α ≤ (4/6.87)2 < 0.35.

By (4) and by symmetry, we may assume that

(5) b3y3 6= 0.

We may further assume that

(6) b1y1 = 0 and b2y2 = 0.

For, otherwise, by symmetry, assume b2y2 > 0. Then v is a solution to the following optimiza-
tion problem:

Maximize f1

subject to

h1 := f1 − f2 = 0,

h2 := f1 − f3 = 0,

h3 := 3(y1 + y2 + y3) + (b1 + b2 + b3) − 2 = 0,

h4 := q1 + q2 + q3 − 2 = 0.

Applying the method of Lagrange multipliers, we have, for each u ∈ {yi, bi : i = 2, 3},

∂f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u.

Thus,

for u = y2, we have 0 = λ1(−2q2) + 3λ3,

for u = y3, we have 0 = λ2(−2q3) + 3λ3,

for u = b2, we have 0 = λ1(−q2
2) + λ3,

for u = b3, we have 0 = λ2(−q2
3) + λ3.

18



Clearly, if λi = 0 for some i ∈ {1, 2, 3} then λi = 0 for all i = 1, 2, 3 (since qi > 0 by (1)).
In fact, λi 6= 0 for all i = 1, 2, 3. To see this we notice that either b1 > 0 or y1 > 0, so v also
satisfies ∂f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u for u = b1 or u = y1. For
u = b1, we have q2

1 = λ1q
2
1 + λ2q

2
1 + λ3, and for u = y1 we have 2q1 = λ12q1 + λ22q1 + 3λ3. In

either case, we see that λi 6= 0 (since q1 > 0).
Now using the partial derivatives with respect to b2 and y2, we get q2 = 2/3; and using

the partial derivatives with respect to b3 and y3 we obtain q3 = 2/3. So q1 = 2/3 since
q1 + q2 + q3 = 2. Then for i = 1, 2, 3,

fi =
4

3
yi +

4

9
bi =

4

9
(3yi + bi).

Since f1 = f2 = f3 and
∑3

i=1(3yi + bi) = 2, we get 3yi + bi = 2/3 for i = 1, 2, 3, and hence
fi = 8/27 < 0.35. This proves (6)

By (5) and (6), we have three cases to consider: b1 = b2 = 0; y1 = y2 = 0; y1 = b2 = 0 or
b1 = y2 = 0. Let h1, h2, h3, h4 be defined as in the proof of (6).

Case 1. b1 = b2 = 0.
Then y1 > 0, y2 > 0, f1 = 2y1q1, f2 = 2y2q2, f3 = 2y3q3 + b3q

2
3. Moreover, v is a critical

point of f1 subject to h1 = h2 = h3 = h4 = 0, all considered as functions of y1, y2, y3, b3. Hence
for u ∈ {y1, y2, y3, b3}, v satisfies

∂f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u.

So

for u = y1, we have 2q1 = λ1(2q1) + λ2(2q1) + 3λ3,

for u = y2, we have 0 = λ1(−2q2) + 3λ3,

for u = y3, we have 0 = λ2(−2q3) + 3λ3,

for u = b3, we have 0 = λ2(−q2
3) + λ3.

Clearly, λi 6= 0 for i = 1, 2, 3. So from the partial derivatives with respect to b3 and y3, we
have q3 = 2/3, and hence q1 + q2 = 4/3. Set α := 2y1q1 = 2y2q2 = 4(3y3 + b3)/9. In particular,
α = 4(3y3 + b3)/9 = 4(2 − 3(y1 + y2))/9, and so y1 + y2 = 2/3 − 3α/4. Using q1 + q2 = 4/3
and Cauchy-Schwarz, we get

4

3
=

α

2y1
+

α

2y2
≥ 2α

y1 + y2
=

2α

2/3 − 3α/4
.

This implies α ≤ 8/27 < 0.35.

Case 2. y1 = y2 = 0.
Then b1 > 0, b2 > 0, f1 = b1q

2
1, f2 = b2q

2
2 and f3 = 2y3q3 + b3q

2
3. Now v is a critical point

of f1 subject to h1 = h2 = h3 = h4 = 0, all considered as functions of b1, b2, b3, y3. Hence for
u ∈ {b1, b2, b3, y3}, v satisfies

∂f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u.
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Thus,

for u = b1, we have q2
1 = λ1(q

2
1) + λ2(q

2
1) + λ3,

for u = b2, we have 0 = λ1(−q2
2) + λ3,

for u = b3, we have 0 = λ2(−q2
3) + λ3

for u = y3, we have 0 = λ2(−2q3) + 3λ3.

Clearly, λi 6= 0 for i = 1, 2, 3. So from the partial derivatives with respect to b3 and y3, we
have q3 = 2/3, and hence q1 + q2 = 4/3. Setting α := y1q

2
1 = y2q

2
2 = 4(3y3 + b3)/9, we have

qi =
√

α/
√

bi for i = 1, 2, 3y3 + b3 = 9α/4, and b1 + b2 = 2 − 9α/4. So

4

3
=

√
α√
b1

+

√
α√
b2

≥ 2
√

α
√√

b1

√
b2

≥ 2
√

2α√
b1 + b2

=
2
√

2α
√

2 − 9α/4
.

This gives α ≤ 8/27 < 0.35.

Case 3. y1 = b2 = 0, or y2 = b1 = 0.
By symmetry, we may assume that y1 = b2 = 0. Then b1 > 0, y2 > 0, b1+3y2+(3y3+b3) =

2, f1 = b1q
2
1, f2 = 2y2q2, and f3 = 2y3q3 + b3q

2
3.

So v is a critical point of f1 subject to h1 = h2 = h3 = h4 = 0, all considered as functions
of b1, y2, b3, y3. Hence v satisfies ∂f1/∂u = λ1∂h1/∂u + λ2∂h2/∂u + λ3∂h3/∂u + λ4∂h4/∂u for
u ∈ {b1, y2, b3, y3}. Thus,

for u = b1, we have q2
1 = λ1(q

2
1) + λ2(q

2
1) + λ3,

for u = y2, we have 0 = λ1(−2q2) + 3λ3,

for u = b3, we have 0 = λ2(−q2
3) + λ3

for u = y3, we have 0 = λ2(−2q3) + 3λ3.

Clearly, λi 6= 0 for i = 1, 2, 3. So from the partial derivatives with respect to b3 and y3, we
have q3 = 2/3, and hence q1 + q2 = 4/3.

Set α = f1(v) = f2(v) = f3(v). Then

2 = b1 + 3y2 + (3y3 + b3) =

(

1

q2
1

+
3

2q2
+

9

4

)

α =

(

1

q2
1

+
3

2(4/3 − q1)
+

9

4

)

α.

Let h(q1) := 1/q2
1 + 3/(2(4/3 − q1)). Note that q1 ∈ (0, 4/3) and

h(q1) ≥























4 + 3/(2(4/3 − 0)), if q1 ∈ (0, 1/2];
9/4 + 3/(2(4/3 − 1/2)), if q1 ∈ (1/2, 2/3];
25/16 + 3/(2(4/3 − 2/3))), if q1 ∈ (2/3, 4/5];
1 + 3/(2(4/3 − 4/5)), if q1 ∈ (4/5, 1];
9/16 + 3/(2(4/3 − 1)), if q1 ∈ (1, 4/3).

So h(q1) ≥ 3.8125, and hence α = 2/(h(q1) + 9/4) ≤ 2/(3.8125 + 9/4) < 0.35.

Proof of Lemma 2.2. For any permutation ijk of {1, 2, 3}, and let yk = xi + xj and
bk = ai + aj. Then

fk = (1 − pk)(bij + yk) + (1 − pk)
2bk.
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Set α = f1(p1) = f2(p2) = f3(p3). Note that we may assume α > 0 (otherwise we are
done); and hence bij + yk + bk > 0 for k = 1, 2, 3. Since pk ∈ (0, 1), 1 − pk ∈ (0, 1); and hence
by solving fk(pk) = α we get

1 − pk =
2α

√

(bij + yk)2 + 4bkα + (bij + yk)
.

We wish to show that α ≤ 0.35; so we consider the following optimization problem.

Maximize α

Subject to

g1 :=

3
∑

k=1

2α
√

(bij + yk)2 + 4bkα + (bij + yk)
− 2 = 0,

g2 := b12 + b13 + b23 +
1

2
(y1 + y2 + y3 + b1 + b2 + b3) − 1 = 0,

bij ≥ yk ≥ 0, for {i, j, k} = {1, 2, 3}.

Here, g1, g2 are considered as functions of α, bij , bk, yk. By the assumption of the lemma, the
feasible region of this optimization problem is nonempty.

Claim 1. α is maximized only when bij = yk or yk = 0, for all {i, j, k} = {1, 2, 3}.
For, suppose bij > yk > 0 for some permutation ijk of {1, 2, 3}. By applying the method of
Lagrange multipliers, we have ∂α/∂u = λ1∂g1/∂u + λ2∂g2/∂u, where u ∈ {α, bij , yk}. So

for u = bij , 0 = λ1

−2α
(

bij + yk +
√

(bij + yk)2 + 4bkα
)

√

(bij + yk)2 + 4bkα
(

√

(bij + yk)2 + 4bkα + (bij + yk)
)2 + λ2,

for u = yk, 0 = λ1

−2α
(

bij + yk +
√

(bij + yk)2 + 4bkα
)

√

(bij + yk)2 + 4bkα
(

√

(bij + yk)2 + 4bkα + (bij + yk)
)2 +

λ2

2
,

for u = α, 1 = λ1
∂g1

∂α
+ λ2

∂g2

∂α
.

The first two equations give λ1 = λ2 = 0, which contradicts the third equation.
Therefore, the maximum of α is achieved when bij = yk for some permutation ijk of

{1, 2, 3}, or when yk = 0 for some k ∈ {1, 2, 3}; so Claim 1 follows.

Claim 2. We may assume that α is maximized when bij > yk for some {i, j, k} = {1, 2, 3}.
For, otherwise, the maximum of α is achieved when bij = yk for all permutations ijk of

{1, 2, 3}. Set qk = 1−pk for k = 1, 2, 3; and so fk = 2ykqk+bkq
2
k and 3(y1+y2+y3)+b1+b2+b3 =

2. We can now apply Lemma 4.1 and conclude that fk ≤ 0.35 for k = 1, 2, 3. So Claim 2
holds.

From Claim 1 and Claim 2, we deduce
Claim 3. α is maximized when there exists a permutation ijk of {1, 2, 3} such that bij > 0

and yk = 0 (so xi = xj = 0).
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We consider three cases.

Case 1. α is maximized when xk = bik = bjk = 0 and bk = 0.
Then bij + ak = 1, fk = (1 − pk)bij , fi = (1 − pi)

2ak, and fj = (1 − pj)
2ak.

Since fi = fj, we have pi = pj. In particular, pi ∈ (0, 1/2) as pi + pj + pk = 1. Since
bij = 1− ak and fk = fi, we have 2pi(1− ak) = (1− pi)

2ak. Therefore, ak = 2pi/(1 + p2
i ), and

so,

α =
2pi(1 − pi)

2

1 + p2
i

=
4

1 + p2
i

+ 2pi − 4.

Differentiating with respect to pi, we have α′(pi) = 2− 8pi/(1+ p2
i )

2 and α′′(pi) < 0. Thus
α(pi) has maximum when α′(pi) = 0, i.e., when (1 + p2

i )
2 = 4pi. We now estimate α(pi)

subject to (1 + p2
i )

2 = 4pi. Considering the function g(x) := (1 + x2)2 − 4x for x ∈ (0, 1/2),
we see that g′(x) = 4(1 + x2)x − 4 < 0, g(0.3) < 0, and g(0.29) > 0; so g(x) = 0 implies
that x ∈ (0.29, 0.3). Hence, (1 + p2

i )
2 = 4pi implies pi ∈ (0.29, 0.3). On the other hand,

(1 + p2
i )

2 = 4pi implies α(pi) = 2/
√

pi + 2pi − 4. Since the function h(t) := 2/
√

t + 2t − 4 is

decreasing over [0.29, 0.3] (because h′ = 2− t−3/2 < 0 for t ∈ [0.29, 0.3]), we have α ≤ α(pi) =
h(pi) ≤ h(0.29) = 2/

√
0.29 + 2(0.29) − 4 < 0.35.

Case 2. α is maximized when xk = bik = bjk = 0 and bk > 0.
Then bij + (bi + bj + bk)/2 = 1, fi = (1 − pi)

2bi, fj = (1 − pj)
2bj, and fk = (1 − pk)bij +

(1 − pk)
2bk. From ∂α/∂bk = λ1∂g1/∂bk + λ2∂g2/∂bk, we obtain

0 = λ1
−4α2

√

(bij + yk)2 + 4bkα
(

√

(bij + yk)2 + 4bkα + (bij + yk)
)2 +

λ2

2
.

Using this and the partial derivatives with respect to u ∈ {α, bij} (as in the proof of Claim 1),
we deduce that λ1 6= 0 and λ2 6= 0, and

4α = bij +
√

b2
ij + 4bkα.

Therefore, α is maximized when 4α = bij +
√

b2
ij + 4bkα, that is 4α = bk + 2bij which implies

pk = 1/2 (since fk(pk) is decreasing and fk(pk) = α has a unique solution).
Write b′k := bk +2bij ; then fk = (1−pk)

2b′k (because pk = 1/2). Note that (b′k +bi+bj)/2 =
bij + (bk + bi + bj)/2 = 1. Since α = f1 = f2 = f3 and (1 − pi) + (1 − pj) + (1 − pk) = 2, we
have √

α
√

b′k
+

√
α√
bi

+

√
α

√

bj

= 2.

Applying Cauchy-Schwarz, we have

α =





2
1√
b′
k

+ 1√
bi

+ 1√
bj





2

≤ 4

(

√

b′k +
√

bi +
√

bj

9

)2

≤ 4

9

b′k + bi + bj

3
=

8

27
< 0.35.

Case 3. α is maximized when (i) xk > 0, or (ii) xk = 0 and bik > 0 or bjk > 0.
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We claim that there exist a′m, x′
m, b′mn ∈ R

+, for any 1 ≤ m 6= n ≤ 3, such that b′mn = b′nm,

b′mn ≥ max{2x′
m, 2x′

n},
b′12 + b′23 + b′31 + x′

1 + x′
2 + x′

3 + a′1 + a′2 + a′3 = 1,

b′mn + x′
m + x′

n ≥ bmn + xm + xn,

a′m + a′n = am + an, and

b′st + x′
s + x′

t > bst + xs + xt for some 1 ≤ s 6= t ≤ 3.

There are two cases to consider. First, suppose xk > 0. Then there exists δ > 0 such that
x′

k = xk − δ > 0 and b′ij = bij − 2δ ≥ 2δ. Let b′ik = bik + δ, b′jk = bjk and x′
i = x′

j = δ. In
particular, xk > δ; and so bik ≥ 2xk ≥ 2δ and bjk ≥ 2xk ≥ 2δ. It is easy to verify that the
claim holds by setting a′i = ai, a′j = aj and a′k = ak. Now assume that xk = 0, and bik > 0 or
bjk > 0. We may assume bik > 0; the case bjk > 0 is symmetric. Then there exists δ > 0 such
that b′ik = bik − δ/2 ≥ δ and b′ij = bij − δ/2 ≥ δ. Let b′jk = bjk + δ/2 and x′

i = δ/2. It is easy to
verify that the claim holds by setting x′

j = xj = 0, x′
k = xk = 0, a′i = ai, a′j = aj and a′k = ak.

For every permutation mnl of {1, 2, 3}, let

f ′
l := (1 − pl)(b

′
mn + x′

m + x′
n) + (1 − pl)

2(a′m + a′n).

For convenience of comparison, recall that

α := fl = (1 − pl)(bmn + xm + xn) + (1 − pl)
2(am + an).

By Lemma 2.1, there exist p′i ∈ [0, 1] with p′1 + p′2 + p′3 = 1 such that f ′
l (p

′
l) ≤ 0.35 for

l = 1, 2, 3, or f ′
1(p

′
1) = f ′

2(p
′
2) = f ′

3(p
′
3) and p′i ∈ (0, 1). Since pi ∈ [0, 1] and p1 + p2 + p3 = 1,

there exists some l such that 1 − pl ≤ 1 − p′l.
If f ′

i(p
′
i) ≤ 0.35 for i = 1, 2, 3 then, since b′mn+x′

m+x′
n ≥ bmn+xm+xn and a′m+a′n = am+an

for all {m,n, l} = {1, 2, 3}, we have fl(pl) ≤ f ′
l (p

′
l) ≤ 0.35. Hence α ≤ 0.35.

We may thus assume f ′
1(p

′
1) = f ′

2(p
′
2) = f ′

3(p
′
3). Suppose 1 − pl < 1 − p′l. Then, since

b′mn+x′
m+x′

n ≥ bmn+xm+xn and a′m+a′n = am+an, and because bmn+xm+xn+am+an > 0
(see the beginning of the proof), we have fl(pl) < f ′

l (p
′
l), contradicting the maximality of α.

So 1 − pl = 1 − p′l. Then (1 − p′m) + (1 − p′n) = (1 − pm) + (1 − pn). So we may assume that
1− pn ≤ 1− p′n. By the same argument above for 1− p′l = 1− pl, we derive the contradiction
fn(pn) < f ′

n(p′n) if 1−pn < 1−p′n; and so we must have 1−p′n = 1−pn. Hence we have p′i = pi

for i = 1, 2, 3. Recall that there exist 1 ≤ s 6= t ≤ 3 such that b′st + x′
s + x′

t > bst + xs + xt. Let
r ∈ {1, 2, 3} \ {s, t}. Then fr(pr) < f ′

r(p
′
r), again a contradiction to the maximality of α.

5 Conclusion

We have shown that if G is a 3-uniform hypergraph with m edges then V (G) admits a partition
V1, V2, V3 so that each Vi meets at least 0.65m − o(m) edges. Towards this end, we mention a
conjecture of Bollobás and Scott in [5]: for integers r, k ≥ 2, every r-uniform hypergraph with
m edges has a vertex-partition into k sets, each of which meets at least (1+o(1))(1−(1−1/r)k)m
edges. In particular, for r = k = 3, the bound in this conjecture is 19/27m + o(m), where
19/27 ≈ 0.7037. Although our method can be modified to make further improvement on the
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current bound of 0.65, it is unlikely to yield a bound close to 19/27 because of the bound in
Lemma 2.1.

We also mention a related problem for graphs. It is conjectured in [5] that every graph
with m edges admits a k-partition, k ≥ 3, such that d(Vi) ≥ 2m/(2k−1). The complete graph
on 2k − 1 vertices shows that the lower bound is best possible. This conjecture is shown to be
true in [9] for sufficiently large m. In fact, it is shown [9] that d(Vi) ≥ m/(k − 1) + o(m). It
may be possible to demand d(Vi) ≥ (2k − 1)m/k2 + o(m).

Acknowledgment. We thank the referees for helpful suggestions leading to the current
presentation of the paper. We also thank the referee for informing us the result of Haslegrave
in [7] and suggesting the reference [11].
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