K_{5}-Subdivisions in graphs containing K_{4}^{-}

Jie Ma*
Xingxing Yu^{\dagger}
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160, USA

Abstract

Seymour and, independently, Kelmans conjectured in the 1970s that every 5-connected nonplanar graph contains a subdivision of K_{5}. In this paper, we prove this conjecture for graphs containing K_{4}^{-}.

AMS Subject Classification: 05C
Keywords: Subdivision of graph, independent paths, nonseparating path, planar graph

[^0]
1 Introduction

Only finite simple graphs are considered. We adopt the notaion and terminology in [7]. Paths P_{1}, \ldots, P_{k} are said to be independent if for any $1 \leq i \neq j \leq k$ no end of P_{i} is an internal vertex of P_{j}. A separation of a graph G is a pair $\left(G_{1}, G_{2}\right)$ of subgraphs of G such that $G=G_{1} \cup G_{2}$, $E\left(G_{1} \cap G_{2}\right)=\emptyset$, and $E\left(G_{i}\right) \cup V\left(G_{i}-G_{3-i}\right) \neq \emptyset$ for $i \in\{1,2\}$. If $\left|V\left(G_{1} \cap G_{2}\right)\right|=k$, then $\left(G_{1}, G_{2}\right)$ is a k-separation. For a subgraph H of a graph G, an H-bridge of G is a subgraph of G that is induced by the edges contained in some component D of $G-V(H)$ and edges from D to H. The vertices in H that are neighbors of D are called the attachments of this H-bridge. For $S \subseteq V(G)$, the $G[S]$-bridges of G are also called S-bridges. Let G be a graph and $S \subseteq V(G)$, and let k be a positive integer. We say that G is (k, S)-connected if, for any cut T of G with $|T|<k$, every component of $G-T$ contains a vertex from S.

For a graph K, we follow Diestel [3] to use $T K$ to denote a subdivision of K. The well known Kuratowski's theorem states that a graph is planar iff it contains neither $T K_{5}$ nor $T K_{3,3}$. It is known that 3 -connected nonplanar graphs contain $T K_{3,3}$. Seymour [8] conjectured in 1975 that every 5 -connected nonplanar graph contains a $T K_{5}$, which was posed independently by Kelmans [6] in 1979. For convenience, the vertices with degree 4 in a $T K_{5}$ are called branch vertices.

Clearly if G is 5 -connected and contains a K_{4} then G contains a $T K_{5}$; since for any vertex v there are four paths from v to the vertices of K_{4} which have only v in common. It is shown in [7] that if a 5 -onnected graph G contains K_{4}^{-}on vertices $x_{1}, x_{2}, y_{1}, y_{2}$ with $y_{1} y_{2} \notin E(G)$, and if G contains an induced path P from x_{1} to x_{2} such that $G-P$ is 2 -connected and $y_{1}, y_{2} \notin P$, then G contains a $T K_{5}$ in which $x_{1}, x_{2}, y_{1}, y_{2}$ are branch vertices.

In this paper we prove Seymour's conjecture for those graphs that contain K_{4}^{-}as a subgraph.

Theorem 1.1 If G is a 5-connected non-planar graph and contains K_{4}^{-}as a subgraph, then G contains a $T K_{5}$.

Note that K_{4}^{-}-free graphs have nice structural properties; for example, it is shown in [4] that if G is 5 - connected and K_{4}^{-}-free then G contains a contractible edge (see [5] for more results). It is our hope that by excluding K_{4}^{-}(and perhaps some other graphs) one can force usful structural properties that would lead to an eventual resolution of Seymour's conjecture.

It is shown in [7] that if G is a 5 -connected nonplanar graph and has a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $\left|G_{2}\right| \geq 7$ and G_{2} has a planar drawing in a closed disc in the plane with vertices in $V\left(G_{1} \cap G_{2}\right)$ occur on the boundary of the disc, then G has a $T K_{5}$. This result will be used to prove Theorem 1.1, and we believe that it will also be useful in an enentual resolution of Seymour's conjecture.

The proof of Theorem 1.1 can be outlined as follows. Let G be 5 -connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2} \in V(G)$ such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]=K_{4}^{-}$, with $y_{1} y_{2} \notin E(G)$. First, we use a lemma in [7] to show that there is an induced path P in G from x_{1} to x_{2} such that $G-P$ is 2 -connected, and $\left\{y_{1}, y_{2}\right\} \nsubseteq P$. If $y_{1}, y_{2} \notin P$, then Theorem 1.1 follows from one of the two main results in [7]. So we may assume by symmetry that $y_{1} \notin P$ and $y_{2} \in P$. Now y_{2} divides P to two subpaths $x_{1} P y_{2}$ and $x_{2} P y_{2}$, each has at least three vertices (since P is induced in G and $\left.x_{i} y_{2} \in E(G)\right)$. By contracting $x_{i} P y_{2}-\left\{x_{i}, y_{2}\right\}$ in $G-\left\{x_{1}, x_{2}\right\}$ we show that either the resulting graph contains disjoint paths between the new vertices and between y_{1} and
y_{2}, or G contains a $T K_{5}$. This allows us to assume that there exist $z_{i} \in V\left(x_{i} P y_{2}-\left\{x_{i}, y_{2}\right\}\right)$ such that G has disjoint paths Y, Z from y_{1}, z_{1} to y_{2}, z_{2}, respectively, and internally disjoint from P. Choose Y, Z so that $z_{1} P z_{2}$ is maximal. We then show that either we can find a $T K_{5}$ in G or (by symmetry) there are three independent paths, A and C from z_{1} to y_{1} and B from y_{2} to z_{2} (see Figure 1). So we may assume A, B and C exist, and we choose such paths satisfying certain requirements. Then either there is a $T K_{5}$ in G, or there exist disjoint paths P, Q, with P from C to B and Q from A to B. See Figure 1. We then use this structure to show that to force a 5 -separation $\left(G_{1}, G_{2}\right)$ such that $\left|G_{2}\right| \geq 7$ and G_{2} has a planar drawing in a closed disc in the plane with vertices in $V\left(G_{1} \cap G_{2}\right)$ occur on the boundary of the disc. Now Theorem 1.1 follows from the second main result in [7].

Those results in [7] which we will use are stated in Section 2, along with Seymour's characterization of graphs without disjoint paths between two pairs of vertices. In Section 3, we show how to force the structure consisting of paths X, A, B, C, P, Q. In Section 4, we show how to force the desired separation $\left(G_{1}, G_{2}\right)$.

2 Previous results

In this section we state a few results that we need to prove Theorem 1.1. The first lemma is proved in [7] which says that given an induced path X and a chain of blocks H in $G-X$, one can, with one exception, modify X to a nonseparating induced path X^{\prime} such that $H \subseteq G-X^{\prime}$. A graph is said to be a chain of blocks if its blocks can be labeled as B_{1}, \ldots, B_{k} such that $\left|B_{i} \cap B_{i+1}\right|=1$ for $i=1, \ldots, k-1$, and $B_{i} \cap B_{j}=\emptyset$ when $1 \leq i<j-1 \leq k-1$. In addition, if $k=1$ and y_{1}, y_{2} are distinct vertices of B_{1}, or if $k \geq 2$ and $y_{1} V\left(B_{1}-B_{2}\right)$ and $y_{2} \in V\left(B_{k}-B_{k-1}\right)$, then we say that B_{1} is a chain of blocks from y_{1} to y_{2}.

Lemma 2.1 Let G be a graph and let $x_{1}, x_{2}, y_{1}, y_{2}$ be distinct vertices of G such that G is (5, $\left.\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right)$-connected. Suppose X is an induced path in G from x_{1} to x_{2}, and H is a chain of blocks in $G-V(X)$ from y_{1} to y_{2}. Then precisely one of the following holds:
(i) $H=y_{1} y_{2}$ and $G-y_{1} y_{2}$ can be drawn in a closed disc in the plane without edge crossings such that $x_{1}, y_{1}, x_{2}, y_{2}$ occur on the boundary of the disc in this cyclic order.
(ii) There is an induced path X^{\prime} from x_{1} to x_{2} such that $H \subseteq G-V\left(X^{\prime}\right)$, and $G-V\left(X^{\prime}\right)$ is a chain of blocks from y_{1} to y_{2}.

Lemma 2.1 is used in [7] to prove the following lemma, which gives an induced path X from which we will build our structure in Figure 1.

Lemma 2.2 Let G be a 5-connected nonplanar graph and $x_{1}, x_{2}, y_{1}, y_{2}$ distinct vertices of G such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. Then there is an induced path X in $G-\left\{x_{1} x_{2}, x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right\}$ from x_{1} to x_{2} such that $G-V(X)$ is 2-connected and $\left\{y_{1}, y_{2}\right\} \nsubseteq V(X)$.

The case $\left\{y_{1}, y_{2}\right\} \cap V(X)=\emptyset$ is taken care of by the following lemma proved in [7].

Lemma 2.3 Let G be a 5-connected nonplanar graph and let $x_{1}, x_{2}, y_{1}, y_{2}$ be distinct vertices of G such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin E(G)$. Suppose there is an induced path X in $G-x_{1} x_{2}$ from x_{1} to x_{2} such that $G-V(X)$ is 2-connected and $\left\{y_{1}, y_{2}\right\} \cap V(X)=\emptyset$. Then G contains a $T K_{5}$ in which $x_{1}, x_{2}, y_{1}, y_{2}$ are branch vertices.

We now state the result proved in [7] about $T K_{5}$ when a 5 -connected graph admits a 5 -separation such that one side of the separation is planar.

Theorem 2.4 Let G be a 5-connected nonplanar graph and let $\left(G_{1}, G_{2}\right)$ be a 5 -separation in G. Suppose $\left|G_{2}\right| \geq 7$ and G_{2} has a planar representation in which the vertices of $V\left(G_{1} \cap G_{2}\right)$ are incident with a common face. Then G contains a $T K_{5}$.

In our proof of Theorem 1.1, we need the characterizaion of graphs containing no disjoint paths between two pairs of vertices. For convenience, we introduce the following definition.

Definition 2.5 A 3-planar graph (G, \mathcal{A}) consists of a graph G and a set $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ of pairwise disjoint subsets of $V(G)$ (possibly $\mathcal{A}=\emptyset$) such that
(a) for $i \neq j, N\left(A_{i}\right) \cap A_{j}=\emptyset$,
(b) for $1 \leq i \leq k,\left|N\left(A_{i}\right)\right| \leq 3$, and
(c) if $p(G, \mathcal{A})$ denotes the graph obtained from G by (for each i) deleting A_{i} and adding new edges joining every pair of distinct vertices in $N\left(A_{i}\right)$, then $p(G, \mathcal{A})$ can be drawn in a closed disc D with no edge crossings.

If, in addition, $b_{0}, b_{1}, \ldots, b_{n}$ are vertices in G such that $b_{i} \notin A_{j}$ for all $0 \leq i \leq n$ and $A_{j} \in \mathcal{A}$, $p(G, A)$ can be drawn in a closed disc D with no edge crossings, and $b_{0}, b_{1}, \ldots, b_{n}$ occur on the boundary of D in this cyclic order, then we say that $\left(G, \mathcal{A}, b_{0}, b_{1}, \ldots, b_{n}\right)$ is 3-planar. If there is no need to specify \mathcal{A}, we will simply say that $\left(G, b_{0}, b_{1}, \ldots, b_{n}\right)$ is 3-planar.

The following result is due to Seymour [9]; equivalent results can be found in $[2,10,11]$.
Theorem 2.6 (Seymour) Let G be a graph and $s_{1}, s_{2}, t_{1}, t_{2}$ be distinct vertices of G. Then exactly one of the following holds:
(i) G contains disjoint paths from s_{1} to t_{1} and from s_{2} to t_{2}.
(ii) $\left(G, s_{1}, t_{1}, s_{2}, t_{2}\right)$ is 3-planar.

For convenience, we say that $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}\right)$ is a 6 -tuple if the following holds:

- G is a 5 -connected nonplanar graph,
- $x_{1}, x_{2}, y_{1}, y_{2}$ are distinct vertices of G such that $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cong K_{4}^{-}$and $y_{1} y_{2} \notin$ $E(G)$, and
- there is an induced path X in $G-\left\{x_{1} x_{2}, x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{1}, x_{2} y_{2}\right\}$ from x_{1} to x_{2} such that $G-V(X)$ is 2-connected, $y_{1} \notin V(X)$, and $y_{2} \in V(X)$.

Note that in a 6 -tuple $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}\right),\left|V\left(x_{i} X y_{2}\right)\right| \geq 3$.

3 Substructure

In this section, we show that in a 5 -connected nonplanar graph we can find a $T K_{5}$ or a substructure (see Figure 1) satisfying a list of useful properties.

Lemma 3.1 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}\right)$ be a 6 -tuple. Then G contains a $T K_{5}$, or there exist $z_{1} \in$ $V\left(x_{1} X y_{2}\right)-\left\{x_{1}, y_{2}\right\}$ and $z_{2} \in V\left(y_{2} X x_{2}\right)-\left\{x_{2}, y_{2}\right\}$ such that $G-\left(V\left(X-\left\{z_{1}, z_{2}, y_{2}\right\}\right) \cup E(X)\right)$ has disjoint paths Z, Y from z_{1}, y_{1} to z_{2}, y_{2}, respectively.

Proof. Let G^{\prime} be the graph obtained from $G-\left\{x_{1}, x_{2}\right\}$ by contracting $x_{i} X y_{2}-\left\{x_{i}, y_{2}\right\}$ to vertex u_{i} for $i=1,2$. Note that G^{\prime} is 2-connected; since G is 5 -connected, X is induced, and $G-X$ is 2-connected.

Suppose G^{\prime} contains disjoint paths, say U, Y, from u_{1}, y_{1} to u_{2}, y_{2}, respectively. Let v_{i} denote the neighbor of u_{i} in the path U, and let $z_{i} \in V\left(x_{i} X y_{2}\right)-\left\{x_{i}, y_{2}\right\}$ be a neighbor of v_{i}. Let $Z:=\left(U-\left\{u_{1}, u_{2}\right\}\right) \cup\left\{z_{1}, z_{2}, z_{1} v_{1}, z_{2} v_{2}\right\}$. Now Z, Y are the desired paths.

So we may assume that such disjoint paths U, Y do not exist in G^{\prime}. Then by Theorem 2.6, there exists a collection \mathcal{A} of subsets of $V\left(G^{\prime}\right)-\left\{u_{1}, u_{2}, y_{1}, y_{2}\right\}$ such that $\left(G^{\prime}, \mathcal{A}, u_{1}, y_{1}, u_{2}, y_{2}\right)$ is 3-planar. Since $G-V(X)$ is 2-connected, $\left|\left\{u_{1}, u_{2}\right\} \cap N(A)\right| \neq 2$ for all $A \in \mathcal{A}$. Let $\mathcal{A}^{\prime}=\left\{A \in \mathcal{A}:\left|\left\{u_{1}, u_{2}\right\} \cap N(A)\right|=0\right\}$ and $\mathcal{A}^{\prime \prime}=\left\{A \in \mathcal{A}:\left|\left\{u_{1}, u_{2}\right\} \cap N(A)\right|=1\right\}$. For each $A \in \mathcal{A}^{\prime}$, since G is 5 -connected, we have $\left\{x_{1}, x_{2}\right\} \subseteq N(A)$.

Note that in $p\left(G^{\prime}, \mathcal{A}\right)$ (see Definition 2.5) there are edges joining the vertices in each $N(A)-\left\{u_{1}, u_{2}\right\}$. Since G is 5 -connected and $G-V(X)$ is 2-connected, $p\left(G^{\prime}, \mathcal{A}\right)-\left\{u_{1}, u_{2}, y_{2}\right\}$ is a 2 -connected plane graph; and the edges joining vertices of $N(A)-\left\{u_{1}, u_{2}\right\}$ (for each $\left.A \in \mathcal{A}^{\prime \prime}\right)$ occur on the outer cycle, say D, of $p\left(G^{\prime}, \mathcal{A}\right)-\left\{u_{1}, u_{2}, y_{2}\right\}$. Let $y_{2}^{\prime}, y_{2}^{\prime \prime} \in V(D)$ be the neighbors of y_{2} such that $y_{1}, y_{2}^{\prime}, y_{2}^{\prime \prime}$ occur on D in clockwise order and, subject to this, $y_{2}^{\prime} D y_{2}^{\prime \prime}$ is maximal. Possibly, $y_{2}^{\prime}=y_{2}^{\prime \prime}$.

We may assume that $N\left(x_{1}\right)-X \subseteq V\left(y_{2}^{\prime \prime} D y_{1}\right) \cup \bigcup_{\left\{A \in \mathcal{A}^{\prime \prime}: u_{1} \in N(A)\right\}} A$, and $N\left(x_{2}\right)-V(X) \subseteq$ $V\left(y_{1} D y_{2}^{\prime}\right) \cup \bigcup_{\left\{A \in \mathcal{A}^{\prime \prime}: u_{2} \in N(A)\right\}} A$. For, suppose x_{1} has a neighbor a such that $a \notin X, a \notin y_{2}^{\prime \prime} D y_{1}$, and $a \notin A$ for any $A \in \mathcal{A}^{\prime \prime}$ with $u_{1} \in N(A)$. Let $w_{1} \in V(D)$ such that $u_{1} w_{1} \in E\left(G^{\prime}\right)$ and $w_{1} D y_{1}$ is minimal, and let $z_{1} w_{1} \in E(G)$ with $z_{1} \in x_{1} X y_{2}-\left\{x_{1}, y_{2}\right\}$. Let $w_{2} \in V(D)$ such that $u_{2} w_{2} \in E\left(G^{\prime}\right)$ and $y_{1} D w_{2}$ is minimal, and let $z_{2} w_{2} \in E(G)$ with $z_{2} \in y_{2} X x_{2}-\left\{x_{2}, y_{2}\right\}$. Since G^{\prime} and H are 2-connected, there exist two independent paths P_{1}, P_{2} from z_{2} to D in $G-V\left(X-z_{2}\right)$ internally disjoint from $V\left(p\left(G^{\prime}, \mathcal{A}\right)\right)$, such that P_{1} ends at w_{3} and P_{2} ends at w_{2} where y_{1}, w_{2}, w_{3} occur on D in clockwise order. If there exists a path P_{3}^{\prime} from w_{3} to a in $p\left(G^{\prime}, \mathcal{A}\right)-\left\{u_{1}, u_{2}, y_{2}\right\}$ and disjoint from $w_{1} D w_{2}$, then $P_{3}^{\prime}, w_{1} D y_{1}, y_{1} D w_{2}$ give three paths P_{3}, W_{1}, W_{2} in G (with the same ends of $P_{3}^{\prime}, w_{1} D y_{1}, y_{1} D w_{2}$, respectively) such that $\left(P_{1} \cup P_{3} \cup a x_{1}\right) \cup\left(P_{2} \cup W_{2}\right) \cup\left(z_{2} X x_{2}\right) \cup\left(y_{2} X z_{2}\right) \cup\left(W_{1} \cup w_{1} z_{1} \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So we may assume such a path P_{3}^{\prime} does not exist. Then by planarity, there is a 2 -cut $\left\{s_{1}, s_{2}\right\}$ in $p\left(G^{\prime}, \mathcal{A}\right)-\left\{u_{1}, u_{2}, y_{2}\right\}$ separating w_{3} from a, with $s_{1}, s_{2} \in w_{1} D w_{2}$. This implies that $\left\{x_{1}, x_{2}, s_{1}, s_{2}\right\}$ is a 4 -cut in H separating $\left\{a, y_{1}\right\}$ from X, contradicting the assumption that G is 5 -connected.

Therefore, since G is not planar, there must exist $i \in\{1,2\}$ and vertices $v_{1}, v_{2} \in x_{i} X y_{2}-y_{2}$ such that $x_{1}, v_{1}, v_{2}, x_{2}$ occur on X in this order, and one of the following holds:
(a) v_{j} is adajcent to $w_{j} \in V(D)$ in G such that $y_{1}, y_{2}^{\prime}, y_{2}^{\prime \prime}, w_{1}, w_{2}$ (if $i=1$) or $y_{1}, w_{1}, w_{2}, y_{2}^{\prime}, y_{2}^{\prime \prime}$ (if $i=2$) occur on D in clockwise order, and in this case we let $Q_{j}=v_{j} w_{j}$;
(b) there is some $A \in \mathcal{A}$ such that $G\left[A \cup V\left(v_{1} X v_{2}\right)\right]$ has disjoint paths Q_{1}, Q_{2} from v_{1}, v_{2} to w_{1}, w_{2} respectively, where w_{1}, w_{2} are neighbors of A in G^{\prime} that are not u_{1} or u_{2}, and $y_{1}, y_{2}^{\prime}, y_{2}^{\prime \prime}, w_{1}, w_{2}($ if $i=1)$ or $y_{1}, w_{1}, w_{2}, y_{2}^{\prime}, y_{2}^{\prime \prime}($ if $i=2)$ occur on D in clockwise order.

Without loss of generality we may assume that the above occurs with $i=1$. Let z be a vertex in $y_{2} X x_{2}-\left\{x_{2}, y_{2}\right\}$. Then by planarity of $p\left(G^{\prime}, \mathcal{A}\right)-\left\{u_{1}, u_{2}, y_{2}\right\}$ there exist neighbors $z^{\prime}, z^{\prime \prime}$ of z in $G-V(X)$ such that $G-V(X)$ contains independent paths P_{1}, P_{2}, P_{3} with P_{1} from y_{1} to z^{\prime}, P_{2} from $z^{\prime \prime}$ to w_{1}, and P_{3} from w_{2} to y_{1}. Now $z X x_{2} \cup z X y_{2} \cup\left(\left\{z, z z^{\prime \prime}\right\} \cup P_{2} \cup\right.$ $\left.Q_{1} \cup x_{1} X v_{1}\right) \cup\left(P_{1} \cup\left\{z, z z^{\prime}\right\}\right) \cup\left(P_{3} \cup Q_{2} \cup v_{2} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z$.

For convenience, we say that $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$ is an 8 -tuple if

- $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}\right)$ is a 6 -tuple,
- there exist $z_{1} \in V\left(x_{1} X y_{2}\right)-\left\{x_{1}, y_{2}\right\}, z_{2} \in V\left(y_{2} X x_{2}\right)-\left\{x_{2}, y_{2}\right\}$, and disjoint paths Z, Y in $G-\left(V\left(X-\left\{z_{1}, z_{2}, y_{2}\right\}\right) \cup E(X)\right)$ from z_{1}, y_{1} to z_{2}, y_{2}, respectively, and
- subject to above, $z_{1} X z_{2}$ is maximal.

For any 8 -tuple $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$, we let $H:=G-\left(V\left(X-\left\{z_{1}, z_{2}, y_{2}\right\}\right) \cup E(X)\right)$. Clearly, each z_{i} has at least three neighbors in $H-\left\{z_{1}, z_{2}, y_{2}\right\}$, and y_{2} has at least one neighbor in H. So H is connected, and $H-y_{2}$ is 2-connected. We will derive more structural information of H.

Lemma 3.2 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$ be an 8 -tuple. Then G contains a $T K_{5}$, or the following holds:
(1) for any $i \in\{1,2\}, H$ has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, and $y_{1} z_{i} \notin E(G)$;
(2) there exists $i \in\{1,2\}$ such that H contains independent paths A, B, C, with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i}.

Proof. First, suppose there is a path in H from z_{i} (for some $i \in\{1,2\}$) to y_{2} such that $z_{i}, z_{3-i}, y_{1}, y_{2}$ occur on P in order. Then $G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right] \cup\left(X-V\left(z_{i} X y_{2}-\left\{y_{2}, z_{i}\right\}\right)\right) \cup P$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{3-i}$. So we may assume that such P does not exist. Hence by Lemma 3.1, we have $y_{1} z_{1}, y_{1} z_{2} \notin E(G)$, and (1) holds. Thus we have shown that G has a $T K_{5}$ or (1) holds.

We now show that G has a $T K_{5}$ or (2) holds. Clearly, if (1) fails then G has a $T K_{5}$; so we may assume that (1) holds. For each $i \in\{1,2\}$, let H_{i} denote the graph obtained from H by duplicating z_{i} and y_{1}, and let z_{i}^{\prime} and y_{1}^{\prime} denote the duplicates of z_{i} and y_{1}, respectively.

First, suppose some H_{i} contains three disjoint paths $A^{\prime}, B^{\prime}, C^{\prime}$ from $\left\{z_{i}, z_{i}^{\prime}, y_{2}\right\}$ to $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\}$, with $z_{i} \in A^{\prime}, z_{i}^{\prime} \in C^{\prime}$ and $y_{2} \in B^{\prime}$. If $z_{3-i} \notin B^{\prime}$, then after identifying y_{1} with y_{1}^{\prime} and z_{i} with z_{i}^{\prime}, we obtain from $A^{\prime} \cup B^{\prime} \cup C^{\prime}$ a path in H from z_{i} to y_{2} through z_{3-i}, y_{1} in order, contradicting our assumption that (1) fails. Hence $z_{3-i} \in B^{\prime}$, and we get the desired paths for (2) from $A^{\prime} \cup B^{\prime} \cup C^{\prime}$, by identifying y_{1} with y_{1}^{\prime} and z_{i} with z_{i}^{\prime}.

So we may assume that for any $i \in\{1,2\}, H_{i}$ does not contain three disjoint paths from $\left\{z_{i}, z_{i}^{\prime}, y_{2}\right\}$ to $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\}$. Then H_{i} has a separation $\left(H_{i}^{\prime}, H_{i}^{\prime \prime}\right)$ such that $\left|V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)\right| \leq 2$, $\left\{z_{i}, z_{i}^{\prime}, y_{2}\right\} \subseteq V\left(H_{i}^{\prime}\right)$ and $\left\{y_{1}, y_{1}^{\prime}, z_{3-i}\right\} \subseteq V\left(H_{i}^{\prime \prime}\right)$.

We claim that $y_{1}, y_{2}, z_{1}, z_{2} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$ for $i=1,2$. Note that $\left\{y_{1}, y_{1}^{\prime}\right\} \neq V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$, since otherwise y_{1} would be a cut vertex in H separating z_{3-i} from $\left\{y_{2}, z_{i}\right\}$. Now suppose one of y_{1}, y_{1}^{\prime} is in $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$; then since y_{1}, y_{1}^{\prime} are duplicates (with same neighbors), the other vertex in $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$ is a cut vertex in H separating $\left\{z_{3-i}, y_{1}\right\}$ from $\left\{z_{i}, y_{2}\right\}$, a contradiction. So $y_{1}, y_{1}^{\prime} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$. Similar argument shows that $z_{i}, z_{i}^{\prime} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$. Since $H-\left\{z_{1}, z_{2}, y_{2}\right\}$ is 2-connected, $z_{3-i}, y_{2} \notin V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)$.

For $i=1,2$, let $V\left(H_{i}^{\prime} \cap H_{i}^{\prime \prime}\right)=\left\{s_{i}, t_{i}\right\}$, and let F_{i}^{\prime} (respectively, $F_{i}^{\prime \prime}$) be obtained from H_{i}^{\prime} (respectively, $H_{i}^{\prime \prime}$) by identifying z_{i}^{\prime} with z_{i} (respectively, y_{1}^{\prime} with y_{1}). Then $\left(F_{i}^{\prime}, F_{i}^{\prime \prime}\right)$ is a 2-separation of H such that $V\left(F_{i}^{\prime} \cap F_{i}^{\prime \prime}\right)=\left\{s_{i}, t_{i}\right\}, y_{2}, z_{i} \in F_{i}^{\prime}-\left\{s_{i}, t_{i}\right\}$, and $y_{1}, z_{3-i} \in F_{i}^{\prime \prime}$. Let Z_{1}, Y_{2} denote the $\left\{s_{1}, t_{1}\right\}$-bridges of F_{1}^{\prime} containing z_{1}, y_{2}, respectively; and let Z_{2}, Y_{1} denote the $\left\{s_{1}, t_{1}\right\}$-bridges of $F_{1}^{\prime \prime}$ containing z_{2}, y_{1}, respectively.

Case 1. $Y_{1} \neq Z_{2}$ and $Y_{2} \neq Z_{1}$.
Then since G is 5 -connected, $\left\{x_{1}, x_{2}, s_{1}, t_{1}\right\}$ cannot be a cut in G; and hence there exists $y \in V(X)-\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}$ such that $y \in N\left(Y_{1}\right)-\left\{s_{1}, s_{2}\right\}$.

Suppose $y \in z_{1} X z_{2}-\left\{z_{1}, z_{2}\right\}$. Since $H-y_{2}$ is 2 -connected and by symmetry between s_{1} and t_{1}, we may assume that there is a path Q_{1} in $G\left[Y_{1}+y\right]-s_{1}$ from y to t_{1} and containing y_{1}. Now $Q_{1} \cup y X y_{2}$ and a path in $\left(Y_{1} \cup Y_{2}\right)-s_{1}$ between y_{1} and y_{2} form a cycle, say D. Note that the union of $\left(Z_{1} \cup Z_{2}\right)-t_{1}$ and $x_{1} X z_{1} \cup z_{2} X x_{2}$ contains a path from x_{1} to x_{2}, say X^{\prime}, which is disjoint from D. In fact, in $\left(G-x_{1} x_{2}\right)-D$ we may choose X^{\prime} to be an induced path from x_{1} to x_{2}. Now applying Lemma 2.1 we see that there is an induced path X^{\prime} in $G-x_{1} x_{2}$ from x_{1} to x_{2} such that $G-X^{\prime}$ is 2 -connected and $y_{1}, y_{2} \notin X^{\prime}$. By Lemma 2.3, G contains a $T K_{5}$, contradicting our assumption.

Thus, by symmetry between $x_{1} X z_{1}$ and $x_{2} X z_{2}$, we may assume that $y \in x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}$. Since G is 5 -connected and X is induced, y has a neighbor, say y^{\prime}, such that $y^{\prime} \notin X, y^{\prime} \notin$ $\left\{y_{1}, y_{2}\right\}$, and if y_{2} has a unique neighbor y_{2}^{\prime} in H then $y^{\prime} \neq y_{2}^{\prime}$.

If $y^{\prime} \in Z_{1} \cup Z_{2}$ then we may assume (by symmetry between s_{1} and t_{1}) that ($\left.Z_{1} \cup Z_{2}\right)-t_{1}$ contains a path Q^{\prime} from y^{\prime} to z_{2}. Clearly, in $\left(Y_{1} \cup Y_{2}\right)-s_{1}$ there is a path Y^{\prime} from y_{1} to y_{2}, which is disjoint from Q^{\prime}. Now $Q^{\prime}+\left\{y, y y^{\prime}\right\}$ and Y^{\prime} contradict the choice of Y, Z in the 8-tuple.

So we may assume $y^{\prime} \in Y_{1} \cup Y_{2}$. An easy check and symmetry between s_{1} and t_{1} allows us to assume that there are disjoint paths Q^{\prime}, Y^{\prime} in $Y_{1} \cup Y_{2}$ from y^{\prime}, y_{1} to s_{1}, y_{2}, respectively. Let $Q^{\prime \prime}$ be a path in $Z_{2}-t_{1}$ from s_{1} to z_{2}. Now $Q^{\prime} \cup Q^{\prime \prime}$ and Y^{\prime} contradict the choice of Y, Z in the 8-tuple.

Case 2. $Z_{1}=Y_{2}$ or $Z_{2}=Y_{1}$.
We first show that $Z_{1}=Y_{2}$ and $Z_{2}=Y_{1}$. We only deal with the case $Z_{2}=Y_{1}$ and $Z_{1} \neq Y_{2}$; the other case is symmetric. So assume $Z_{2}=Y_{1}$ and $Z_{1} \neq Y_{2}$. Then one of $\left\{s_{2}, t_{2}\right\}$, say s_{2}, must be a cut vertex of $F_{1}^{\prime}=Z_{2}=Y_{1}$ separating y_{1} from z_{2}. By symmetry between s_{1} and t_{1} and since $H-y_{2}$ is 2 -connected, we may assume that s_{2} separates $\left\{s_{1}, y_{1}\right\}$ from $\left\{t_{1}, z_{2}\right\}$. Since $\left\{s_{2}, t_{2}\right\}$ separates z_{1} from $y_{2}, t_{2} \in\left(Y_{2} \cup Z_{1}\right)-\left\{s_{1}, t_{1}\right\}$. If $t_{2} \in Y_{2}-\left\{s_{1}, t_{1}\right\}$ then in $H-\left\{s_{2}, t_{2}\right\}$ there is a path from y_{1} to z_{1} through s_{1}, a contradiction. So $t_{2} \in Z_{1}-\left\{s_{1}, t_{1}\right\}$; then in $H-\left\{s_{2}, t_{2}\right\}$ there is a path from y_{2} to z_{2} through t_{1}, a contradiction.

Since $Z_{1}=Y_{2}$ and $Z_{2}=Y_{1}$, we may assume that s_{2} is a cut vertex of $F_{1}^{\prime}=Z_{2}=Y_{1}$ separating y_{1} from z_{2}, and t_{2} is a cut vertex of $F_{1}^{\prime \prime}=Z_{1}=Y_{2}$ separating y_{2} from z_{1}. Since $H-y_{2}$ is 2 -connected and by symmetry between s_{1} and t_{1}, we may assume that in Z_{2}, s_{2} separates $\left\{s_{1}, y_{1}\right\}$ from $\left\{z_{2}, t_{1}\right\}$. Since in $H,\left\{s_{2}, t_{2}\right\}$ separates y_{2} from z_{1}, we have $t_{2} \in Z_{1}-\left\{s_{1}, t_{1}\right\}$.

Moreover, since in $H,\left\{s_{2}, t_{2}\right\}$ separates y_{1} from z_{2}, we see that t_{2} separates $\left\{s_{1}, z_{1}\right\}$ from $\left\{t_{1}, y_{2}\right\}$ in Z_{1}. But this implies that there is no disjoint paths in H from z_{1}, y_{1} to z_{1}, y_{2}, respectively, contradicting the existence of Y, Z in an 8-tuple.

We note in passing that the structure of H satisfying (1) of Lemma 3.2 is well characterized by a result proved in $[12-14]$. However, we do not need the full strength of that result, and it is simpler to deal with H directly.

Figure 1: The substructure.

In the argument below we do not fix $i=1$ or $i=2$ (for the sake of symmetry). However, in the rest of this section one may view $i=1$ as suggested by Figure 1.

Lemma 3.3 Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right)$ be an 8-tuple. Then G has a $T K_{5}$, or there exists $i \in\{1,2\}$ such that H contains independent paths A, B, C, with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i}, and the following hold:
(1) there exist disjoint paths P, Q in H from $p, q \in V\left(B-y_{2}\right)$ to $c \in V(C)-\left\{y_{1}, z_{i}\right\}, a \in$ $V(A)-\left\{y_{1}, z_{i}\right\}$, respectively, and internally disjoint from $A \cup B \cup C$, and
(2) $z_{3-i} x_{3-i} \in E(X)$.

Proof. We may assume that G has no $T K_{5}$, since otherwise the assertion of the lemma holds. First, we prove (1). By Lemma 3.2,
(i) for any $i \in\{1,2\}, H$ has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, and $y_{1} z_{i} \notin E(G)$;
(ii) there exist $i \in\{1,2\}$ and independent paths A, B, C in H with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i}.

We choose A, B, C such that the following are satisfied in the order listed:
(a) A, B, C are induced paths in H,
(b) if possible the $(A \cup C)$-bridge of H containing B has attachments on both $A-\left\{z_{i}, y_{1}\right\}$ and $C-\left\{y_{1}, z_{i}\right\}$,
(c) the $(A \cup C)$-bridge of H containing B is maximal, and
(d) B^{\prime}, the union of B and the B-bridges of H not containing $A \cup C$, is maximal.

Since $G-V\left(X-z_{3-i}\right)$ is 2-connected, there are disjoint paths P, Q from $B-y_{2}$ to $s, t \in$ $V(A \cup C)-\left\{z_{i}\right\}$ and internally disjoint from $A \cup B \cup C$.

Claim 1. We may choose P, Q so that $s \neq y_{1}$ and $t \neq y_{1}$.
For otherwise, $H-\left\{z_{i}, y_{2}\right\}$ has a separation $\left(H_{1}, H_{2}\right)$ such that $V\left(H_{1} \cap H_{2}\right)=\left\{y_{1}, v\right\}$ for some $v \in V(H),(A \cup C)-z_{i} \subseteq H_{1}$ and $B-y_{2} \subseteq H_{2}$. Recall that $G-V\left(X-\left\{z_{1}, z_{2}\right\}\right)$ contains disjooint paths Z, Y from z_{1}, y_{1} to z_{2}, y_{2}, respectively. If $v \notin Z$ then $Z-z_{i} \subseteq H_{2}-\left\{y_{1}, v\right\}$, and hence we may choose Y so that $Y \cap A=\left\{y_{1}\right\}$ or $Y \cap C=\left\{y_{1}\right\}$; now $Z \cup A \cup Y$ or $Z \cup C \cup Y$ is a path that contradicts (i). So $v \in Z$. Hence $Y-y_{2} \subseteq H_{2}-v$, and so we may choose Z with $Z \cap A=\left\{z_{i}\right\}$ or $Z \cap C=\left\{z_{i}\right\}$. Again, $Z \cup A \cup Y$ or $Z \cup C \cup Y$ gives a path contradicting (i).

If $s \in A-y_{1}$ and $t \in C-y_{1}$ or $s \in C-y_{1}$ and $t \in A-y_{1}$, then P, Q give the desired paths for (1). So we may assume by symmetry that $s, t \in C$. We may further choose P, Q so that $s C t$ is maximal, and assume that z_{i}, s, t, y_{1} occur on C in order. Let $P \cap B=\{p\}, Q \cap B=\{q\}$.

Claim 2. We may assume that the $(A \cup C)$-bridge of H containing B has no attachment in $A-\left\{y_{1}, z_{i}\right\}$.
For, otherwise, there is a path R from some $r \in V(A)-\left\{y_{1}, z_{i}\right\}$ to B internally disjoint from $A \cup B \cup C$. If $R \cap(P \cup Q) \neq \emptyset$, then $P \cup Q \cup R$ contains the desired paths for (1). So we may assume $R \cap(P \cup Q)=\emptyset$. If $y_{2} \notin R$, then P, R are the desired paths for (1). So we may assume $y_{2} \in R$. Now consider B^{\prime} defined in (d) above. If $B^{\prime}-y_{2}$ contains independent paths P^{\prime}, Q^{\prime} from z_{3-i} to p, q, respectively, then $z_{i} C s \cup P \cup P^{\prime} \cup Q^{\prime} \cup Q \cup t C y_{1} \cup y_{1} A r \cup R$ is a path in H through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, contradicting (i). So such paths P^{\prime}, Q^{\prime} do not exist in B^{\prime}. Then there is a vertex $z \in B^{\prime}-y_{2}$ such that in $B^{\prime}-y_{2}, z$ separates z_{3-i} from p, q. Clearly, $z \in q B z_{3-i}-z_{3-i}$. Choose z so that $z B z_{3-i}$ is minimal, and let $B^{\prime \prime}$ denote the z-bridge of $B^{\prime}-y_{2}$ contaiing z_{3-i}. T Note that $z_{3-i} B z \subseteq B^{\prime \prime}$. Recall that G is 5 -connected, X is induced in G, and $H-y_{2}$ is 2-connected. $H-y_{2}$ must contain a path W from $w^{\prime} \in V\left(B^{\prime \prime}\right)-z$ to $w \in V(P \cup Q \cup R \cup A \cup C)-\left\{z_{i}, y_{2}\right\}$ and internally disjoint from $P \cup Q \cup R \cup A \cup C$. By the definition of B^{\prime} in (d) above, we see that any path from B^{\prime} to $P \cup Q \cup R \cup A \cup C$ must intersect B. Hence we may further choose W so that $w^{\prime} \in z B z_{3-i}$ and W is internally disjoint from B. Then by the choice of P, Q, we have $w=y_{1}$. By the minimality of $z B z_{3-i}, B^{\prime \prime}$ has independent paths $P^{\prime \prime}, Q^{\prime \prime}$ from z_{3-i} to z, w^{\prime}, respectively. Now $z_{i} C t \cup Q \cup q B z \cup P^{\prime \prime} \cup Q^{\prime \prime} \cup Q \cup y_{1} A r \cup R$ is a path in H through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, contradicting (i).

Let J denote the union of C and the $(A \cup C)$-bridge of H containing B. Then by (i) and Theorem 2.6, there exists a collection \mathcal{A} of subsets $V(J)-\left\{y_{1}, z_{i}, y_{2}, z_{3-i}\right\}$ such that $\left(J, \mathcal{A}, z_{i}, y_{2}, z_{3-i}, y_{1}\right)$ is 3 -planar. We choose \mathcal{A} so that for any $D \in \mathcal{A}$, if $N_{H}(D)=\left\{w_{1}, \ldots, w_{k}\right\}$ (where $k \in\{2,3\}$) and $D^{\prime}:=H\left[D \cup N_{H}(D)\right]$ then $\left(D^{\prime}, w_{1}, \ldots, w_{k}\right)$ is not 3 -planar; for otherwise there is a collection of subsets \mathcal{A}^{\prime} of D such that $\left.D^{\prime}, \mathcal{A}^{\prime \prime}, w_{1}, \ldots, w_{k}\right)$ is 3 -planar, and we see that with $\mathcal{A}^{\prime \prime}=(\mathcal{A}-\{D\}) \cup \mathcal{A}^{\prime},\left(J, \mathcal{A}^{\prime \prime}, z_{i}, y_{2}, z_{3-i}, y_{1}\right)$ is 3-planar.

Let v_{1}, \ldots, v_{k} denote the vertices on $C-\left\{z_{i}, y_{1}\right\}$ in order from z_{i} to y_{1} such that each v_{i} is an attachment of some $(A \cup C)$-bridge of H that does not contain B but has attachments on both $A-\left\{y_{1}, z_{i}\right\}$ and $C-\left\{y_{1}, z_{i}\right\}$.

Claim 3. $\left(J, v_{1}, \ldots, v_{k}, y_{1}, z_{3-i}, y_{2}, z_{i}\right)$ is 3 -planar.
For, otherwise, there exist $i \in\{1, \ldots, k\}$ and $D \in \mathcal{A}$ such that $v_{i} \in D$ and $\left|N_{J}(D)\right|=3$ (since there is only one C-bridge in J and $\left(J, \mathcal{A}, z_{i}, y_{2}, z_{3-i}, y_{1}\right)$ is 3-planar). Let $N_{J}(D)=$
$\left\{c_{1}, c_{2}, c\right\}$ such that $c_{1}, c_{2} \in C, c \notin C$, and c is in the $(A \cup C)$-bridge containing B; and let $D^{\prime}=H\left[D \cup\left\{c_{1}, c_{2}, c\right\}\right]$. If D^{\prime} contains no disjoint paths from c_{1} to c_{2} and from c to v_{i}, then by Theorem 2.6, there is a collection of subsets \mathcal{A}^{\prime} of D such that $\left(D^{\prime}, \mathcal{A}^{\prime}, c_{1}, v_{i}, c_{2}, c\right)$ is 3 -planar. This contradicts the choice of \mathcal{A}. So D^{\prime} contains disjoint paths R from v_{i} to c and T from c_{1} to c_{2}. We may assume T is induced. Let C^{\prime} be obtained from C by replacing $c_{1} C c_{2}$ with T. We now see that the $\left(A \cup C^{\prime}\right)$-bridge of H containing B has attachments on both $A-\left\{y_{1}, z_{i}\right\}$ and $C^{\prime}-\left\{y_{1}, z_{i}\right\}$ (because of P, Q and T), contradicting (b).

For any $(A \cup C)$-bridge T of H not containing B, if T has attachments on A we define $a_{1}(T)$ and $a_{2}(T)$ to be the attachemnets of T on A with $a_{1}(T) A a_{2}(T)$ maximal, and if T has attachments on C we define $c_{1}(T)$ and $c_{2}(T)$ to be the attachemnets of T on C with $c_{1}(T) C c_{2}(T)$ maximal. We assume $z_{i}, a_{1}(T), a_{2}(T), y_{1}$ occur on A in order, and $z_{i}, c_{1}(T), c_{2}(T), y_{1}$ occur on C in order. We now further choose A, C so that subject to (a)-(d), the union of $(A \cup C)$-bridges of H with attachments on both $A-\left\{y_{1}, z_{i}\right\}$ and $C-\left\{y_{1}, z_{i}\right\}$ is maximal.

Claim 4. If T_{1}, T_{2} are $(A \cup C)$-bridges of H not containing B such that T_{2} has attachments on both $A-\left\{y_{1}, z_{i}\right\}$ and $C-\left\{y_{1}, z_{i}\right\}$, and T_{1} has attachments on C (or A) only, then $c_{1}\left(T_{1}\right) C c_{2}\left(T_{1}\right)-\left\{c_{1}\left(T_{1}\right), c_{2}\left(T_{1}\right)\right\}$ (or $\left.a_{1}\left(T_{1}\right) A a_{2}\left(T_{1}\right)-\left\{a_{1}\left(T_{1}\right), a_{2}\left(T_{1}\right)\right\}\right)$ contains no attachment of T_{2}.
For, otherwise, we may modify C (or A) by replacing $c_{1}\left(T_{1}\right) C c_{2}\left(T_{1}\right)$ (or $a_{1}\left(T_{1}\right) A a_{2}\left(T_{1}\right)$) with an induced path in T_{1} from $c_{1}\left(T_{1}\right)$ to $c_{2}\left(T_{1}\right)$ (or from $a_{1}\left(T_{1}\right)$ to $a_{2}\left(T_{1}\right)$). The new A and C do not affect (a)-(d) but enlarge the union of $(A \cup C)$-bridges of H with attachments in both $A-\left\{y_{1}, z_{1}\right\}$ and $C-\left\{y_{1}, z_{1}\right\}$, a contradiction.

Remark: Claim 4 basically allows us to modify A and C through the $(A \cup C)$-bridges of H not containing, without affecting (a)-(d).

Since $G-V(X)$ is 2 -connected, there exists at least one $(A \cup C)$-bridge in H with attachments on both $A-\left\{y_{1}, z_{i}\right\}$ and $C-\left\{y_{1}, z_{i}\right\}$. Because of the disjoint paths Z and Y, $\left(H, z_{i}, y_{1}, z_{3-i}, y_{2}\right)$ is not 3 -planar. Hence, since $\left(J, v_{1}, \ldots, v_{k}, y_{1}, z_{2}, y_{2}, z_{1}\right)$ is 3 -planar and the $(A \cup C)$-bridge of H containing B has no attachment in $A-\left\{y_{1}, z_{i}\right\}$, either there exist $(A \cup C)$ bridges T_{1}, T_{2} of H not containing B such that for any $j=1,2, z_{i} A a_{2}\left(T_{j}\right)$ properly contains $z_{i} A a_{1}\left(T_{3-j}\right)$, or for any $j=1,2, c_{1}\left(T_{j}\right) C y_{1}$ properly contains $c_{2}\left(T_{3-j}\right) C y_{1}$, or there exists an $(A \cup C)$-bridge T of H not containing B such that $T \cup a_{1}(T) A a_{2}(T) \cup c_{1}(T) C c_{2}(T)$ has disjoint paths from $a_{1}(T), a_{2}(T)$ to $c_{2}(T), c_{1}(T)$, respectively.

Therefore, there exist disjoint paths R_{1}, R_{2} from $r_{1}, r_{2} \in V(C)$ to $r_{1}^{\prime}, r_{2}^{\prime} \in V(A)$, respectively, and internally disjoint from $A \cup C$, such that $z_{i}, r_{1}, r_{2}, y_{1}$ occur on C in this order and $z_{i}, r_{2}^{\prime}, r_{1}^{\prime}, y_{1}$ occur on A in this order.

Claim 5. We may assume that for any choice of R_{1}, R_{2}, we have $r_{1}, r_{2} \in t C y_{1}$ or $r_{1}, r_{2} \in$ $z_{i} C s$.
For otherwise, there exist R_{1}, R_{2} such that $r_{1} \in z_{i} C s$ and $r_{2} \in t C y_{1}$, or $r_{1} \in s C t-\{s, t\}$, or $r_{2} \in s C t-\{s, t\}$. Let $A^{\prime}:=z_{i} A r_{2}^{\prime} \cup R_{2} \cup r_{2} C y_{1}$ and $C^{\prime}:=z_{i} C r_{1}^{\prime} \cup R_{1} \cup r_{1} A y_{1}$. Note that ($A^{\prime} \cup C^{\prime}$)-bridge of H containing B contains the $(A \cup C)$-bridge of H containing B, but we see that there are disjoint paths from $B-y_{2}$ so that one ends in $A^{\prime}-\left\{z_{i}, y_{1}\right\}$ and one ends in $C^{\prime}-\left\{y_{1}, z_{i}\right\}$, which are the desired paths.

If R_{1}, R_{2} may be chosen so that $r_{1}, r_{2} \in z_{i} C s$, then choose R_{1}, R_{2} so that $z_{i} A r_{1}^{\prime}$ and $z_{i} C r_{2}$ are maximal, and let $z^{\prime}:=r_{1}^{\prime}$ and $z^{\prime \prime}=r_{2}$; otherwise, define $z^{\prime}=z^{\prime \prime}=z_{i}$. Similarly, if R_{1}, R_{2}
may be chosen so that $r_{1}, r_{2} \in t C y_{1}$, then choose R_{1}, R_{2} so that $y_{1} A r_{2}^{\prime}$ and $y_{1} C r_{1}$ are maximal, and let $y^{\prime}:=r_{2}^{\prime}$ and $y^{\prime \prime}=r_{1}$; otherwise, define $y^{\prime}=y^{\prime \prime}=y_{1}$.

By Claim 5, $z_{i}, z^{\prime}, y^{\prime}, y_{1}$ occur on A in order, and $z_{i}, z^{\prime \prime}, s, t, y^{\prime \prime}, y_{1}$ occur on C in order. Moreover, by Claim 2 and Claim 4, if $z^{\prime}, z^{\prime \prime} \neq z_{i}$ then $\left\{z^{\prime}, z^{\prime \prime}, z_{3-i}\right\}$ is a cut in H, and if $y^{\prime}, y^{\prime \prime} \neq$ y_{1} then $\left\{y^{\prime}, y^{\prime \prime}, y_{1}\right\}$ is a cut in H. So by Claim 3 and Claim 4, we see that ($H, z_{i}, y_{1}, z_{3-i}, y_{2}$) is 3 -planar, contradicting (i). This completes the proof of (1).

Proof of (2). So by (1) and by the symmetry between A and C, we may assume that y_{2}, p, q, z_{3-i} occur on B in order. We may choose P, Q so that $p B z_{3-i}$ is maximal, and $q B z_{3-i}$ is minimal; and subject to these, $c C y_{1}$ is maximal, and $a A y_{1}$ is minimal.

Suppose there exist $x \in V\left(z_{3-i} X x_{3-i}\right)-\left\{x_{3-i}, z_{3-i}\right\}$. Then by the choice of Y and Z, all neighbors of x in H must be ocntained in B^{\prime}. Consider $B^{\prime \prime}:=G\left[\left(B^{\prime}-z_{3-i}\right)+x\right]$.

If $B^{\prime \prime}$ contains disjoint paths P^{\prime}, Q^{\prime} from y_{2}, x to p, q, respectively, then $P^{\prime} \cup P \cup c C y_{1}$ and $Q^{\prime} \cup Q \cup a A z_{i}$ contradict the choice of Y, Z. So such paths P^{\prime}, Q^{\prime} do not exist. Then by Theorem 2.6, $\left(B^{\prime \prime}, x, y_{2}, q, p\right)$ is 3-planar.

If $B^{\prime \prime}$ contains disjoint paths $P^{\prime \prime}, Q^{\prime \prime}$ from x, y_{2} to p, q, respectively, then $P^{\prime \prime} \cup P \cup c C z_{1}$ and $Q^{\prime \prime} \cup Q \cup a A y_{1}$ contradict the choice of Y and Z. So there is a cut vertex z in $B^{\prime \prime}$ separating $\left\{x, y_{2}\right\}$ from $\left.p, q\right\}$. Note that $z \in y_{2} B p$.

Since x has at least three neighbors in $B^{\prime \prime}$ (because G is 2-connected and X is induced), we see that the component B^{*} of $B^{\prime \prime}-z$ containing $\left\{y_{2}, x\right\}$ has other vertices. Therefore, we see from the choice of P and Q (and because $G-X$ is 2 -connected), there is a path from y_{1} to $B^{*}-z$ internally disjoint from $P \cup Q \cup A \cup C \cup\left(B^{\prime \prime}-B^{*}\right)$; and so there is a path Y^{\prime} from y_{1} to y_{2} internally disjoint from $P \cup Q \cup A \cup C \cup\left(B^{\prime \prime}-B^{*}\right)$. Now $z_{3-i} B p \cup P \cup c C z_{i} \cup A \cup Y^{\prime}$ is a path in H through $z_{3-i}, z_{i}, y_{1}, y_{2}$ in order, contradicting (i).

Remark. By Lemma 3.3 and its proof, we see that if G has no $T K_{5}$, then A, B, C may be chosen so that (a), (b), (c) and (d) are satisfied in the order listed, and subject to this (1) and (2) hold.

4 Proof of Theorem 1.1

Let $\left(G, X, x_{1}, x_{2}, y_{1}, y_{2}\right)$ be a 6 -tuple, and assume that G contains no $T K_{5}$. Then by Lemma 3.1,
(1) there exist $z_{1} \in V\left(x_{1} X y_{2}\right)-\left\{x_{1}, y_{2}\right\}$ and $z_{2} \in V\left(y_{2} X x_{2}\right)-\left\{x_{2}, y_{2}\right\}$ such that $G-(V(X-$ $\left.\left.\left\{z_{1}, z_{2}, y_{2}\right\}\right) \cup E(X)\right)$ has disjoint paths Z, Y from z_{1}, y_{1} to z_{2}, y_{2}, respectively.

We choose z_{1}, z_{2}, Y, Z so that
(2) $z_{1} X z_{2}$ is maximal.

Then ($G, X, x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}$) is an 8 -tuple. By Lemma 3.2,
(3) for any $i \in\{1,2\}, H$ has no path through $z_{i}, z_{3-i}, y_{1}, y_{2}$ in order, and $y_{1} z_{i} \notin E(G)$;
(4) there exist $i \in\{1,2\}$ and independent paths A, B, C in H with A and C from z_{i} to y_{1}, and B from y_{2} to z_{3-i}.

We choose A, B, C such that the following are satisfied in the listed order:
(a) A, B, C are induced paths in H,
(b) if possible the $(A \cup C)$-bridge of H containing B has attachments on both $A-\left\{z_{i}, y_{1}\right\}$ and $C-\left\{y_{1}, z_{i}\right\}$,
(c) the $(A \cup C)$-bridge of H containing B is maximal, and
(d) the union of B and the B-bridges of H not containing $A \cup C$, denoted by B^{\prime}, is maximal.

Note that by (d), every path in H from B^{\prime} to $A \cup C$ must intersect B.
By Lemma 3.3 and the remark following its proof,
(5) there exist disjoint paths P, Q in H from $p, q \in V\left(B-y_{2}\right)$ to $c \in V(C)-\left\{y_{1}, z_{i}\right\}, a \in$ $V(A)-\left\{y_{1}, z_{i}\right\}$, respectively, and internally disjoint from $A \cup B \cup C$, and
(6) $z_{3-i} x_{3-i} \in E(X)$.

Without loss of generality we may assume $i=1$, see Figure 1 . So by (6), $z_{2} X x_{2}=z_{2} x_{2}$.
By symmetry between A and C, we may assume that y_{2}, p, q, z_{2} occur on B in order. We may further choose P, Q so that
(7) $p B z_{2}$ is maximal and $q B z_{2}$ is minimal; and subject to this, $c C y_{1}$ is maximal and $a A y_{1}$ is minimal.

Suppose T is a path from $t \in V\left(a A y_{1}-a\right)$ to $t^{\prime} \in V\left(z_{1} C c-c\right)$ internally disjoint from $A \cup B \cup C \cup P \cup Q$. Then $z_{2} B q \cup Q \cup a A z_{1} \cup z_{1} C t^{\prime} \cup T \cup t A y_{1} \cup y_{1} C c \cup P \cup p B y_{2}$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (3). So
(8) there is no path in H from $a A y_{1}-a$ to $z_{1} C c-c$ internally disjoint from $A \cup B \cup C \cup P \cup Q$.

We proceed by proving a few lemmas.
Lemma $4.1 B^{\prime}-y_{2}$ has no cut vertex contained in $q B z_{2}$.
Proof. Otherwise, let $u \in q B z_{2}$ be a cut vertex of $B^{\prime}-y_{2}$, with $u B z_{2}$ minimal. Then $u \neq z_{2}$, since $H-y_{2}$ is 2-connected and B^{\prime} contains no vertex in the B-bridge of H containing $A \cup C$. Since $H-y_{2}$ is 2 -connected, there is a path S in H from $s^{\prime} \in V\left(u B z_{2}-u\right)$ to $s \in V(A \cup C)$ internally disjoint from $A \cup C \cup B^{\prime}$. Note that S is disjoint from $(P-c) \cup(Q-a)$; otherwise we could revise the path B using $S \cup(P-c) \cup(Q-a)$ so that the new B^{\prime} is larger while (a), (b) and (c) are not affected. By the choice of u, the component of $B^{\prime}-\left(y_{2} B u-u\right)$ which contains $u B z_{2}-u$ has independent paths R_{1}, R_{2} from z_{2} to s^{\prime}, u, respectively. By the choice of Q in (7), $s \in C$. We choose S so that $s C y_{1}$ is minimal.

Claim 1. $s \in c C y_{1}-y_{1}$, and there is no path in H from y_{1} to B internally disjoint from $A \cup B \cup C$.

Suppose $s \in z_{1} C c-c$. Then $\left(z_{1} C s \cup S \cup R_{1}\right) \cup\left(R_{2} \cup u B q \cup Q \cup a A y_{1}\right) \cup\left(y_{1} C c \cup P \cup p B y_{2}\right)$ is a path through $z_{1}, z_{2}, y_{1}, y_{2}$ in order, contradicting (3).

If $s=y_{1}$, then $\left(R_{1} \cup S\right) \cup\left(R_{2} \cup u B q \cup Q \cup a A z_{1} \cup z_{1} X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C c \cup P \cup\right.$ $\left.p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$, contradicting our assumption.

So $s \neq y_{1}$. Now assume that there is a path Y^{\prime} in H from y_{1} to some $y \in V(B)$ internally disjoint from $A \cup B \cup C$. By the choice of $S, y \in y_{2} B u$ and Y^{\prime} is disjoint from S. Hence $z_{2} B s^{\prime} \cup S \cup s C z_{1} \cup A \cup Y^{\prime} \cup y B y_{2}$ is a path contradicting (3). This proves Claim 1.

Since G is 5 -connected, $\left\{a, s, x_{1}, x_{2}\right\}$ is not a cut in G. So there is a path T in G from $t \in V\left(a A y_{1} \cup s C y_{1}\right)-\{a, s\}$ to $t^{\prime} \in V\left(X-\left\{x_{1}, x_{2}\right\}\right) \cup V(A \cup B \cup C \cup P \cup Q \cup S)$ internally disjoint from $A \cup B \cup C \cup P \cup Q \cup S \cup X$.

$$
\text { Claim 2. } t^{\prime} \in A \cup C \cup\left(x_{1} X z_{2}-\left\{x_{1}, x_{2}, z_{1}, z_{2}\right\}\right) \text {. }
$$

By the choice of Q and S, we have $t^{\prime} \notin S$. To prove $t^{\prime} \notin B \cup P \cup Q$, we consider two cases.
First, assume $t \in a A y_{1}-\{a\}$. Then by Claim 1 and the choice of S, we have $t^{\prime} \notin u B z_{2}-u$. Moreover, by Claim 1 (when $t=y_{1}$) or by the choice of Q in (7) (when $t \neq y_{1}$), we have $t^{\prime} \notin Q \cup q B z_{2}$. If $t^{\prime} \in y_{2} B q-q$, then the path $\left(y_{2} B t^{\prime} \cup T \cup t A y_{1}\right) \cup C \cup\left(z_{1} A a \cup Q \cup q B z_{2}\right)$ passes through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (3). So we have $t^{\prime} \notin Q \cup B$. If $t^{\prime} \in P-c$, then the path $\left(y_{2} B p \cup p P t^{\prime} \cup T \cup t A y_{1}\right) \cup C \cup\left(z_{1} A a \cup Q \cup q B z_{2}\right)$ passes through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, again contradicting (3). So $t^{\prime} \notin P-c$, and in this case Claim 2 holds.

Now assume $t \in s C y_{1}-s$. By the choice of $S, t^{\prime} \notin u B z_{2}-u$. We claim $t^{\prime} \notin y_{2} B u$; for, otherwise, the path $\left(y_{2} B t^{\prime} \cup T \cup t C y_{1}\right) \cup A \cup\left(z_{1} C s \cup S \cup s^{\prime} B z_{2}\right)$ passes through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (3). Also, $t^{\prime} \notin P-c$; as otherwise the path ($\left.y_{2} B p \cup p P t^{\prime} \cup T \cup t C y_{1}\right) \cup A \cup$ $\left(z_{1} C s \cup S \cup s^{\prime} B z_{2}\right)$ goes through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (3). Finally, $t^{\prime} \notin Q-\{a\}$, for otherwise the path $\left(y_{2} B q \cup q Q t^{\prime} \cup T \cup t C y_{1}\right) \cup A \cup\left(z_{1} C s \cup S \cup s^{\prime} B z_{2}\right)$ passes through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (3). So the assertion of Claim 2 holds.

By Claim 2, we have the following four cases.
Case 1. $\left\{t, t^{\prime}\right\} \subseteq A$ or $\left\{t, t^{\prime}\right\} \subseteq C$.
Suppose $\left\{t, t^{\prime}\right\} \subseteq A . G\left[z_{1} A t^{\prime} \cup T \cup t A y_{1}\right]$ contains an induced path A^{\prime} from z_{1} to y_{1} such that, with A^{\prime} replacing A, (a) and (b) are not affected, but the $\left(A^{\prime} \cup C\right)$-bridge of H containing B is larger, contradicting (c).

Similarly, we derive a contradiction if $\left\{t, t^{\prime}\right\} \nsubseteq C$.
Case 2. $t^{\prime} \in A \cup C$.
Then by Case $1, t \in s C y_{1}-s$ and $t^{\prime} \in z_{1} A a-a$, or $t \in a A y_{1}-a$ and $t^{\prime} \in z_{1} C s-s$.
If $t \in s C y_{1}-s$ and $t^{\prime} \in z_{1} A a-a$, then $\left(z_{2} B s^{\prime} \cup S \cup s C z_{1} \cup z_{1} A t^{\prime} \cup T \cup t C y_{1} \cup y_{1} A a \cup Q \cup q B y_{1}\right.$ is a path through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (3).

If $t \in a A y_{1}-a$ and $t^{\prime} \in z_{1} C s-s$, then $\left(R_{1} \cup S \cup s C y_{1}\right) \cup\left(R_{2} \cup u B q \cup Q \cup a A z_{1} \cup z_{1} X x_{1}\right) \cup$ $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} A t \cup T \cup t^{\prime} C c \cup P \cup p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Case 3. $t^{\prime} \in x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}$.
If $t \in a A y_{1}-a$, then $y_{1} C c \cup P \cup p B y_{2}$ and $T \cup t A a \cup Q \cup q B z_{2}$ contradict the choice of Z, Y in (1) and (2).

If $t \in s C y_{1}-s$, then $y_{1} A a \cup Q \cup q B y_{2}$ and $z_{2} B s^{\prime} \cup S \cup s C t \cup T$ contradict the choice of Z, Y in (1) and (2).

Case 4. $t^{\prime} \in z_{1} X z_{2}-\left\{z_{1}, z_{2}\right\}$.
If $t \in a A y_{1}-a$ then $X^{\prime}:=x_{2} z_{2} \cup z_{2} B q \cup Q \cup a A z_{1} \cup z_{1} X x_{1}$ is a path in G from x_{1} to x_{2}, and in $G-V\left(X^{\prime}\right),\left\{y_{1}, y_{2}\right\}$ is contained in the cycle $y_{1} A t \cup T \cup t^{\prime} X y_{2} \cup y_{2} B p \cup P \cup c C y_{1}$. If $t \in s C y_{1}-s$ then $X^{\prime}:=x_{2} z_{2} \cup z_{2} B s^{\prime} \cup S \cup s C z_{1} \cup z_{1} X x_{1}$ is a path from x_{1} to x_{2}, and in $G-V\left(X^{\prime}\right),\left\{y_{1}, y_{2}\right\}$ is contained in the cycle $y_{1} C t \cup T \cup t^{\prime} X y_{2} \cup y_{2} B q \cup Q \cup a A y_{1}$.

In either case, we may assume X^{\prime} is induced (for we can simply take an induced path in $G\left[X^{\prime}\right]$ from x_{1} to x_{2}). Hence by applying Lemma 2.1 we can find an induced path $X^{\prime \prime}$ in G from x_{1} to x_{2} such that $G-V\left(X^{\prime \prime}\right)$ is 2-connected and $\left\{y_{1}, y_{2}\right\} \cap V\left(X^{\prime \prime}\right)=\emptyset$. Now Lemma 2.3 shows that G contains a $T K_{5}$, a contradiction to our initial assumption.

Lemma 4.2 There is a path R in H from z_{1} to $r \in V\left(B-y_{2}\right)$ internally disjoint from $A \cup B \cup C$.

Proof. Suppose R does not exist. Define $a^{\prime} \in V\left(z_{1} A a-z_{1}\right)$ with $z_{1} A a^{\prime}$ minimal such that there is a path Q^{\prime} in H from a^{\prime} to $q^{\prime} \in V(B)$ internally disjoint from $A \cup B \cup C$, or there is a path Q^{\prime} from a^{\prime} to $a^{\prime \prime} \in V\left(c C y_{1}-c\right)$ internally disjoint from $A \cup B^{\prime} \cup C$.

Define $c^{\prime} \in V\left(z_{1} C c\right)$ with $z_{1} C c^{\prime}$ minimal such that $c^{\prime}=c$ or there is a path R^{\prime} from c^{\prime} to $r^{\prime} \in V\left(a^{\prime} A y_{1}-a^{\prime}\right)$ internally disjoint from $A \cup B^{\prime} \cup C$.

We further choose A, B, C so that, subject to (a), (b), (c) and (d), $z_{1} A a^{\prime} \cup z_{1} C c^{\prime}$ is minimal.

$$
\text { Claim 1. If } c^{\prime} \neq c \text { then } Q^{\prime} \text { ends at } q^{\prime} \in B \text {. }
$$

For, suppose $c^{\prime} \neq c$ and Q^{\prime} ends at $a^{\prime \prime} \in c C y_{1}-c$. Then $G\left[z_{1} A a^{\prime} \cup Q^{\prime} \cup a^{\prime \prime} C y_{1}\right]$ and $G\left[z_{1} C c^{\prime} \cup\right.$ $\left.R^{\prime} \cup r^{\prime} A y_{1}\right]$ contain induced paths A^{\prime}, C^{\prime}, respectively, from z_{1} to y_{1}. Clearly, A^{\prime}, C^{\prime} satisfy (a) and (b); but the $\left(A^{\prime} \cup C^{\prime}\right)$-bridge of H containing B is larger than the $(A \cup C)$-bridge of G containing B, contradicting (c). Hence we have Claim 1.

Claim 2. $\left\{a^{\prime}, c^{\prime}\right\}$ is a cut in H separating $z_{1} A a^{\prime} \cup z_{1} C c^{\prime}$ from $a^{\prime} A y_{1} \cup c^{\prime} C y_{1} \cup B^{\prime}$.
Suppose Claim 2 is flase. Then there is a path T in H from $t_{1} \in V\left(z_{1} A a^{\prime} \cup z_{1} C c^{\prime}\right)-\left\{a^{\prime}, c^{\prime}\right\}$ to $t_{2} \in\left(B-y_{2}\right) \cup\left(a^{\prime} A y_{1}-a^{\prime}\right) \cup\left(c^{\prime} C y_{1}-c^{\prime}\right)$ internally disjoint from $A \cup B \cup C$. By (8) and the choice of a^{\prime} and c^{\prime}, there are only three possibilities: $t_{2} \in B-y_{2} ; t_{1} \in z_{1} C c^{\prime}-c^{\prime}$ and $t_{2} \in c^{\prime} C y_{1}-c^{\prime} ; t_{1} \in z_{1} A a^{\prime}-a^{\prime}$ and $t_{2} \in a^{\prime} A y_{1}-a^{\prime}$.

Suppose $t_{2} \in B-y_{2}$. Then by the choice of a^{\prime} and since R does not exist, $t_{1} \in z_{1} C c^{\prime}-$ $\left\{c^{\prime}, z_{1}\right\}$. Then by the choice of P, T intersects $(Q-a) \cup\left(p B z_{2}-p\right)$ before it intersects P; and hence we may assume $T \cap P=\emptyset$ and $t_{2} \in p B z_{2}-p$. Now the path $\left(z_{2} B t_{2} \cup T \cup t_{1} C z_{1}\right) \cup A \cup$ $\left(y_{1} C c \cup P \cup p B y_{2}\right)$ passes through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (3).

Now suppose $t_{1} \in z_{1} C c^{\prime}-c^{\prime}$ and $t_{2} \in c^{\prime} C y_{1}-c^{\prime}$. First, assume that T is contained in the $(A \cup C)$-bridge of H containing B. Then since R does not exist, $t_{1} \neq z_{1}$, and there exists a path T^{\prime} from some $t^{\prime} \in V(T)-\left\{t_{1}, t_{2}\right\}$ to some $t^{\prime \prime} \in V(B)$ which is internally disjoint from $A \cup B \cup C \cup T$. By the choice of P, T^{\prime} is disjoint from P, and $t^{\prime \prime}=y_{2}$ or $t^{\prime \prime} \in p B z_{2}-p$. If $t^{\prime \prime}=y_{2}$, then $z_{1} X x_{1} \cup z_{1} X y_{2} \cup A \cup\left(z_{1} C c \cup P \cup p B z_{2} \cup z_{2} x_{2}\right) \cup A \cup\left(y_{1} C t_{2} \cup t_{2} T t^{\prime} \cup T^{\prime}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $t^{\prime \prime} \in p B z_{2}-p$, then $\left(z_{2} B t^{\prime \prime} \cup T^{\prime} \cup t^{\prime} T t_{1} \cup\right.$
$\left.t_{1} C z_{1}\right) \cup A \cup\left(y_{1} C c \cup P \cup p B y_{2}\right)$ is a path in H through $z_{2}, z_{1}, y_{1}, y_{2}$ in order, contradicting (3). Therefore, T is not contained in the $(A \cup C)$-bridge of H containing B. Then $c^{\prime} \neq c$ and $t_{2} \in c^{\prime} C c-c^{\prime}$; as otherwise, let C^{\prime} be an induced path in $G\left[\left(C-\left(t_{1} C t_{2}-\left\{t_{1}, t_{2}\right\}\right)\right) \cup T\right]$ from z_{1} to y_{1}, and we see that A and C^{\prime} satisfy (a) and (b), but the ($A \cup C^{\prime}$)-bridge of H containing B is larger than the $(A \cup C)$-bridge of G containing B, contradicting (c). If $t_{1}=z_{1}$ then let A^{\prime} be an induced path in $G\left[z_{1} C c^{\prime} \cup R^{\prime} \cup r^{\prime} A y_{1}\right]$ from z_{1} to y_{1} and let C^{\prime} be an induced path in $G\left[T \cup c^{\prime} C y_{1}\right]$ from z_{1} to y_{1}; and we see that $A^{\prime}, C^{\prime \prime}$ satisfy (a) and (b), but the ($A^{\prime} \cup C^{\prime}$)-bridge of H containing B is larger than the $(A \cup C)$-bridge of G containing B, contradicting (c). So $t_{1} \neq z_{1}$. Then let C^{\prime} be an induced path in $G\left[z_{1} C t_{1} \cup T \cup t_{2} C y_{1}\right]$ from z_{1} to y_{1}. Now A, B, C^{\prime} satisfy (a)-(d); but we see that $t_{1} C c^{\prime} \cup R^{\prime}, t_{1}$ become the new R^{\prime}, c^{\prime}, respectively, contradicting the choice of c^{\prime}.

Hence, $t_{1} \in z_{1} A a^{\prime}-a^{\prime}$ and $t_{2} \in a^{\prime} A y_{1}-a^{\prime}$. We claim that Q^{\prime} must end at $a^{\prime \prime}$; otherwise, the same argument in the previous case gives a contradiction (by symmetry between A and C, the choice of Q^{\prime}, and the nonexistence of R). Hence by Claim $1, c^{\prime}=c$, and Q^{\prime} is contained in an $(A \cup C)$-bridge of H not containing B. Suppose T is contained in an $(A \cup C)$-bridge of H not containing B. If $t_{1}=z_{1}$ then $G\left[T \cup t_{2} A y_{1}\right]$ has an induced path A^{\prime} from z_{1} to y_{1} and $G\left[z_{1} A a^{\prime} \cup Q^{\prime} \cup a^{\prime \prime} C y_{1}\right]$ has an induced path C^{\prime} from z_{1} to y_{1}, such that $A^{\prime}, C^{\prime \prime}$ satisfy (a) and (b), but the $\left(A^{\prime} \cup C^{\prime}\right)$-bridge of H containing B is larger than the $(A \cup C)$-bridge of G containing B, contradicting (c). So $t_{1} \neq z_{1}$. Then $G\left[z_{1} A t_{1} \cup T \cup t_{2} A y_{1}\right]$ has an induced path A^{\prime} from z_{1} to y_{1} such that A^{\prime}, B, C satisfy (a)-(d), but $t_{1}, t_{1} A a^{\prime} \cup Q^{\prime}$ become the new a^{\prime}, Q^{\prime}, respectively, contradicting the minimality of $z_{1} A a^{\prime} \cup z_{1} C c^{\prime}$. So T is contained in the $(A \cup C)-$ bridge of H containing B. Then there is a path S from $s^{\prime} \in V(T)-\left\{t_{1}, t_{2}\right\}$ to $s^{\prime \prime} \in V(B)$ internally disjoint from $A \cup C \cup B \cup T$. Since R does not exist, $t_{1} \neq z_{1}$. If $s^{\prime \prime} \neq y_{2}$, then $t_{1}, t_{1} T s^{\prime} \cup S$ constradict the choice of c^{\prime}, Q^{\prime}. So $s^{\prime \prime}=y_{2}$. Now $z_{1} X x_{1} \cup z_{1} X y_{2} \cup\left(z_{1} C c \cup P \cup\right.$ $\left.p B z_{2} \cup z_{2} x_{2}\right) \cup\left(z_{1} A a^{\prime} \cup Q^{\prime} \cup a^{\prime \prime} C y_{1}\right) \cup\left(S \cup s^{\prime} T t_{2} \cup t_{2} A y_{1}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$, contradicting our assumption that G contains no $T K_{5}$. This proves Claim 2.

Let F denote the union of $z_{1} A a^{\prime} \cup z_{1} C c^{\prime}$ and the $(A \cup C)$-bridges of H whose attachments are all contained in $z_{1} A a^{\prime} \cup z_{1} C c^{\prime}$, which is not empty since R does not exist. Since $H-\left\{z_{1}, z_{2}, y_{2}\right\}=$ $G-V(X)$ is 2-connected, we have

Claim 3. $F-\left\{z_{1}, a^{\prime}\right\}$ contains a path T_{1} from $z_{1} A a^{\prime}-\left\{z_{1}, a^{\prime}\right\}$ to $z_{1} C c-z_{1}$, and $F-\left\{z_{1}, c\right\}$ has a path T_{2} from $z_{1} A a^{\prime}-z_{1}$ to $z_{1} C c-\left\{z_{1}, c\right\}$.

Let $u \in V\left(x_{1} X z_{1}\right), w \in V\left(z_{1} X y_{2}\right)$ with $u X w$ maximal such that u, w each have a neighbor in $F-\left\{z_{1}, a^{\prime}, c^{\prime}\right\}$. Since $\left\{u, w, a^{\prime}, c^{\prime}\right\}$ cannot be a cut in G (as G is 5 -connected), there is a path S from $s \in V(u X w-\{u, w\})$ to $s^{\prime} \in V\left(a^{\prime} A y_{1}\right) \cup V\left(c C y_{1}\right) \cup V\left(P \cup Q^{\prime} \cup Q\right) \cup V\left(B-y_{2}\right)$ such that $s \notin\left\{a^{\prime}, c^{\prime}\right\}$, and S is internally disjoint from $F \cup u X w \cup a^{\prime} A y_{1} \cup c^{\prime} C y_{1} \cup P \cup Q \cup Q^{\prime} \cup B$. By Claim 2, $s^{\prime} \neq z_{1}$.

We will cosider two cases according to the location of s. But first, we need the following which follows from Lemma 4.1 and planarity of B^{\prime}.

Claim 4. (i) B^{\prime} has independent paths P_{1}, P_{2} from z_{2} to q, p, respectively; and (ii) if $q^{\prime} \neq p$ then either B^{\prime} has independent paths from z_{2} to p, q^{\prime}, or $q \neq q^{\prime}$ and B^{\prime} has independent paths from z_{2} to q^{\prime}, q disjoint from $y_{2} B p$.

Case 1. $s \in u X z_{1}-\left\{u, z_{1}\right\}$.
Then $s^{\prime} \notin A$; as otherwise, the paths $S \cup s^{\prime} A a \cup Q \cup q B z_{2}$ and $y_{2} B p \cup P \cup c C y_{1}$ contradict the choice of Z, Y in (1) and (2). Similarly, $s^{\prime} \notin Q, s^{\prime} \notin p B z_{2}-p$, and $s^{\prime} \notin Q^{\prime}$ when $q^{\prime} \in Q^{\prime}$ and $q^{\prime} \neq p$.

Subcase 1.1. $s^{\prime} \in y_{2} B p-\left\{y_{2}, p\right\}$. Then by Lemma 4.1, $\left(B^{\prime}-y_{2}\right)-q B z_{2}$ has a path S^{\prime} from z_{2} to s^{\prime}. Then $\left(z_{2} B q \cup Q \cup a A y_{1}\right) \cup\left(S^{\prime} \cup S \cup s X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$, a contradiction.

Subcase 1.2. $s^{\prime} \in P-c$. Then by Claim 4(ii), B^{\prime} has independent paths $P_{1}^{\prime}, P_{2}^{\prime}$ from z_{2} to q, s^{\prime}, respectively. Now $\left(P_{1}^{\prime} \cup Q \cup a A y_{1}\right) \cup\left(P_{2}^{\prime} \cup S \cup s X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(C \cup z_{1} X y_{2}\right) \cup$ $G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, z_{2}$, a contradiction.

Subcase 1.3. $s^{\prime} \in Q^{\prime}-a^{\prime}$. If Q^{\prime} ends at $q^{\prime} \in B$ then we have $q^{\prime}=p$, and by Claim 4(ii) there are independent paths $P_{1}^{\prime}, P_{2}^{\prime}$ in B^{\prime} from z_{2} to q, q^{\prime}, respectively; and hence ($P_{1}^{\prime} \cup$ $\left.Q \cup a A y_{1}\right) \cup\left(P_{2}^{\prime} \cup p Q^{\prime} s^{\prime} \cup S \cup s X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So Q^{\prime} ends at $a^{\prime \prime} \in c C y_{1}-c$. Let T^{\prime} be a path in $G[V(F+u)]-z_{1}$ from u to c^{\prime} (which exists by the path T_{1} in $F-\left\{z_{1}, a^{\prime}\right\}$). Then $\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup P \cup c C c^{\prime} \cup T^{\prime} \cup u X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C a^{\prime \prime} \cup a^{\prime \prime} Q^{\prime} s^{\prime} \cup S \cup s X y_{2}\right) \cup$ $G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$, a contradiction.

Subcase 1.4. $s^{\prime} \in c^{\prime} C y_{1}-c^{\prime}$. If $s^{\prime} \in c C y_{1}-c$ then we derive a contradiction as in the above paragraph by replacing $\left(y_{1} C a^{\prime \prime} \cup a^{\prime \prime} Q^{\prime} s^{\prime} \cup S \cup s X y_{2}\right)$ with $\left(y_{1} C s^{\prime} \cup S \cup s X y_{2}\right)$. So $s^{\prime} \in c^{\prime} C c-c^{\prime}$. In particular, $c \neq c^{\prime}$ and so R^{\prime} ends at $r^{\prime} \in a^{\prime} A y_{1}-a^{\prime}$. By (8), $r^{\prime} \in a^{\prime} A a-a^{\prime}$.

By Claim 1, Q^{\prime} ends at $q^{\prime} \in B$. Let T^{\prime} be a path in $G[V(F+u)]-z_{1}$ from u to c^{\prime} (which exists by the path T_{1} in $\left.F-\left\{z_{1}, a^{\prime}\right\}\right)$.

If $r^{\prime}=a$ then $a A y_{1} \cup\left(Q \cup q B z_{2} \cup z_{2} x_{2}\right) \cup\left(a A a^{\prime} \cup Q^{\prime} \cup q^{\prime} B y_{2}\right) \cup\left(R^{\prime} \cup T \cup u X x_{1}\right) \cup$ $\left(y_{1} C s^{\prime} \cup S \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, a$, a contradiction. So $r^{\prime} \neq a$. By Claim 4(ii), $B^{\prime}-y_{2}$ contains independent paths $P_{1}^{\prime}, P_{2}^{\prime}$ from z_{2} to q, q^{\prime}, respectively. $\left(P_{1}^{\prime} \cup Q \cup a A y_{1}\right) \cup\left(P_{2}^{\prime} \cup Q^{\prime} \cup a^{\prime} A r^{\prime} \cup R^{\prime} \cup T^{\prime} \cup u X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup$ $\left(y_{1} C s^{\prime} \cup S \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$, a contradiction.

Case 2. $s \in z_{1} X w-\left\{z_{1}, w\right\}$.
If $s^{\prime} \in P-c$, then $\left(P_{2} \cup p P s^{\prime} \cup S \cup s X x_{1}\right) \cup\left(P_{1} \cup Q \cup a A y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C c \cup T_{1}^{\prime} \cup\right.$ $\left.w X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So $s^{\prime} \notin P-c$.

If $s^{\prime} \in B-q$ then by Lemma 4.1 and by planarity, B^{\prime} contains independent paths $P_{1}^{\prime}, P_{2}^{\prime}$ from z_{2} to q, s^{\prime}, respectively. Now $\left(P_{1}^{\prime} \cup Q \cup a A y_{1}\right) \cup\left(P_{2}^{\prime} \cup S \cup s X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C c \cup T_{1}^{\prime} \cup\right.$ $\left.w X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So $s^{\prime} \notin B-q$.

Hence we have the following four cases. Note that $G[V(F+w)]-\left\{z_{1}, a^{\prime}\right\}$ has a path T_{1}^{\prime} from w to c (because of T_{1} in $F-\left\{z_{1}, a^{\prime}\right\}$).

Subcase 2.1. $s^{\prime} \in a^{\prime} A y_{1}-a^{\prime}$.
If $s^{\prime} \in a A y_{1}-a$, then $\left(P_{1} \cup Q \cup a A z_{1} \cup z_{1} X x_{1}\right) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} A s^{\prime} \cup\right.$ $\left.S \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, z_{2}$.

If $s^{\prime}=a$ then $\left(s^{\prime} A z_{1} \cup z_{1} X x_{1}\right) \cup s^{\prime} A y_{1} \cup\left(S \cup s X y_{2}\right) \cup\left(Q \cup q B z_{2} \cup z_{2} x_{2}\right) \cup\left(y_{1} C c \cup P \cup\right.$ $\left.y_{2} B p\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, a$.

So we may assume $s^{\prime} \in a^{\prime} A a-\left\{a, a^{\prime}\right\}$.
If $a^{\prime \prime} \in Q^{\prime}$ then $\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup P \cup c C z_{1} \cup z_{1} X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C a^{\prime \prime} \cup Q^{\prime} \cup\right.$ $\left.a^{\prime} A s^{\prime} \cup S \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, z_{2}$.

So we amy assume $q^{\prime} \in Q^{\prime}$.
If $q=q^{\prime}$, then $\left(P_{1} \cup Q^{\prime} \cup a^{\prime} A q_{1} \cup z_{1} X x_{1}\right) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C s^{\prime} \cup S \cup\right.$ $\left.s X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, z_{2}$.

So $q \neq q^{\prime}$. By Lemma 4.1, $B^{\prime}-y_{2}$ has independent paths $P_{1}^{\prime}, P_{2}^{\prime}$ from z_{2} to q, q^{\prime}, respectively. Now $\left(P_{1}^{\prime} \cup Q \cup a A y_{1}\right) \cup\left(P_{2}^{\prime} \cup Q^{\prime} \cup a^{\prime} A s^{\prime} \cup S \cup s X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C c \cup T_{1}^{\prime} \cup w X y_{2}\right) \cup$ $G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, z_{2}$.

Subcase 2.2. $s^{\prime} \in c^{\prime} C y_{1}-c^{\prime}$.
If $s^{\prime} \in c C y_{1}-c$, then $\left(P_{1} \cup Q \cup a A y_{1}\right) \cup\left(P_{2} \cup P \cup c C z_{1} \cup z_{1} X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C s^{\prime} \cup\right.$ $\left.S \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So $s^{\prime} \in c^{\prime} C c-c^{\prime}$. In particular, $c \neq c^{\prime}$ and so R^{\prime} ends at $r^{\prime} \in a^{\prime} A y_{1}-a^{\prime}$. By (8), $r^{\prime} \in a^{\prime} A a-a^{\prime}$. By Claim 1, Q^{\prime} ends at $q^{\prime} \in B$.

If $q=q^{\prime}$, then $\left(P_{1} \cup Q^{\prime} \cup a^{\prime} A q_{1} \cup z_{1} X x_{1}\right) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C r^{\prime} \cup R^{\prime} \cup\right.$ $\left.T_{1}^{\prime} \cup w X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, z_{2}$.

So $q \neq q^{\prime}$. By Lemma 4.1, $B^{\prime}-y_{2}$ has independent paths $P_{1}^{\prime}, P_{2}^{\prime}$ from z_{2} to q, q^{\prime}, respectively. Now $\left(P_{1}^{\prime} \cup Q \cup a A y_{1}\right) \cup\left(P_{2}^{\prime} \cup Q^{\prime} \cup a^{\prime} A z_{1} \cup z_{1} X x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C s^{\prime} \cup S \cup s X y_{2}\right) \cup$ $G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, z_{2}$.

Subcase 2.3. $s^{\prime} \in Q$.
Note that $G[V(F+w)]-\left\{z_{1}, c\right\}$ has a path T_{2}^{\prime} from w to a^{\prime} (because of the path T_{2} in $\left.F-\left\{z_{1}, c\right\}\right)$.

Then $\left(P_{1} \cup q Q s^{\prime} \cup S \cup s X x_{1}\right) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} A a^{\prime} \cup T_{2}^{\prime} \cup w X y_{2}\right) \cup$ $G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Subcase 2.4. $s^{\prime} \in Q^{\prime}$.
We may assume Q^{\prime} ends at $q^{\prime} \in B$, as otherwsie, we may revise S so that $s^{\prime}=a^{\prime \prime} \in c C y_{1}-c$, and we derive a contradiction as in Subcase 2.2.

If $q^{\prime}=q$ then $\left(P_{1} \cup q Q^{\prime} s^{\prime} \cup S \cup s X x_{1}\right) \cup\left(P_{2} \cup P \cup c C y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} A r^{\prime} \cup R^{\prime} \cup\right.$ $\left.T_{2}^{\prime} \cup w X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So $q^{\prime} \neq q$. Then by Claim 4(ii), let $P_{1}^{\prime}, P_{2}^{\prime}$ be independent paths in $B^{\prime}-y_{2}$ from z_{2} to q, q^{\prime}, respectively. Now $\left(P_{2}^{\prime} \cup q^{\prime} Q^{\prime} s^{\prime} \cup S \cup s X x_{1}\right) \cup\left(P_{1}^{\prime} \cup Q \cup a A y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C c^{\prime} \cup T_{1}^{\prime} \cup\right.$ $\left.w X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Lemma 4.3 There is no path in H from y_{1} to B internally disjoint from $A \cup B \cup C$.
Proof. Suppose that H has a path R^{\prime} from y_{1} to $r^{\prime} \in V(B)$ internally disjoint from $A \cup B \cup C$, with $r^{\prime} B z_{2}$ minimal.

Since G is 5 -connected and X is induced, x_{1} has a neighbor in $G-V\left(X+y_{1}\right)$, say x. If $x \in A \cup B \cup C$, let $D:=\{x\}$ and $x^{\prime}=x$; otherwise, let D denote the $\left(A \cup B \cup C \cup P \cup Q \cup R \cup R^{\prime}\right)$ bridge of H containing x, and let x^{\prime} be an attachment of D such that $x^{\prime} \notin\left\{z_{1}, y_{2}, z_{2}, y_{1}\right\}$ (since $H-y_{2}$ is 2 -connected). Let T be a path in D from x_{1} to x^{\prime} internally disjoint from $A \cup B \cup C \cup P \cup Q \cup R \cup R^{\prime}$.

Case 1. For any choice of x^{\prime} we have $x^{\prime} \in B^{\prime}$.
Then $x \in B^{\prime}$. If $x=r^{\prime}$, then $R^{\prime} \cup r^{\prime} x_{1} \cup\left(r^{\prime} B z_{2} \cup z_{2} x_{2}\right) \cup r^{\prime} B y_{2} \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, r^{\prime}$. So assume $x \neq r^{\prime}$.

If $r^{\prime} \in q B z_{2}$ or $x^{\prime} \in q B z_{2}$, then by Lemma 4.1, B^{\prime} has independent paths Q_{1}, Q_{2} from z_{2} to r^{\prime}, x^{\prime}, respectively. Then $\left(Q_{1} \cup R^{\prime}\right) \cup\left(Q_{2} \cup x^{\prime} T x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

If $\left\{x^{\prime}, r^{\prime}\right\} \subset y_{2} B q-\{q\}$, then there exist two disjoint paths Q_{1}, Q_{2} from z_{2} to x^{\prime}, q, respectively, then $\left(Q_{1} \cup x^{\prime} T x_{1}\right) \cup\left(Q_{2} \cup Q \cup a A y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Case 2. $x^{\prime} \in A \cup Q \cup R^{\prime}$ and $r^{\prime} \neq q$.
Then by Lemma 4.1, B^{\prime} has independent paths from z_{2} to r^{\prime}, q, respectively, and hence $B^{\prime} \cup A \cup Q \cup R^{\prime}$ has independent paths P_{1}, P_{2} from z_{2} to y_{1}, x^{\prime}, respectively. So $P_{1} \cup\left(P_{2} \cup\right.$ $T) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Case 3. $x^{\prime} \in A \cup Q \cup R^{\prime}$ and $r^{\prime}=q$.
If $x^{\prime} \in Q \cup R^{\prime}$, then there exists two independent paths Q_{1}, Q_{2} from z_{2} to x^{\prime}, p which are in $B^{\prime} \cup Q \cup R^{\prime}$. Now, $\left(Q_{1} \cup T\right) \cup\left(Q_{2} \cup P \cup c C y_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(A \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So assume that $x^{\prime} \in A$, then we consider R. Note $r \notin p B z_{2}-\{p\}$; otherwise, there exists a path through $z_{2}, z_{1}, y_{1}, y_{2}$ in order: $\left(z_{2} B r \cup R\right) \cup A \cup\left(y_{1} C c \cup P \cup p B y_{2}\right)$. So $r \in y_{2} B p$, then there exist two disjoint paths Q_{1}, Q_{2} form z_{2} to r, q in B^{\prime}, then $z_{1} X x_{1} \cup z_{1} X y_{2} \cup\left(R \cup Q_{1}\right) \cup$ $\left(C \cup y_{1} x_{2}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(Q_{2} \cup Q \cup a A x^{\prime} \cup T\right) \cup G\left[\left\{x_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{2}, z_{1}, z_{2}$.

Case 4. $x^{\prime} \in R \cup P$.
By Lemma 4.1, B^{\prime} has two independent paths from z_{2} to $q, r($ or $p)$, then there exist two independent paths from z_{2} to q, x^{\prime} in $B^{\prime} \cup R \cup P$, called Q_{1}, Q_{2} respectively. Now, $\left(Q_{1} \cup Q \cup\right.$ $\left.a A y_{1}\right) \cup\left(Q_{2} \cup T\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(C \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Case 5. $x^{\prime} \in C$.
We consider R. Note, $r^{\prime} \notin y_{2} B p-\{p\}$; otherwise, there exists path through $z_{2}, z_{1}, y_{1}, y_{2}$ in order: $\left(z_{2} B p \cup P \cup c C z_{1}\right) \cup A \cup\left(R^{\prime} \cup r^{\prime} B y_{2}\right)$. So assume that $r^{\prime} \in p B z_{2}$.

If $r^{\prime} \in p B q-\{q\}$, there is a path through $y_{2}, y_{1}, z_{1}, z_{2}$ in order: $\left(y_{2} B r^{\prime} \cup R^{\prime}\right) \cup C \cup\left(z_{1} A a \cup\right.$ $Q \cup q B z_{2}$), contradicting to (3).

If $r^{\prime}=q$, then there exist two independent paths Q_{1}, Q_{2} from z_{2} to q, p in $B^{\prime}-\left\{y_{2}\right\}$, respectively, then $\left(Q_{1} \cup R^{\prime}\right) \cup\left(Q_{2} \cup P \cup c C x^{\prime} \cup T\right) \cup x_{2} z_{2} \cup x_{2} X y_{2} \cup\left(A \cup z_{1} X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

If $r^{\prime} \in q B z_{2}-\{q\}$, then there exist two independent paths Q_{1}, Q_{2} in $B^{\prime}-p B y_{2}$ from z_{2} to q, r^{\prime} respectively, then $\left(Q_{1} \cup Q \cup a A z_{1} \cup z_{1} X x_{1}\right) \cup\left(Q_{2} \cup R^{\prime}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(y_{1} C c \cup P \cup\right.$ $\left.p B y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Lemma 4.4 There is a D-cut $\left\{t_{1}, t_{2}\right\}$ in H separating $\left\{y_{1}, z_{1}\right\}$ from $\left\{y_{2}, z_{2}\right\}$, and $\left\{y_{1}, y_{2}, z_{1}, z_{2}\right\} \cap$ $\left\{t_{1}, t_{2}\right\}=\emptyset$.

Proof. Suppose such a 2 -cut does not exist. Then by the same argument as for (4), H has three independent paths, two from y_{1} to z_{2}, and one from z_{1} to y_{2}. Hence by (6), we may also assume $x_{1} z_{1} \in E(G)$. By (3), $y_{1} z_{1}, y_{1} z_{2} \notin E(G)$.

If all neighbors of y_{1} are contained in $A \cup C \cup X$ then let $a^{\prime} \in V(A), c^{\prime} \in V(C)$ such that $y_{1} a^{\prime} \in E(A), y_{1} c^{\prime} \in E(C)$, and $S=y_{1} a^{\prime} \cup y_{1} c^{\prime}$.

Next we define $S, a^{\prime}, c^{\prime}$ when y_{1} has a neighbor not in $A \cup C \cup X$. So let T_{1} be an $(A \cup C)$ bridge of H with y_{1} as an attachment. By Claim 3, $B \nsubseteq T_{1}$. Recall in (6) the definition of $a_{i}(T)$ and $c_{i}(T)$ for $(A \cup C)$-bridges T not containing B.

Let T_{1}, \ldots, T_{k} be a maximal sequence of $(A \cup C)$-bridges of H not containing B such that for each $i=1, \ldots, k-1, T_{i+1}$ has an attachment not in $\bigcup_{j=1}^{i}\left(c_{1}\left(T_{j}\right) C y_{1} \cup a_{1}\left(T_{j}\right) A y_{1}\right)$, and an attachment not in $\bigcup_{j=1}^{i}\left(z_{1} C c_{1}\left(T_{j}\right) \cup z_{1} A a_{1}\left(T_{j}\right)\right)$. To simplify the notation, we let $a_{i} \in V(A), c_{i} \in V(C)$ with $z_{1} A a_{i}$ and $z_{1} C c_{i}$ minimal such that a_{i} is an attachment of some T_{j} with $1 \leq j \leq i$, and c_{i} is an attachment of some T_{j} with $1 \leq j \leq i$. Let $S_{i}:=\left(\bigcup_{j=1}^{i} T_{j}\right) \cup$ $a_{i} A y_{1} \cup c_{i} C y_{1}$.

Claim 1. For any $1 \leq i \leq k$ and for any $r_{i} \in S_{i}-\left\{a_{i}, c_{i}\right\}$ there exist three independent paths A_{i}, C_{i}, R_{i} in S_{i} from y_{1} to a_{i}, c_{i}, r_{i}, respectively.

This is obvious for $i=1$ (if $a_{i}=y_{1}$, or $c_{i}=y_{1}$, or $r_{i}=y_{1}$ then A_{i} or C_{i} or R_{i} is a trivial path).
Now assume it is true for some $i \leq k-1$. Let $r_{i+1} \in S_{i+1}-\left\{a_{i+1}, c_{i+1}\right\}$. When $r_{i+1} \in$ $S_{i}-\left\{a_{i}, c_{i}\right\}$ let $r_{i}:=r_{i+1}$; otherwise, let $r_{i} \in V\left(a_{i} A y_{1}-a_{i}\right) \cup V\left(c_{i} C y_{1}-c_{i}\right)$ be an attachment of T_{i+1}. By induction there are three independent paths A_{i}, C_{i}, R_{i} in S_{i} from y_{1} to a_{i}, c_{i}, r_{i}, respectively.

If $r_{i}=r_{i+1}$ then $A_{i+1}:=A_{i} \cup a_{i} A a_{i+1}, C_{i+1}:=C_{i} \cup c_{i} C c_{i+1}, R_{i+1}:=R_{i}$ are the desired paths in S_{i+1}.

If $r_{i+1} \in T_{i+1}-(A \cup C)$ then let P_{i+1} be a path in T_{i+1} from r_{i} to r_{i+1} internally disjoint from $A \cup C$; we see that $A_{i+1}:=A_{i} \cup a_{i} A a_{i+1}, C_{i+1}:=C_{i} \cup c_{i} C c_{i+1}, R_{i+1}:=R_{i} \cup P_{i+1}$ are the desired paths in S_{i+1}.

So we may assume by symmetry that $r_{i+1} \in a_{i+1} A a_{i}-a_{i+1}$. Let Q_{i+1} be a path in T_{i+1} from r_{i} to a_{i+1} internally disjoint from $A \cup C$. Now $R_{i+1}:=A_{i} \cup a_{i} A r_{i+1}, C_{i+1}:=$ $C_{i} \cup c_{i} C c_{i+1}, A_{i+1}:=R_{i} \cup Q_{i+1}$ are the desired paths in S_{i+1}.

Claim 2. $a_{k} \in a A y_{1}$ and $c_{k} \in c C y_{1}$.
Otherwise, let $i \in\{1, \ldots, k\}$ be minimum such that $a_{i} \in z_{1} A a-a$ or $c_{i} \in z_{1} C c-c$.
Suppose $a_{i}=z_{1}$. Then $i \geq 2$ by (9), and there is a path L in T_{i} from z_{1} to some $r_{i-1} \in S_{i-1}-\left\{a_{i-1}, c_{i-1}\right\}$ internally disjoint from $S_{i-1} \cup A \cup C$. Now $y_{2} B p \cup P \cup c C c_{i-1} \cup$ $C_{i-1} \cup R_{i-1} \cup L \cup z_{1} A a \cup Q \cup q B z_{2}$ is a path in H contradicting (3). Therefore, $a_{i} \neq z_{1}$. Similarly, $c_{i} \neq z_{1}$.

Suppose $a_{i} \in z_{1} A a-\left\{a, z_{1}\right\}$. Let $A^{\prime}:=A_{i} \cup z_{1} A a_{i}$ and $C^{\prime}:=C_{i} \cup z_{1} C c_{i}$. We see that the ($A^{\prime} \cup C^{\prime}$)-bridge of H containing B is larger than the ($A \cup C$)-bridge of H, contradicting (c) of (5) (while (b) of (5) is not affected). So $a_{k} \in a A y_{1}$. Similarly, $c_{k} \in c C y_{1}$.

Define $a^{\prime}:=a_{k}, c^{\prime}:=c_{k}$, and $S:=S_{k}$. Now $\left\{a^{\prime}, c^{\prime}, x_{1}, x_{2}\right\}$ cannot be a 4 -cut in G (as G is 5 -connected). So there is a path D in G from some vertex $r^{\prime} \in V(S)-\left\{a^{\prime}, c^{\prime}\right\}$ to $y \in V(X \cup A \cup B \cup C)-V(S)$ internally disjoint from $X \cup A \cup B \cup C \cup S$.

By Lemma 4.3, y $\notin B$. Indeed, the $(A \cup C)$-bridge of H containing S has no attachment on B (otherwise we may choose S so that $y \in B$). Thus by the definition of a^{\prime} and $c^{\prime}, y \notin A \cup C$. So $y \in z_{1} X z_{2}-\left\{z_{1}, z_{2}\right\}$. By Claim 1, let Q_{1}, Q_{2} be independent paths in $B^{\prime}-y_{2}$ from z_{2} to q, p, respectively. Let $A^{\prime}, C^{\prime}, R^{\prime}$ be independent paths in S from y_{1} to $a^{\prime}, c^{\prime}, r^{\prime}$, respectively.

If $y \in z_{1} X y_{2}-z_{1}$ then $\left(Q_{1} \cup Q \cup a A a^{\prime} \cup A^{\prime}\right) \cup\left(Q_{2} \cup P \cup c C z_{1} \cup z_{1} x_{1}\right) \cup z_{2} x_{2} \cup z_{2} X y_{2} \cup$ $\left(R^{\prime} \cup D \cup y X y_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

So assume $y \in z_{2} X y_{2}-\left\{z_{2}, y_{2}\right\}$. Then $X^{\prime}:=x_{1} z_{1} \cup z_{1} A a \cup Q \cup q B z_{2} \cup z_{2} x_{2}$ is a path in G from x_{1} to x_{2}. In $G-V\left(X^{\prime}\right),\left\{y_{1}, y_{2}\right\}$ is contained in the cycle $D \cup R^{\prime} \cup C^{\prime} \cup c^{\prime} C c \cup P \cup p B y_{2} \cup y_{2} X y$. Hence by Lemma 2.1, there is an induced path $X^{\prime \prime}$ in G form x_{1} to x_{2} such that $G-V\left(X^{\prime \prime}\right)$ is 2 -connected and $\left\{y_{1}, y_{2}\right\} \cap V\left(X^{\prime \prime}\right)=\emptyset$. Now Lemma 2.3 finds a $T K_{5}$ in G.

By Lemma 4.4, H has a separation $\left(H^{\prime}, H^{\prime \prime}\right)$ such that $\left|V\left(H^{\prime} \cap H^{\prime \prime}\right)\right|=2,\left\{y_{1}, z_{1}\right\} \subseteq H^{\prime \prime}$ and $\left\{y_{2}, z_{2}\right\} \subseteq H^{\prime}$, and $\left\{y_{1}, z_{1}, y_{2}, z_{2}\right\} \cap V\left(H^{\prime} \cap H^{\prime \prime}\right)=\emptyset$. We choose $\left(H^{\prime}, H^{\prime \prime}\right)$ so that H^{\prime} is minimal. Then, because of the existence of R, P, Q and by (5) and (7), we see that $A \cup C \cup P \cup R \subseteq H^{\prime \prime}$. Note, if $t_{1}=p$, then $t_{2} \in Q$ or $t_{2} \in q B z_{2}$; if $t_{1} \neq p$, then $t_{2} \in q B z_{2}$. Thus we may assume that $t_{1} \in y_{2} B r, t_{2} \in Q$ or $t_{2} \in q B z_{2}$. Let $T^{\prime}=t_{2} B q \cup Q, T^{\prime \prime}=t_{2} B z_{2}$ if $t_{2} \in B$; otherwise define $T^{\prime}=t_{2} Q a, T^{\prime \prime}=q B z_{2} \cup q Q t_{2}$.

Let $z \in z_{1} X y_{2}$ with $z X z_{1}$ minimal such that $z=y_{2}$ or z has a neighbor in $H^{\prime}-$ $\left\{y_{2}, z_{2}, t_{1}, t_{2}\right\}$.

Lemma $4.5\left\{x_{2}, y_{2}, z, t_{1}, t_{2}\right\}$ is a 5-cut in $G, G\left[V\left(H^{\prime} \cup z X x_{2}\right)\right.$ is 2-connected and $\left(5,\left\{x_{2}, y_{2}, z, t_{1}, t_{2}\right\}\right)$ connected, $G\left[V\left(H^{\prime} \cup z X x_{2}\right)\right.$ has a plane representation in which $x_{2}, y_{2}, z, t_{1}, t_{2}$ occur on a facial cycle in this cyclic order.

Proof. Let $H^{*}:=G\left[V\left(H^{\prime} \cup y_{2} X z_{2}\right)\right]$. Then $\left(H^{*}, y_{2}, t_{1}, t_{2}, z_{2}\right)$ is 3-planar. Since otherwise by Theorem 2.6, H^{*} contains disjoint paths T_{1}, T_{2} from z_{2}, y_{2} to t_{1}, t_{2}, respectively. Now $z_{1} X x_{1} \cup z_{1} X y_{2} \cup C \cup\left(R \cup r B t_{1} \cup T_{1} \cup z_{2} x_{2}\right) \cup\left(y_{1} A a \cup T^{\prime} \cup T_{2}\right) \cup G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}\right]$ is a $T K_{5}$ on branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

We may assume that if $z \neq y_{2}$ and $z z^{\prime} \in E(G)$ with $z^{\prime} \in V\left(H^{*}\right)-\left\{t_{1}, t_{2}, y_{2}\right\}$, then $z^{\prime} \in y_{2} B t_{1}$ or H^{*} has a 2 -cut contained in $y_{2} B t_{1}$ and separating z^{\prime} from $\left\{t_{2}, z_{2}\right\}$. For otherwise, by the minimality of H^{\prime} (and by planarity), $H^{\prime}-y_{2} B t_{1}$ has independent paths P_{1}, P_{2} from z_{2} to z^{\prime}, t_{2}, respectively; and $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup z z^{\prime} \cup z X x_{1}\right) \cup\left(P_{2} \cup Q \cup a A y_{1}\right) \cup\left(y_{1} C p \cup P \cup y_{2} B p\right) \cup$ $G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, y_{1}, x_{2}, y_{2}, z_{2}$. Actually, this paragraph tells us more: for any vertex $v \in z_{1} X y_{2}$, the conclusion holds.

If x_{2} ha a neighbor $x \in H^{\prime}-T^{\prime \prime}$ then, since G is 5 -connected, $H^{\prime}-\left(T^{\prime \prime}+y_{2}\right)$ contains a path X^{\prime} from x to t_{1}; and hence $z_{1} X x_{1} \cup z_{1} X y_{2} \cup A \cup\left(R \cup r B t_{1} \cup X^{\prime} \cup x x_{2}\right) \cup\left(y_{1} A a \cup T^{\prime} \cup T^{\prime \prime} \cup\right.$ $\left.z_{2} X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. Therefore, we may assume that all neighbors of x_{2} in H^{\prime} must be contained in $T^{\prime \prime}$.

Suppose $z X z_{2}-z$ has no neighbor in $H^{\prime \prime}-\left\{t_{1}, t_{2}\right\}$. Note, $x_{1} X z_{1}-\left\{x_{1}, z_{1}\right\}$ has no neighbor in $H^{\prime}-\left\{y_{2}\right\}$; otherwise, contradicting to (2). Then $\left\{x_{2}, y_{2}, z, t_{1}, t_{2}\right\}$ is a 5 -cut in G, and $G\left[V\left(H^{\prime} \cup z X x_{2}\right)\right.$ is 2-connected and ($\left.5,\left\{x_{2}, y_{2}, z, t_{1}, t_{2}\right\}\right)$-connected. Suppose Claim 5 fails. Then there exist $s, t \in V\left(z X y_{2}-y_{2}\right)$ and $s^{\prime}, t^{\prime} \in V\left(y_{2} B t_{1}-y_{2}\right)$ such that $s s^{\prime}, t t^{\prime} \in E(G)$, y_{2}, s, t, z occur on X in order, and $y_{2}, t^{\prime}, s^{\prime}, t_{1}$ occur on B in order. Since $H-y_{2}$ is 2 -connected and by 3 -planarity of H^{*} and minimality of $H^{\prime},\left(H^{\prime}-y_{2}\right)-\left(T^{\prime \prime}-z_{2}\right)$ has a path L from z_{2} to t^{\prime} disjoint from $t_{1} B s^{\prime}$. Then $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(L \cup t t^{\prime} \cup t X x_{1}\right) \cup\left(T^{\prime \prime} \cup T^{\prime} \cup a A y_{1}\right) \cup\left(y_{1} C c \cup P \cup\right.$ $\left.p B s^{\prime} \cup s s^{\prime} \cup s X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$.

Therefore, we may assume that there is $w \in V\left(z X z_{2}-z\right)$ that has a neighbor in $V\left(H^{\prime \prime}\right)-$ $\left\{t_{1}, t_{2}\right\}$. Then there is a path W in G from w to $w^{\prime} \in V\left(A \cup C \cup P \cup t_{1} B p \cup T^{\prime} \cup R\right)-\left\{t_{1}, t_{2}\right\}$ internally disjoint from $A \cup B \cup P \cup t_{1} B p \cup T^{\prime} \cup R$. Note that $w \neq z_{2}, w \neq y_{2}$.

First, assume $w \in y_{2} X z_{2}-z_{2}$. If $w^{\prime} \in\left(R \cup t_{1} B p \cup P\right)-C$ then $\left(W \cup R \cup t_{1} B p \cup P\right)-$ $\left(\left(C-z_{1}\right)+t_{1}\right)$ has a path W^{\prime} from w to z_{1}; and let L be a path in $H^{\prime}-z_{2}$ from t_{2} to y_{2}, we see that $z_{1} X x_{1} \cup z_{1} X y_{2} \cup\left(W^{\prime} \cup w X x_{2}\right) \cup C \cup\left(y_{1} A a \cup T^{\prime} \cup L\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in
G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $w^{\prime} \in C$, then let L be a path in $H^{\prime}-y_{2}$ from t_{1} to z_{2}; and $z_{1} X x_{1} \cup z_{1} X y_{2} \cup A \cup\left(R \cup t_{1} B r \cup L \cup z_{2} x_{2}\right) \cup\left(y_{2} X w \cup W \cup w^{\prime} C y_{1}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. If $w^{\prime} \in A \cup T^{\prime}$, then $A \cup T^{\prime} \cup W$ has a path W^{\prime} from w to y_{1}; and let L be a path in $H^{\prime}-y_{2}$ from t_{1} to z_{2}, and we see that $z_{1} X x_{1} \cup z_{1} X y_{2} \cup C \cup\left(R \cup t_{1} B r \cup L \cup z_{2} x_{2}\right) \cup\left(y_{2} X w \cup W^{\prime}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ in G with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$. This paragraph also shows that $z \neq y_{2}$.

Now assume that $w \in z X y_{2}-\left\{z, y_{2}\right\}$. Let $z^{\prime} \in t_{1} B y_{2}-\left\{t_{1}, y_{2}\right\}$ such that there is a path Z from z to z^{\prime} which is independent with other paths. By the choice of $\left(H^{\prime}, H^{\prime \prime}\right)$ and since $H-y_{2}$ is 2-connected, $H^{\prime}-\left\{y_{2}, t_{1}\right\}$ contains independent paths P_{1}, P_{2} from z_{2} to t_{2}, z^{\prime}, respectively; and by planarity, H^{\prime} has disjoint paths Q_{1}, Q_{2} from t_{1}, z^{\prime} to z_{2}, y_{2}, respectively. If $w^{\prime} \in R \cup P \cup C$ then $W \cup R \cup P \cup C$ contains a path W^{\prime} from w to y_{1}; and $z_{2} x_{2} \cup z_{2} X y_{2} \cup\left(P_{1} \cup T^{\prime} \cup a A y_{1}\right) \cup\left(P_{2} \cup\right.$ $\left.z Z z^{\prime} \cup z X x_{1}\right) \cup\left(W^{\prime} \cup w X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{2}$. So we may assume $w^{\prime} \in A \cup T^{\prime} \cup t_{1} B p$; then $W \cup A \cup T^{\prime}$ has a path W^{\prime} from w to y_{1} avoiding z_{1} and t_{2}. Hence $z_{1} X x_{1} \cup\left(z_{1} X z \cup z Z z^{\prime} \cup Q_{2}\right) \cup\left(R \cup t_{1} B r \cup Q_{1} \cup z_{2} x_{2}\right) \cup C \cup\left(W^{\prime} \cup w X y_{2}\right) \cup G\left[\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}\right]$ is a $T K_{5}$ with branch vertices $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$.

References

[1] P. Catlin, Hajós' graph-coloring conjecture: variations and counterexamples, J. Combin. Theory, Ser. B 26 (1979) 268-274.
[2] K. Chakravarti and N. Robertson, Covering three edges with a bond in a nonseparable graph. Annals of Discrete Math. (Deza and Rosenberg eds) (1979) 247.
[3] R. Diestel, Graph Theory (3rd edition), Graduate Text in Mathematics 173, Springer, 2006.
[4] K. Kawarabayashi, Note on k-contractible edges in k-connected graphs, Australas. J. Combin. 24 (2001) 165-168.
[5] K. Kawarabayashi, Contractible edges and triangles in k-connected graphs, J. Combin. Theory Ser. B 85 (2002) 207-221.
[6] A. K. Kelmans, Every minimal counterexample to the Dirac conjecture is 5 -connected, Lectures to the Moscow Seminar on Discrete Mathematics (1979).
[7] J. Ma and X. Yu, Independent paths and K_{5}-subdivisions, manuscript submitted.
[8] P. D. Seymour, Private Communication with X. Yu.
[9] P. D. Seymour, Disjoint paths in graphs. Discrete Math. 29 (1980) 293-309.
[10] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. Assoc. Comp. Mach. 27 (1980) 445-456.
[11] C. Thomassen, 2-Linked graphs. Europ. J. Combinatorics 1 (1980) 371-378
[12] X. Yu, Disjoint paths in graphs I, 3-planar graphs and basic obstructions, Annals of Combinatorics 7 (2003) 89-103.
[13] X. Yu, Disjoint paths in graphs II, a special case, Annals of Combinatorics 7 (2003) 105-126.
[14] X. Yu, Disjoint paths in graphs III, characterization, Annals of Combinatorics 7 (2003) 229-246.
[15] X. Yu and F. Zickfeld, Reducing Hajos' coloring conjecture to 4-connected graphs, J. Combin. Theory Ser. B 96 (2006) 482-492.

[^0]: *jiema@math.gatech.edu
 ${ }^{\dagger}$ yu@math.gatech.edu; Partially supported by NSA, and by NSFC Project 10628102

