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Abstract
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nonplanar graph contains a subdivision of K5. In this paper, we prove this conjecture for
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1 Introduction

Only finite simple graphs are considered. We adopt the notaion and terminology in [7]. Paths
Py, ..., P, are said to be independent if for any 1 < i # j < k no end of P; is an internal vertex
of Pj. A separation of a graph G is a pair (G, G2) of subgraphs of G such that G = G1 U G»,
E(Gl N Gg) = @, and E(GZ) @] V(Gz - Gg_i) =+ 0 for i € {1,2}. If ’V(Gl N Gg)’ = k, then
(G1,G3) is a k-separation. For a subgraph H of a graph G, an H-bridge of G is a subgraph
of G that is induced by the edges contained in some component D of G — V(H) and edges
from D to H. The vertices in H that are neighbors of D are called the attachments of this
H-bridge. For S C V(G), the G[S]-bridges of G are also called S-bridges. Let G be a graph
and S C V(G), and let k be a positive integer. We say that G is (k, S)-connected if, for any
cut T of G with |T'| < k, every component of G — T' contains a vertex from S.

For a graph K, we follow Diestel [3] to use TK to denote a subdivision of K. The well known
Kuratowski’s theorem states that a graph is planar iff it contains neither T'K5 nor T K3 3. It
is known that 3-connected nonplanar graphs contain T'K3 3. Seymour [8] conjectured in 1975
that every 5-connected nonplanar graph contains a T'K5, which was posed independently by
Kelmans [6] in 1979. For convenience, the vertices with degree 4 in a TKj5 are called branch
vertices.

Clearly if G is 5-connected and contains a K4 then G contains a T'K35; since for any vertex
v there are four paths from v to the vertices of K4 which have only v in common. It is shown
in [7] that if a 5-onnected graph G contains K, on vertices x1, z2,y1, y2 with y1y2 ¢ E(G), and
if G contains an induced path P from x; to x such that G — P is 2-connected and yi,y2 ¢ P,
then GG contains a T K5 in which x1, z2,y1,y2 are branch vertices.

In this paper we prove Seymour’s conjecture for those graphs that contain K, as a sub-
graph.

Theorem 1.1 If G is a 5-connected non-planar graph and contains K, as a subgraph, then
G contains a T K5.

Note that K, -free graphs have nice structural properties; for example, it is shown in [4]
that if G is 5- connected and K -free then G contains a contractible edge (see [5] for more
results). It is our hope that by excluding K, (and perhaps some other graphs) one can force
usful structural properties that would lead to an eventual resolution of Seymour’s conjecture.

It is shown in [7] that if G is a 5-connected nonplanar graph and has a 5-separation (G, G2)
such that |G2| > 7 and G2 has a planar drawing in a closed disc in the plane with vertices in
V(G1 N G2) occur on the boundary of the disc, then G has a TKj5. This result will be used
to prove Theorem 1.1, and we believe that it will also be useful in an enentual resolution of
Seymour’s conjecture.

The proof of Theorem 1.1 can be outlined as follows. Let G be 5-connected nonplanar
graph and let z1,x2,y1,y2 € V(G) such that G[{z1,z2,y1,y2}] = K, , with y1y2 ¢ E(G).
First, we use a lemma in [7] to show that there is an induced path P in G from z; to x2 such
that G — P is 2-connected, and {y1,y2} € P. If y1,y2 ¢ P, then Theorem 1.1 follows from one
of the two main results in [7]. So we may assume by symmetry that y; ¢ P and yo € P. Now
yo divides P to two subpaths x1Pys and z5Pys, each has at least three vertices (since P is
induced in G and x;y2 € E(G)). By contracting x; Pys — {x;,y2} in G — {x1, 22} we show that
either the resulting graph contains disjoint paths between the new vertices and between y; and



Y2, or G contains a T'K5. This allows us to assume that there exist z; € V(z;Pya — {x,y2})
such that G has disjoint paths Y, Z from y1, 21 to yo, 22, respectively, and internally disjoint
from P. Choose Y, Z so that z1 Pz, is maximal. We then show that either we can find a
TKj5 in G or (by symmetry) there are three independent paths, A and C' from z; to y; and B
from y9 to z5 (see Figure 1). So we may assume A, B and C' exist, and we choose such paths
satisfying certain requirements. Then either there is a T K5 in G, or there exist disjoint paths
P,Q, with P from C to B and ) from A to B. See Figure 1. We then use this structure to
show that to force a 5-separation (G1,G2) such that |Ga| > 7 and Go has a planar drawing in
a closed disc in the plane with vertices in V(G1 N G2) occur on the boundary of the disc. Now
Theorem 1.1 follows from the second main result in [7].

Those results in [7] which we will use are stated in Section 2, along with Seymour’s char-
acterization of graphs without disjoint paths between two pairs of vertices. In Section 3, we
show how to force the structure consisting of paths X, A, B,C, P,Q. In Section 4, we show
how to force the desired separation (G1,G2).

2 Previous results

In this section we state a few results that we need to prove Theorem 1.1. The first lemma is
proved in [7] which says that given an induced path X and a chain of blocks H in G — X, one
can, with one exception, modify X to a nonseparating induced path X’ such that H C G — X".
A graph is said to be a chain of blocks if its blocks can be labeled as By,..., By such that
|BiNBijy1| =1fori=1,...,k—1,and B;NB; =0 when1 < i< j—1<k—-1 1In
addition, if k£ = 1 and y1,y2 are distinct vertices of By, or if K > 2 and y;1V (B — Bs) and
ya € V(By — Bi_1), then we say that By is a chain of blocks from y; to ys.

Lemma 2.1 Let G be a graph and let x1,x9,y1,y2 be distinct vertices of G such that G is
(5,{x1,z2,y1,Yy2})-connected. Suppose X is an induced path in G from x1 to x2, and H is a
chain of blocks in G — V(X)) from y1 to ya. Then precisely one of the following holds:

(1) H =1y1y2 and G —y1y2 can be drawn in a closed disc in the plane without edge crossings
such that x1,y1, T2, y2 occur on the boundary of the disc in this cyclic order.

(i1) There is an induced path X' from x1 to xo such that H C G —V(X'), and G —V(X') is
a chain of blocks from yi to ys.

Lemma 2.1 is used in [7] to prove the following lemma, which gives an induced path X
from which we will build our structure in Figure 1.

Lemma 2.2 Let G be a 5-connected nonplanar graph and x1,xs,y1,ys distinct vertices of
G such that G[{z1,z2,y1,92}] = K, and y1y2 ¢ E(G). Then there is an induced path X
in G — {x129,1Y1, T1Y2, T2Y1, T2y2} from x1 to x4 such that G — V(X) is 2-connected and

{y1, 92} € V(X).

The case {y1,y2} NV (X) = (0 is taken care of by the following lemma proved in [7].



Lemma 2.3 Let G be a 5-connected nonplanar graph and let x1,x2,y1,y2 be distinct vertices
of G such that G[{z1,x2,y1,y2}| = K, and y1y2 ¢ E(G). Suppose there is an induced path X
in G — x1xo from x1 to xo such that G — V(X)) is 2-connected and {y1,y2} NV (X) =0. Then
G contains a T K5 in which x1,x2, Y1,y are branch vertices.

We now state the result proved in [7] about TK5 when a 5-connected graph admits a
5-separation such that one side of the separation is planar.

Theorem 2.4 Let G be a 5-connected nonplanar graph and let (G1,G2) be a 5-separation in
G. Suppose |Ga| > 7 and Ga has a planar representation in which the vertices of V(G N Ga)
are incident with a common face. Then G contains a T Ks.

In our proof of Theorem 1.1, we need the characterizaion of graphs containing no disjoint
paths between two pairs of vertices. For convenience, we introduce the following definition.

Definition 2.5 A 3-planar graph (G, A) consists of a graph G and a set A = {Ay,..., Ay}
of pairwise disjoint subsets of V(G) (possibly A =0) such that

(a) fori#j, N(A)NA; =0,
(b) for1 <i<k, [N(4;)| <3, and

(¢) if p(G, A) denotes the graph obtained from G by (for each i) deleting A; and adding new
edges joining every pair of distinct vertices in N(A;), then p(G,A) can be drawn in a
closed disc D with no edge crossings.

If, in addition, by, by, ..., by are vertices in G such that b; ¢ A; for all0 <i <mn and A; € A,
p(G, A) can be drawn in a closed disc D with no edge crossings, and by, by, ..., b, occur on the
boundary of D in this cyclic order, then we say that (G, A, by, b1,...,by,) is 3-planar. If there
is no need to specify A, we will simply say that (G,bg,b1,...,by,) is 3-planar.

The following result is due to Seymour [9]; equivalent results can be found in (2,10, 11].

Theorem 2.6 (Seymour) Let G be a graph and si,Sa,t1,t2 be distinct vertices of G. Then
exactly one of the following holds:

(i) G contains disjoint paths from s1 to t; and from sy to to.

(17) (G, s1,t1,52,t2) is 3-planar.
For convenience, we say that (G, X, z1,x2,y1,y2) is a 6-tuple if the following holds:
e (G is a b-connected nonplanar graph,

e 11,x2,y1,y2 are distinct vertices of G' such that G[{z1,z2,y1,92}] = K; and yi1y2 ¢
E(G), and

e there is an induced path X in G — {z129, x1y1, T1Y2, T2y1, T2y2} from z1 to z9 such that
G — V(X) is 2-connected, y; ¢ V(X), and ys € V(X).

Note that in a 6-tuple (G, X, 21, z2,y1,92), |V (;Xy2)| > 3.



3 Substructure

In this section, we show that in a 5-connected nonplanar graph we can find a TK5 or a
substructure (see Figure 1) satisfying a list of useful properties.

Lemma 3.1 Let (G, X, x1,x2,y1,y2) be a 6-tuple. Then G contains a T K3, or there exist z1 €
V(1 Xy2) —{x1,y2} and 2o € V(yaXxo) — {x2,y2} such that G — (V (X —{z1,22,y2}) UE(X))
has disjoint paths Z,Y from z1,y1 to zo,y2, respectively.

Proof. Let G’ be the graph obtained from G — {x1,x2} by contracting x; Xy — {z;,y2} to
vertex u; for i = 1,2. Note that G’ is 2-connected; since G is 5-connected, X is induced, and
G — X is 2-connected.

Suppose G’ contains disjoint paths, say U,Y, from wui,1y; to usg,ys, respectively. Let v;
denote the neighbor of u; in the path U, and let z; € V(z; Xy2) — {x;,y2} be a neighbor of v;.
Let Z := (U — {uy,u2}) U{z1, 29, 2101, 20v2}. Now Z,Y are the desired paths.

So we may assume that such disjoint paths U,Y do not exist in G’. Then by Theorem 2.6,
there exists a collection A of subsets of V(G’) — {u1,us,y1,y2} such that (G, A, uq, y1, u2,y2)
is 3-planar. Since G — V(X)) is 2-connected, [{uj,u2} N N(A)| # 2 for all A € A. Let
A'={A e A: [{uj,us} " N(A)| =0} and A" = {A € A : |[{u1,u2} N N(A)| = 1}. For each
A e A, since G is 5-connected, we have {z1,z2} C N(A).

Note that in p(G’,A) (see Definition 2.5) there are edges joining the vertices in each
N(A) —{uy,us}. Since G is 5-connected and G — V(X)) is 2-connected, p(G’, A) — {u1,u2,ys2}
is a 2-connected plane graph; and the edges joining vertices of N(A) — {uj,us} (for each
A € A") occur on the outer cycle, say D, of p(G', A) — {u1,u2,y2}. Let yh,y4 € V(D) be the
neighbors of ys such that y1, 5,45 occur on D in clockwise order and, subject to this, y) Dyl
is maximal. Possibly, v5 = 5.

We may assume that N(z1) — X C V(y5Dy1) UUgacarusenayy 4 and N(z2) — V(X) C
V(y1Dy5) VU ae arusen(ayy A- For, suppose 1 has a neighbor a such that a ¢ X, a ¢ yy Dy,
and a ¢ A for any A € A” with uy € N(A). Let w; € V(D) such that wyw; € E(G’) and
w1 Dy is minimal, and let zyw; € E(G) with 23 € x1Xys — {x1,y2}. Let we € V(D) such
that ugwe € E(G') and y; Dws is minimal, and let zowy € E(G) with 20 € yoXxo — {x2,92}.
Since G’ and H are 2-connected, there exist two independent paths P, P, from 2o to D in
G — V(X — z) internally disjoint from V(p(G’,A)), such that P; ends at w3 and P, ends
at wo where y1,ws,ws occur on D in clockwise order. If there exists a path Pg from ws
to a in p(G', A) — {u1,u2,y2} and disjoint from wyDws, then Pj,w;Dy;,y;Dwy give three
paths P, Wi, Wy in G (with the same ends of Pj,w;Dyi,y1 Dws, respectively) such that
(Pl UP3U aa:l) U (P2 U WQ) U (Z2X$2) U (yQXZQ) U (Wl UJwiz1 U ZleQ) U G[{l‘l,lﬂg, Y1, y2}] is
a TK5 in G with branch vertices x1, 2, y1, Y2, 22. So we may assume such a path P; does not
exist. Then by planarity, there is a 2-cut {s1, s2} in p(G’, A) — {u1, uz, y2} separating ws from
a, with s1, sy € wyDwy. This implies that {x1,z9,s1,s2} is a 4-cut in H separating {a,y1}
from X, contradicting the assumption that G is 5-connected.

Therefore, since G is not planar, there must exist ¢ € {1,2} and vertices vy, vy € z; Xy2 —yo
such that z1,v1, v, 2 occur on X in this order, and one of the following holds:

(a) vj is adajcent to w; € V(D) in G such that yi, v5, vy, w1, we (if i = 1) or y1, w1, wa, yh, vy
(if ¢ = 2) occur on D in clockwise order, and in this case we let Q; = vjwy;



(b) there is some A € A such that G[A U V(v1Xv9)] has disjoint paths Q1, Q2 from v, vo
to w1y, wy respectively, where wy, wy are neighbors of A in G’ that are not u; or us, and
Y1, Yo, Yy, wi,wa (if ¢ = 1) or y1, wy, wa, yh,y5 (if i = 2) occur on D in clockwise order.

Without loss of generality we may assume that the above occurs with ¢ = 1. Let z be a
vertex in yo Xx9 — {2, y2}. Then by planarity of p(G’, A) — {u1,us,y2} there exist neighbors
2/, 2" of z in G — V(X) such that G — V(X) contains independent paths P;, P, Py with P
from y; to 2/, Py from 2" to wy, and P3 from ws to y1. Now 2Xzo U 2Xys U ({2,22"} U P U
Q1Uz 1 Xv)U(PLU{z, 22’ })U(PsUQ2Uve Xy2) UG[{x1, 2, y1,y2}] is a T K5 in G with branch
vertices 1, X2, Y1, Y2, 2. |

For convenience, we say that (G, X, z1,x2,y1,Y2, 21, 22) is an 8-tuple if
o (G,X,x1,22,Y1,Yy2) is a 6-tuple,

e there exist z; € V(21 Xy2) — {z1, 12}, 22 € V(y2Xx2) — {22, y2}, and disjoint paths Z,Y
in G— (V(X —{z1,292,92}) U E(X)) from z1,y; to 22, y2, respectively, and

e subject to above, z; X2y is maximal.

For any 8_tup1e (G7 X7 T1,22,Y1,Y2, 21, 22)7 we let H := G — (V(X - {217 22, 92}) U E(X))
Clearly, each z; has at least three neighbors in H — {21, 29,2}, and yo has at least one neighbor

in H. So H is connected, and H —ys is 2-connected. We will derive more structural information
of H.

Lemma 3.2 Let (G, X, x1,x2,91,Y2,21,22) be an 8-tuple. Then G contains a TKs, or the
following holds:

(1) for anyi € {1,2}, H has no path through z;,z3—;,y1,y2 in order, and y1z; ¢ E(G);

(2) there exists i € {1,2} such that H contains independent paths A, B,C, with A and C
from z; to y1, and B from yo to z3_;.

Proof. First, suppose there is a path in H from z; (for some i € {1,2}) to y such that
Ziy Z3—i, Y1, Y2 occur on P in order. Then G[{x1,z2,y1,y2}] U (X — V(2 Xy2 — {y2,2})) UP is
a T K5 in G with branch vertices 1, x2,y1,y2, 23—;. S0 we may assume that such P does not
exist. Hence by Lemma 3.1, we have y121,y122 ¢ E(G), and (1) holds. Thus we have shown
that G has a T K5 or (1) holds.

We now show that G has a T'K5 or (2) holds. Clearly, if (1) fails then G has a T'K3; so we
may assume that (1) holds. For each i € {1,2}, let H; denote the graph obtained from H by
duplicating z; and y;, and let 2} and y} denote the duplicates of z; and y1, respectively.

First, suppose some H; contains three disjoint paths A’, B, C’ from {z;, 2, y2} to {y1, ¥}, z3-: },
with z; € A', 2z, € C" and yy € B'. If z3_; ¢ B’, then after identifying y; with y] and z; with 2/,
we obtain from A’U B’ UC" a path in H from z; to yo through 23_;,%; in order, contradicting
our assumption that (1) fails. Hence z3_; € B’, and we get the desired paths for (2) from
A"UB'UC, by identifying y; with ¢} and z; with z..

So we may assume that for any ¢ € {1,2}, H; does not contain three disjoint paths from
{zi, 2}, y2} to {y1,y}, z3—i}. Then H; has a separation (H/, H!') such that |V (H/ N H!)| < 2,
{zi, 2,92} C V(H;) and {y1,y1, 23—} € V(H]').



We claim that yi,y2, 21,22 ¢ V(H] N H!) for i = 1,2. Note that {y1,vy}} # V(H, N H/),
since otherwise y; would be a cut vertex in H separating z3_; from {ys, z;}. Now suppose one
of y1,y} is in V(H, N H/); then since y1,y) are duplicates (with same neighbors), the other
vertex in V/(H] N H/') is a cut vertex in H separating {z3_;,y1} from {z;,y2}, a contradiction.
Soy1,y) ¢ V(H/NH/). Similar argument shows that z;, 2, ¢ V(H/NH]"). Since H—{z1, z2,y2}
is 2-connected, z3—;,y2 ¢ V(H! N H/').

For i = 1,2, let V(H, N H]') = {s;,t;}, and let F! (respectively, F') be obtained from
H! (respectively, H!') by identifying 2z} with z; (respectively, y; with y1). Then (F!,F/) is a
2-separation of H such that V(F/ NF!) = {s;,t;}, y2,2i € F| —{s;,t;}, and y1,z3_; € F!". Let
Z1,Ys denote the {s1,t;}-bridges of F| containing z1,y2, respectively; and let Z,,Y; denote
the {s1,t1}-bridges of F}' containing z9, y1, respectively.

Case 1. Y1 # Zy and Yy # Z7.

Then since G is 5-connected, {x1,x2,s1,t1} cannot be a cut in G; and hence there exists
y € V(X) —{x1, 22,21, 22} such that y € N(Y1) — {51, s2}.

Suppose y € z1Xz2 — {21, 22}. Since H — y is 2-connected and by symmetry between s;
and t1, we may assume that there is a path Q1 in G[Y1 + y| — s1 from y to t; and containing
y1. Now Q1 UyXys and a path in (Y] UY3) — s1 between y; and y, form a cycle, say D. Note
that the union of (Z; U Z3) — t; and 21X 21 U 23X x5 contains a path from z7 to xg, say X',
which is disjoint from D. In fact, in (G — z122) — D we may choose X’ to be an induced path
from z1 to z2. Now applying Lemma 2.1 we see that there is an induced path X’ in G — 2129
from 1 to x2 such that G — X’ is 2-connected and 1,y ¢ X’. By Lemma 2.3, G contains a
T K5, contradicting our assumption.

Thus, by symmetry between x1 X z; and 25X 29, we may assume that y € x1Xz1 — {x1, 21 }.
Since G is 5-connected and X is induced, y has a neighbor, say v/, such that ¢ ¢ X, ¢/ ¢
{y1,y2}, and if yo has a unique neighbor y5 in H then y' # ).

If ' € Zy U Zy then we may assume (by symmetry between s1 and t1) that (Z; U Z3) — t;
contains a path Q' from 3’ to 2z9. Clearly, in (Y7 UY3) — s1 there is a path Y’ from y; to yso,
which is disjoint from Q'. Now Q'+ {y, yy'} and Y’ contradict the choice of Y, Z in the 8-tuple.

So we may assume ¢’ € Y7 UY5. An easy check and symmetry between s; and ¢; allows us
to assume that there are disjoint paths Q’,Y” in Y; UY5 from 3/, y; to s1, s, respectively. Let
Q" be a path in Zy — t; from s1 to zo. Now Q' U Q" and Y’ contradict the choice of Y, Z in
the 8-tuple.

Case 2. Z1 =Yy or Zyg = Y7.

We first show that Z; = Y5 and Z5 = Y;. We only deal with the case Zo = Y7 and Z7 # Y5;
the other case is symmetric. So assume Zy = Y7 and Z; # Y. Then one of {sa,t2}, say sa,
must be a cut vertex of F| = Zy = Y] separating y; from z;. By symmetry between s; and
t; and since H — ys is 2-connected, we may assume that so separates {si,y;} from {t1,22}.
Since {s9,t2} separates z1 from yo, to € (Yo U Z1) — {s1,t1}. If to € Yo — {s1,1} then in
H — {s9,t3} there is a path from y; to z; through si, a contradiction. So to € Z1 — {s1,t1};
then in H — {s9,t2} there is a path from yy to zo through ¢, a contradiction.

Since Z; = Y3 and Z» = Y7, we may assume that sy is a cut vertex of F| = Zy = V3
separating y; from zo, and t2 is a cut vertex of F{' = Z; = Y5 separating ys from z;. Since H—yq
is 2-connected and by symmetry between s; and t;, we may assume that in Zs, so separates
{s1,y1} from {zo,t1}. Since in H, {so,t2} separates ys from z1, we have to € Z3 — {s1,t1}.



Moreover, since in H, {so,t3} separates y; from zo, we see that to separates {si,z1} from
{t1,y2} in Z;. But this implies that there is no disjoint paths in H from z1,y; to z1,y2,
respectively, contradicting the existence of Y, Z in an 8-tuple. |

We note in passing that the structure of H satisfying (1) of Lemma 3.2 is well characterized
by a result proved in [12-14]. However, we do not need the full strength of that result, and it
is simpler to deal with H directly.

I

Figure 1: The substructure.

In the argument below we do not fix i = 1 or ¢ = 2 (for the sake of symmetry). However,
in the rest of this section one may view ¢ = 1 as suggested by Figure 1.

Lemma 3.3 Let (G, X, x1,22,y1,Y2, 21, 22) be an 8-tuple. Then G has a TK5, or there exists
i € {1,2} such that H contains independent paths A, B,C, with A and C from z; to y1, and
B from ys to z3_;, and the following hold:

(1) there exist disjoint paths P,Q in H from p,q € V(B —y2) to c € V(C) — {y1,zi},a €
V(A) —{y1, 2}, respectively, and internally disjoint from AU BUC, and

(2) 23_;X3—; € E(X)

Proof. We may assume that G has no T K3, since otherwise the assertion of the lemma holds.
First, we prove (1). By Lemma 3.2,

(i) for any i € {1,2}, H has no path through z;, z3_;,y1,y2 in order, and y1z; ¢ E(G);

(ii) there exist i € {1,2} and independent paths A, B,C in H with A and C from z; to yq,
and B from o to z3_;.

We choose A, B, C' such that the following are satisfied in the order listed:
(a) A, B,C are induced paths in H,

(b) if possible the (A U C)-bridge of H containing B has attachments on both A — {z;,y1}
and C — {y1, %},

(¢) the (AU C)-bridge of H containing B is maximal, and



(d) B’, the union of B and the B-bridges of H not containing A U C, is maximal.

Since G — V(X — z3_;) is 2-connected, there are disjoint paths P, @ from B — ys to s,t €
V(AUC) —{#} and internally disjoint from AU BUC.

Claim 1. We may choose P, () so that s # y; and ¢ # y;.
For otherwise, H — {z;, y2} has a separation (H;, H2) such that V(Hy N Hy) = {y1,v} for some
veV(H), (AUC) -z C Hy and B —ya € Hy. Recall that G — V(X — {21, 22}) contains
disjooint paths Z,Y from z1,y;1 to z2,ys, respectively. If v ¢ Z then Z —z; C Ho —{y1,v}, and
hence we may choose Y so that YN A ={y1} or YNC = {y1}; now ZUAUY or ZUCUY is
a path that contradicts (i). Sov € Z. Hence Y — y2 C Hy — v, and so we may choose Z with
ZNA={z}or ZNC ={z}. Again, ZUAUY or ZUC UY gives a path contradicting (i).

IfseA—yiandte C—yorse C—y andt € A—yq, then P,Q give the desired paths
for (1). So we may assume by symmetry that s,t € C. We may further choose P,Q so that
sC't is maximal, and assume that z;, s,¢,y; occur on C in order. Let PNB = {p},QNB = {q}.

Claim 2. We may assume that the (A U C)-bridge of H containing B has no attachment
in A—{y1,z}.
For, otherwise, there is a path R from some r € V(A) — {y1, z;} to B internally disjoint from
AUBUC. T RN(PUQ) # 0, then PUQ U R contains the desired paths for (1). So we
may assume RN (PUQ) = 0. If yo ¢ R, then P, R are the desired paths for (1). So we may
assume yo € R. Now consider B’ defined in (d) above. If B’ — y5 contains independent paths
P, Q' from z3_; to p, q, respectively, then z,CsUPUP' UQ ' UQUtCy; Uy Ar UR is a path in
H through z;, z3—;,y1,y2 in order, contradicting (i). So such paths P’, Q" do not exist in B’.
Then there is a vertex z € B’ — y such that in B’ — ys, 2 separates z3_; from p,q. Clearly,
2z € qBz3_; — z3_;. Choose z so that zBz3_; is minimal, and let B” denote the z-bridge of
B’ — y, contaiing z3_;. T Note that 23_;Bz C B”. Recall that G is 5-connected, X is induced
in G, and H — yy is 2-connected. H — y2 must contain a path W from v’ € V(B") — z to
weV(PUQURUAUC) —{z,y2} and internally disjoint from PUQ U RU AU C. By the
definition of B" in (d) above, we see that any path from B’ to PUQU RUAUC must intersect
B. Hence we may further choose W so that w’ € zBz3_; and W is internally disjoint from B.
Then by the choice of P, Q, we have w = 1. By the minimality of 2Bz3_;, B” has independent
paths P”, Q" from z3_; to z,w’, respectively. Now z,CtUQ U ¢BzUP"UQ"UQ Uy ArUR
is a path in H through z;, z3_;,y1,y2 in order, contradicting (i).

Let J denote the union of C' and the (A U C)-bridge of H containing B. Then by (i)
and Theorem 2.6, there exists a collection A of subsets V(J) — {y1, zi, y2, 23—;} such that
(J, A, zi,y2, 23—i, y1) is 3-planar. We choose A so that for any D € A, if Ng(D) = {wy,...,w}
(where k € {2,3}) and D' := H[DUNg(D)] then (D', wy, ..., wy) is not 3-planar; for otherwise
there is a collection of subsets A’ of D such that D', A” w1,...,w) is 3-planar, and we see
that with A” = (A —{D})UA’, (J, A", z;,y2, 23-i,91) is 3-planar.

Let vq,...,v; denote the vertices on C' — {z;,y1} in order from z; to y; such that each v;
is an attachment of some (A U C)-bridge of H that does not contain B but has attachments
on both A — {y1, 2} and C — {y1, 2; }.

Claim 3. (J,v1,...,Vk, Y1, 23—, Y2, 2;) is 3-planar.
For, otherwise, there exist ¢ € {1,...,k} and D € A such that v; € D and |N;(D)| = 3
(since there is only one C-bridge in J and (J, A, z;, 92, 23—;,%1) is 3-planar). Let N;(D) =



{c1,¢9,¢} such that ¢1,c0 € C, ¢ ¢ C, and ¢ is in the (A U C)-bridge containing B; and let
D' = H[DU{cy, co, c}]. If D’ contains no disjoint paths from ¢; to ¢y and from ¢ to v;, then by
Theorem 2.6, there is a collection of subsets A’ of D such that (D', A, c1, v;, 2, ¢) is 3-planar.
This contradicts the choice of A. So D’ contains disjoint paths R from v; to ¢ and T from ¢y
to co. We may assume 7' is induced. Let C’ be obtained from C' by replacing ¢;Ccy with T
We now see that the (AU C’)-bridge of H containing B has attachments on both A — {y1,z;}
and C" — {y1, z;} (because of P,Q and T), contradicting (b).

For any (AUC)-bridge T" of H not containing B, if T" has attachments on A we define a;(T")
and ay(T') to be the attachemnets of 7" on A with a;(7T")Aaz(T) maximal, and if 7" has attach-
ments on C' we define ¢ (T) and ¢2(T") to be the attachemnets of T on C' with ¢1(T")Cea(T')
maximal. We assume z;,a1(7T), a2(T),y1 occur on A in order, and z;, ¢1(T), c2(T), y1 occur on
C' in order. We now further choose A, C' so that subject to (a)—(d), the union of (AUC)-bridges
of H with attachments on both A — {y1,2;} and C — {y1, z;} is maximal.

Claim 4. If Ty, Ty are (A U C)-bridges of H not containing B such that 75 has attach-

ments on both A — {y1,2;} and C — {y1, 2;}, and T} has attachments on C' (or A) only, then
c1(T1)Ceo(Th) —{c1(Th), co(Th)} (or aq(T1)Aag(Ty) —{a1(T1),a2(11)}) contains no attachment
of Tg.
For, otherwise, we may modify C' (or A) by replacing ¢;(77)Cca(T1) (or ai(T1)Aae(T1)) with
an induced path in 7} from ¢;(71) to co(Th) (or from aq(71) to as(Ty)). The new A and C
do not affect (a)—(d) but enlarge the union of (AU C)-bridges of H with attachments in both
A—{y1,z1} and C — {y1, 21}, a contradiction.

Remark: Claim 4 basically allows us to modify A and C' through the (AU C)-bridges of H
not containing, without affecting (a)—(d).

Since G — V(X)) is 2-connected, there exists at least one (A U C)-bridge in H with at-
tachments on both A — {y1,2;} and C — {y1,2;}. Because of the disjoint paths Z and Y,
(H, z,y1, 23—i,y2) is not 3-planar. Hence, since (J,v1,..., Uk, Y1, 22, Y2, 21) is 3-planar and the
(AUC)-bridge of H containing B has no attachment in A — {y1, z; }, either there exist (AUC)-
bridges 71,7 of H not containing B such that for any j = 1,2, z;Aaz(7}) properly contains
ziAai(T5—j), or for any j = 1,2, ¢1(T;)Cy; properly contains ca(75—;)Cyq, or there exists an
(AUC)-bridge T of H not containing B such that T'Uay(T")Aaz(T)Uc1(T)Ce2(T) has disjoint
paths from a;(T"), as(T') to co(T"), c1(T'), respectively.

Therefore, there exist disjoint paths Ry, Ry from r1,79 € V(C) to r{,75 € V(A), respec-
tively, and internally disjoint from A U C, such that z;,ry,79,y1 occur on C in this order and
zi,h, 1, y1 occur on A in this order.

Claim 5. We may assume that for any choice of Ry, Ry, we have r1,ry € tCyy or ri,19 €
ziCs.
For otherwise, there exist Rj, Ry such that r; € z,Cs and ry € tCy, or 11 € sCt — {s,t}, or
ro € sCt — {s,t}. Let A" := z;Arl, U Ry UryCyy and C' := z;,Cr] U Ry UriAy;. Note that
(A" U C")-bridge of H containing B contains the (A U C)-bridge of H containing B, but we
see that there are disjoint paths from B — y3 so that one ends in A’ — {z;, 1} and one ends in
C" —{y1, 2i}, which are the desired paths.

If Ry, Re may be chosen so that 71,79 € z;Cs, then choose Ry, Ry so that z;Ar} and z;Cry
are maximal, and let 2’ := 7} and z” = ry; otherwise, define 2’ = 2 = z;. Similarly, if Ry, Ry
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may be chosen so that 71,72 € tCy;, then choose Ry, R so that y3 Ar), and y1Cry are maximal,
and let 3 := rl, and y” = r1; otherwise, define ¢/ =y = y;.

By Claim 5, z;,2’,y’,y1 occur on A in order, and z;, 2", s,t,y”,y1 occur on C in order.
Moreover, by Claim 2 and Claim 4, if 2/, 2" # z; then {2/, 2", 23_;} isa cut in H, and if ¢/, y’ #
y1 then {y/, 4", y1} is a cut in H. So by Claim 3 and Claim 4, we see that (H, z;,y1, 23—, Y2)
is 3-planar, contradicting (i). This completes the proof of (1).

Proof of (2). So by (1) and by the symmetry between A and C, we may assume that
Y2, P, ¢, 23—; occur on B in order. We may choose P, () so that pBzs_; is maximal, and ¢Bz3_;
is minimal; and subject to these, cC'y; is maximal, and a Ay, is minimal.

Suppose there exist € V(z3_;Xw3_;) — {x3-i, 23—;}. Then by the choice of Y and Z, all
neighbors of z in H must be ocntained in B’. Consider B” := G[(B' — z3_;) + z].

If B” contains disjoint paths P’,Q’ from 2,2 to p,q, respectively, then P’ U P U cCy
and Q' U Q U aAz; contradict the choice of Y, Z. So such paths P’,Q’ do not exist. Then by
Theorem 2.6, (B”,x,y2,q,p) is 3-planar.

If B” contains disjoint paths P”, Q" from z,ys to p, q, respectively, then P’ UPUcCz; and
Q" U Q U aAy; contradict the choice of Y and Z. So there is a cut vertex z in B” separating
{z,y2} from p,q}. Note that z € y2Bp.

Since z has at least three neighbors in B” (because G is 2-connected and X is induced),
we see that the component B* of B” — z containing {y2, 2} has other vertices. Therefore, we
see from the choice of P and @ (and because G — X is 2-connected), there is a path from y;
to B* — z internally disjoint from PUQ U AU C U (B” — B*); and so there is a path Y’ from
Y1 to yo internally disjoint from PUQU AU C U (B” — B*). Now 23_;BpUPUcCz UAUY’
is a path in H through z3_;, z;, y1, y2 in order, contradicting (i). |

Remark. By Lemma 3.3 and its proof, we see that if G has no T K5, then A, B,C may
be chosen so that (a), (b), (c¢) and (d) are satisfied in the order listed, and subject to this (1)
and (2) hold.

4 Proof of Theorem 1.1

Let (G, X, x1, 22, Y1, y2) be a 6-tuple, and assume that G contains no 7'K5. Then by Lemma 3.1,

(1) there exist z1 € V(21 Xy2)—{z1,y2} and 2o € V(yaXz2) — {22, y2} such that G— (V (X —
{21, 22,y2}) U E(X)) has disjoint paths Z,Y from z1,y; to 29, ys, respectively.

We choose 21, 22, Y, Z so that
(2) 21Xz is maximal.
Then (G, X, x1,x2,y1, Y2, 21, 22) is an 8-tuple. By Lemma 3.2,
(3) for any i € {1,2}, H has no path through z;, z3_;, 91, y2 in order, and y;2; ¢ E(G);

(4) there exist i € {1,2} and independent paths A, B,C in H with A and C from z; to yi,
and B from o to z3_;.

We choose A, B, C' such that the following are satisfied in the listed order:

11



(a) A, B,C are induced paths in H,

(b) if possible the (A U C)-bridge of H containing B has attachments on both A — {z;, 41}
and C — {y1, 2 },

(c) the (AU C)-bridge of H containing B is maximal, and
(d) the union of B and the B-bridges of H not containing AUC, denoted by B’, is maximal.

Note that by (d), every path in H from B’ to AU C must intersect B.
By Lemma 3.3 and the remark following its proof,

(5) there exist disjoint paths P,@Q in H from p,q € V(B —y3) to c € V(C) — {y1,2i},a €
V(A) — {y1, 2}, respectively, and internally disjoint from AU B U C, and

(6) 23-iT3—; € E(X)

Without loss of generality we may assume i = 1, see Figure 1. So by (6), ze Xzo = 2o19.
By symmetry between A and C, we may assume that yo, p, ¢, 2o occur on B in order. We
may further choose P,(Q so that

(7) pBzy is maximal and ¢Bzs is minimal; and subject to this, cC'y; is maximal and aAy;
is minimal.

Suppose T is a path from ¢ € V(aAy:s — a) to t' € V(z1Cc — ¢) internally disjoint from
AUBUCUPUQ. Then 29BqUQ U aAz Uz Ct UT UtAy; Uy;CcU P UpBys is a path in
H through 29, 21,1, y2 in order, contradicting (3). So

(8) there is no path in H from aAy; —a to z;Cc— ¢ internally disjoint from AUBUCUPUQ.

We proceed by proving a few lemmas.
Lemma 4.1 B’ — yy has no cut vertex contained in qBzo.

Proof. Otherwise, let u € gBzy be a cut vertex of B’ — 1o, with uBzo minimal. Then u # 2o,
since H — 1 is 2-connected and B’ contains no vertex in the B-bridge of H containing AU C.
Since H — yy is 2-connected, there is a path S in H from s’ € V(uBzs —u) to s € V(AU C)
internally disjoint from AU C U B’. Note that S is disjoint from (P — ¢) U (Q — a); otherwise
we could revise the path B using SU (P — ¢) U (Q — a) so that the new B’ is larger while (a),
(b) and (c) are not affected. By the choice of u, the component of B’ — (yoBu — u) which
contains uBzy — u has independent paths Ry, Ry from 2o to s’,u, respectively. By the choice
of @ in (7), s € C. We choose S so that sCy; is minimal.

Claim 1. s € cCy; — y1, and there is no path in H from y; to B internally disjoint from
AUuBUC.
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Suppose s € z1Cc —¢. Then (21CsUSUR;) U (R UuBqUQUaAy;)U (y1CcU P UpBys) is
a path through z1, z9,y1,y2 in order, contradicting (3).

If s =y, then (R US)U (R UuBqU QU aAz; Uz Xx1) U zowg U 20 Xys U (y1CcU P U
pBys) U G[{x1,x2,y1,y2}] is a TK5 in G with branch vertices x1,x2,y1,y2, 22, contradicting
our assumption.

So s # y;. Now assume that there is a path Y’ in H from y; to some y € V(B) internally
disjoint from A U B U C. By the choice of S, y € yoBu and Y’ is disjoint from S. Hence
29Bs' USUsCz UAUY' UyBys is a path contradicting (3). This proves Claim 1.

Since G is 5-connected, {a,s,z1,z2} is not a cut in G. So there is a path 7' in G from
t € V(aAy; UsCyy) —{a,s} tot' € V(X —{x1,20}) UV(AUBUCUPUQ US) internally
disjoint from AUBUCUPUQUSUX.

Claim 2. t' € AUCU (11X 29 — {21, %2, 21, 22}).

By the choice of @ and S, we have ¢’ ¢ S. To prove t' ¢ BU P U Q, we consider two cases.

First, assume t € aAy; — {a}. Then by Claim 1 and the choice of S, we have t’ ¢ uBzy —u.
Moreover, by Claim 1 (when ¢ = y;) or by the choice of @ in (7) (when t # y;), we have
t' ¢ QUqBz. If t' € y2Bq — q, then the path (y2Bt' UT UtAy;) UC U (214a U Q U qBzy)
passes through zo, 21, y1,y2 in order, contradicting (3). So we have t' ¢ QUB. If t/ € P — ¢,
then the path (yoBp U pPt' UT U tAy;) UC U (214Aa U Q U qBzy) passes through 29, 21,91, y2
in order, again contradicting (3). So ' ¢ P — ¢, and in this case Claim 2 holds.

Now assume ¢ € sCy; — s. By the choice of S, t' ¢ uBzy — u. We claim t' ¢ ysBu; for,
otherwise, the path (yoBt' UT UtCy1) U AU (2:CsU S Us'Bzg) passes through zs, 21, 41, y2 in
order, contradicting (3). Also, t' ¢ P — ¢; as otherwise the path (yoBpUpPt'UT UtCy;) UAU
(21CsU S U s'Bzg) goes through 29, 21,y1, y2 in order, contradicting (3). Finally, ¢’ ¢ Q — {a},
for otherwise the path (y2Bq U ¢Qt' UT U tCy;) U AU (21Cs U S U s'Bzy) passes through
29,21, Y1, Y2 in order, contradicting (3). So the assertion of Claim 2 holds.

By Claim 2, we have the following four cases.

Case 1. {t,t'} C Aor {t,t'} CC.

Suppose {t,t'} C A. G[z1At' UT U tAy;] contains an induced path A’ from 27 to y; such
that, with A" replacing A, (a) and (b) are not affected, but the (A’UC)-bridge of H containing
B is larger, contradicting (c).

Similarly, we derive a contradiction if {¢,¢'}  C.

Case 2. t' € AUC.

Then by Case 1, t € sCy; — s and t' € z1Aa —a, or t € aAy; —a and t’ € 2;Cs — s.

Ift € sCy;—s and t’ € z1Aa—a, then (20Bs'USUsCz1 Uz A UT UtCy; Uy AaUQUqByy
is a path through 29, 21, 91, y2 in order, contradicting (3).

Ift € aAy; —a and t' € 21Cs — s, then (R USUsCy;)U(RyUuBqUQUaAz Uz Xxq)U
20m9 U 29Xy U (y1 At UT Ut'CeU P UpBys) UG[{x1,22,y1,y2}] is a TK5 in G with branch
vertices x1, 2, Y1, Y2, 22-

Case 3. t' € x1 Xz — {x1, 21}
If t € aAy; — a, then y1CcU P U pBys and T'U tAa U Q U gBzy contradict the choice of
Z,Y in (1) and (2).
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If t € sCy; — s, then y1Aa U Q U ¢Bys and zBs' U S U sCtUT contradict the choice of
Z,Y in (1) and (2).

Case 4. t' € 21X 29 — {21, 20}

If t € aAy; — a then X’ := 2920 U 20BqU Q U aAz U 21 Xxq is a path in G from z7 to
x9, and in G — V(X'), {y1,y2} is contained in the cycle y1 At UT Ut' Xyo UysBpU P U cCly.
If t € sCy; — s then X' 1= 2920 U 20Bs’" U S UsCz Uz Xxq is a path from x1 to x9, and in
G —V(X"), {y1,y2} is contained in the cycle y1Ct UT Ut' Xys U yaBqU Q U aAy;.

In either case, we may assume X’ is induced (for we can simply take an induced path in
G[X'] from z1 to x2). Hence by applying Lemma 2.1 we can find an induced path X” in G
from 1 to xg such that G — V(X") is 2-connected and {y1,y2} NV (X") = (). Now Lemma 2.3
shows that G contains a T K5, a contradiction to our initial assumption. |

Lemma 4.2 There is a path R in H from z; to r € V(B — y9) internally disjoint from
AUuBUC.

Proof. Suppose R does not exist. Define a’ € V(21Aa — 21) with 21 Ad’ minimal such that
there is a path @’ in H from a’ to ¢’ € V(B) internally disjoint from AU B U C, or there is a
path @’ from o’ to a” € V(cCy; — ¢) internally disjoint from AU B’ U C.

Define ¢ € V(21C¢) with z1C¢ minimal such that ¢ = ¢ or there is a path R’ from ¢ to
r' € V(d'Ayy — d’) internally disjoint from AU B’ U C.

We further choose A, B, C so that, subject to (a), (b), (¢) and (d), 21 Aa’U2,C¢ is minimal.

Claim 1. If ¢ # c then Q' ends at ¢’ € B.

For, suppose ¢ # ¢ and Q' ends at a” € ¢cCy; —c. Then G[z1A4d' UQ' Ua"Cy;] and G[z1Cd U
R'Ur' Ayp] contain induced paths A’, C’, respectively, from 27 to y;. Clearly, A’, C’ satisfy (a)
and (b); but the (A’ U C”)-bridge of H containing B is larger than the (A U C)-bridge of G
containing B, contradicting (c¢). Hence we have Claim 1.

Claim 2. {a’,d'} is a cut in H separating z1 Aa’ U 2;C¢ from o’ Ay; U Cy; U B'.

Suppose Claim 2 is flase. Then there is a path T' in H from t; € V(z14d' U C) — {d’, '}
to ty € (B — y2) U (d'Ay; — ') U (¢ Cyy — ) internally disjoint from AU B UC. By (8) and
the choice of a’ and ¢, there are only three possibilities: t3 € B — yo; t1 € 21Cc — ¢ and
to€ Oy — i t1 € z1Ad’ —d and ty € d’ Ay; — d’.

Suppose to € B — y2. Then by the choice of @’ and since R does not exist, t; € 210 —
{c, z1}. Then by the choice of P, T intersects (Q —a) U (pBzy — p) before it intersects P; and
hence we may assume TN P = () and t9 € pBzy — p. Now the path (20Bto UT Ut1C21) U AU
(y1CcU P U pBys) passes through 29, z1,y1,y2 in order, contradicting (3).

Now suppose t1 € 21Cd — ¢ and ty € /Cy; — . First, assume that T is contained in the
(AU C)-bridge of H containing B. Then since R does not exist, t; # z1, and there exists a
path 7" from some t' € V(T') — {t1,t2} to some t” € V(B) which is internally disjoint from
AUBUCUT. By the choice of P, T" is disjoint from P, and t = y5 or t” € pBzo—p. If t" = 3o,
then 21 X1 U2 XysUAU(21CcUPUpBzoUzowe) UAU (y1 Cto Ut T UT ) UG[{ 21, 22, Y1, Y2}
is a TK5 with branch vertices x1,z2,y1,y2,21. If t” € pBzy — p, then (20Bt" UT' Ut'Tt; U
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t1Cz1) U AU (y1Cc U P U pBys) is a path in H through z9, 21, y1,y2 in order, contradicting
(3). Therefore, T is not contained in the (A U C)-bridge of H containing B. Then ¢’ # ¢ and
to € dCc — (5 as otherwise, let C’ be an induced path in G[(C — (t1Cta — {t1,t2})) UT] from
21 to y1, and we see that A and C’ satisfy (a) and (b), but the (AUC")-bridge of H containing
B is larger than the (A U C)-bridge of G containing B, contradicting (c¢). If 1 = 21 then let
A’ be an induced path in G[21C¢ UR' U1’ Ayp] from 21 to y; and let C’ be an induced path in
G[T U Cyq] from z1 to yp; and we see that A’ C” satisfy (a) and (b), but the (A’ UC")-bridge
of H containing B is larger than the (A U C)-bridge of G containing B, contradicting (c). So
t1 # 2z1. Then let C” be an induced path in G[z1Ct; UT U t3Cyq] from 27 to y;. Now A, B, C’
satisfy (a)—(d); but we see that t1Cc¢’ U R, t; become the new R', ¢, respectively, contradicting
the choice of (.

Hence, t; € z14d’ — a' and ty € a’ Ay; — a/. We claim that Q' must end at a”; otherwise,
the same argument in the previous case gives a contradiction (by symmetry between A and
C, the choice of )/, and the nonexistence of R). Hence by Claim 1, ¢ = ¢, and @’ is contained
in an (A U C)-bridge of H not containing B. Suppose T is contained in an (A U C)-bridge
of H not containing B. If t; = 21 then G[T U t2Ay;] has an induced path A’ from 27 to y;
and G[z14d’ U Q" U a”Cy;] has an induced path C’ from z; to y1, such that A’, C” satisfy (a)
and (b), but the (A" U C’)-bridge of H containing B is larger than the (A U C)-bridge of G
containing B, contradicting (c). So t; # z1. Then G[z1 At; UT Uty Ay;| has an induced path
A" from z; to y; such that A’, B, C satisfy (a)-(d), but t1,t1Aa’ U Q" become the new o, Q)’,
respectively, contradicting the minimality of 21 Aa’ U 21C¢. So T is contained in the (AU C)-
bridge of H containing B. Then there is a path S from s’ € V(T') — {t1,t2} to s” € V(B)
internally disjoint from A UC U BUT. Since R does not exist, t; # 2z1. If 8" # yo, then
t1,t17s" U S constradict the choice of ¢, Q. So s” = y3. Now 21 Xx1 U 21 Xys U (21CcU P U
pBzo U 2919) U (214d’ U Q' U a”"Cyr) U (S U s'Tty U taAyr) U G[{x1,22,91,y2}] is a TK;5 in G
with branch vertices x1, x2,y1, 2, 21, contradicting our assumption that G contains no T K.
This proves Claim 2.

Let F denote the union of z; Aa’Uz;C'¢ and the (AUC)-bridges of H whose attachments are
all contained in z1 Aa’Uz,C'¢, which is not empty since R does not exist. Since H—{21, 22,92} =
G — V(X) is 2-connected, we have

Claim 3. F —{z1,a’} contains a path T1 from 21 Aa’ —{21,4d'} to 21Cc—21, and F—{z1, ¢}
has a path T3 from 21 Ad’ — 21 to 21Cc — {21, c}.

Let u € V(z1X21),w € V(21 Xy2) with uXw maximal such that u,w each have a neighbor
in F—{z1,d,c}. Since {u,w,a’, '} cannot be a cut in G (as G is 5-connected), there is a path
S from s € V(uXw — {u,w}) to s’ € V(d'Ay;) UV (cCy1) UV(PUQ ' UQ) UV (B — ys3) such
that s ¢ {a’, '}, and S is internally disjoint from FUuXwUa Ay UdCyy UPUQUQ' U B.
By Claim 2, s’ # z;.

We will cosider two cases according to the location of s. But first, we need the following
which follows from Lemma 4.1 and planarity of B’.

Claim 4. (i) B’ has independent paths Py, P, from z9 to g, p, respectively; and (ii) if

q" # p then either B’ has independent paths from 25 to p,¢’, or ¢ # ¢’ and B’ has
independent paths from 2o to ¢’, g disjoint from 1y, Bp.
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Case 1. s € uXz — {u,z1}.

Then s" ¢ A; as otherwise, the paths SU s’ AaUQ U ¢Bzy and y, BpU P U cCyp contradict
the choice of Z,Y in (1) and (2). Similarly, s’ ¢ Q, s’ ¢ pBzy — p, and s’ ¢ Q' when ¢’ € @’
and ¢ # p.

Subcase 1.1. s’ € y2Bp—{y2,p}. Then by Lemma 4.1, (B’ —y3) — ¢Bz29 has a path S’ from
29 to 8'. Then (22 BqUQUa Ay, )U(S'USUsX z1)UzowaUz0 X yoU(C Uz Xy2 )UG[{x1, 1, T2, Y2 }]
is a T K5 with branch vertices 1, T2, 91, Y2, 22, a contradiction.

Subcase 1.2. s’ € P — ¢. Then by Claim 4(ii), B’ has independent paths P|, P} from z to
q, s, respectively. Now (P{ UQ U aAy;) U (PyUSUsXx1) U zoza U 20Xya U (C U 2z Xyo) U
G[{z1,y1,x2,y2}] is a TK5 with branch vertices x1,y1, 2, y2, 22, a contradiction.

Subcase 1.3. s’ € Q' —d'. If Q' ends at ¢ € B then we have ¢ = p, and by Claim
4(ii) there are independent paths P/, P} in B’ from 23 to ¢, ¢/, respectively; and hence (P] U
QU aAy) U (PLUpQ's" USUsXx1)Uzowg U 20Xys U (C U2z Xyo) UG[{1,y1,22,y2}] 1S a
TKs in G with branch vertices x1,x9,y1,¥2,22. So Q" ends at a” € ¢cCy; —c. Let T be a
path in G[V(F + u)] — 21 from u to ¢ (which exists by the path 77 in F' — {21,a’}). Then
(PLUQUaAy) U (P,UPUcCAUT UuXa1)UzomagUzoXyo U (11Ca” Uad"Q's' US U sXya) U
G[{z1,y1,22,y2}] is a TK5 in G with branch vertices z1,x2,y1,y2, 22, a contradiction.

Subcase 1.4. s’ € /Cyy — . If s € cCy; — c then we derive a contradiction as in the above
paragraph by replacing (y1Ca” Ua"Q's"USUsXys) with (y1Cs'USUsXys). Sos’ € dCe—C.
In particular, ¢ # ¢ and so R’ ends at 1’ € ’Ay; — d’. By (8), 7’ € a’Aa — d’.

By Claim 1, @’ ends at ¢ € B. Let T" be a path in G[V(F + u)] — 21 from u to ¢ (which
exists by the path T} in F — {21, d'}).

If ¥ = a then aAy; U (Q U ¢Bza U 2929) U (add’ U Q" U ¢By) U(RUT UuXxz)U
(11Cs' U S UsXys) UG[{z1,y1,22,92}] is a TK5 in G with branch vertices z1, 22, y1,¥2,a, a
contradiction. So 1’ # a. By Claim 4(ii), B’ — y2 contains independent paths Pj, Pj from zo
to ¢, ¢, respectively. (P{UQUaAy)U (PaUQ UdAr UR' UT' UuXx1) U 299 U 29X y9 U
(11Cs" USUsXy2) UG[{z1,y1,22,y2}] is a TK5 in G with branch vertices x1, 22, Y1, y2, 22, &
contradiction.

Case 2. s € z1Xw — {71, w}.

If € P—c, then (P,UpPs'USUsXx1)U(PLUQUaAy;) U zewa Uzo Xy U (y1CcUT] U
wXyo) UG[{x1,y1,22,y2}] is a TK5 in G with branch vertices x1, x2, y1, Y2, 22. So s ¢ P — c.

If & € B — ¢q then by Lemma 4.1 and by planarity, B’ contains independent paths P/, P}
from z5 to ¢, §', respectively. Now (P{UQUaAy;)U(PyUSUsXx1)UzozaUzoXyaU(y1CeUTU
wXys) UG[{z1,y1,22,9y2}] is a TK5 in G with branch vertices z1, x2,y1,y2, 22. So s’ ¢ B —q.

Hence we have the following four cases. Note that G[V (F + w)] — {z1,a’} has a path T}
from w to ¢ (because of T in F — {z1,d'}).

Subcase 2.1. s € d’ Ay, — d'.

If s € aAy; —a, then (PLUQUaAz Uz Xx1)U(PoUPUCcCy1)Uzomo U 2o Xys U (y1 As’ U
SUsXy9) UG[{x1,y1,22,y2}] is a TK5 in G with branch vertices x1,y1, 22, y2, 22.

If s = a then (s’"Az; U 21 Xx1) Us"Ayg U (S U sXyz) U (QU gBzy U 2929) U (y1CcU P U
y2Bp) U G[{z1,y1,22,y2}] is a TK5 in G with branch vertices 1, y1, 2, y2, a.

So we may assume s’ € a’Aa — {a,ad’}.

If a” € Q' then (PLUQUaAy;)U(P,UPUCcCz Uz Xx1)Uzow9U 20 Xy2 U (y1Ca” UQ'U
a’As' USUsXys) UG[{x1,y1,22,y2}] is a TK5 in G with branch vertices x1,y1, z2, y2, 22.

16



So we amy assume ¢’ € Q.

If g = ¢, then (PLUQ' Ud'Aq1 U 21 Xx1) U (P UP UcCyy) U 209 U 20 Xys U (108" U S U
sXyo) UG[{x1,y1,22,y2}] is a TK5 in G with branch vertices x1,y1, 22, y2, 22.

So ¢ # ¢'. By Lemma 4.1, B’ —ys has independent paths P{, Pj from 23 to g, ¢, respectively.
Now (P{UQUaAy;)U(PiUQ UdAs'USUsXx1)U zoze U 2zeXys U (y1CeUT] UwXys) U
G[{z1,y1,22,y2}] is a TK5 in G with branch vertices z1,y1, 2, Y2, 22.

Subcase 2.2. s’ € /Cy; — .

If s € cCy; — ¢, then (PLUQUaAy;)U(P,UPUcCz Uz Xap)Uzowg U2 Xys U (110" U
SUsXy2) UG[{x1,y1,22,y2}] is a TK5 in G with branch vertices 1, z2, y1, y2, 22.

So ' € dCc — ¢. In particular, ¢ # ¢ and so R’ ends at v € ad’Ay; — . By (8),
r" € ad’Aa — a'. By Claim 1, Q" ends at ¢’ € B.

If g=¢, then (PLUQ Ud Agy Uz Xx1)U(P,UPUCcCyr)Uzowo U 29 Xys U (1101 UR' U
T/ UwXys) UG[{x1,y1,22,y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, 22.

So ¢ # ¢'. By Lemma 4.1, B’ —ys has independent paths P/, P} from z3 to q, ¢, respectively.
Now (Pl UQ U aAy;) U (PUQ Ud Azy Uz Xx1) U 299 U 20Xyo U (y1Cs" U S U sXys) U
G[{z1,y1,22,y2}] is a TK5 in G with branch vertices z1,y1, 2, Y2, 22.

Subcase 2.3. s’ € Q.

Note that G[V(F + w)] — {z1,c} has a path T from w to a’ (because of the path T3 in
F —{z,¢c}).

Then (P, UqgQs" USUsXx1)U (PoUPUCcCyy) U zoxs U 20 Xys U (114’ UTHUwXys) U
G[{z1,y1,22,y2}] is a TK5 in G with branch vertices x1,x2,y1, Y2, 22.

Subcase 2.4. s’ € Q'.

We may assume ' ends at ¢’ € B, as otherwsie, we may revise S so that s’ = a” € cCy; —c,
and we derive a contradiction as in Subcase 2.2.

If ¢ = q then (P, UqQ's' US UsXx)U(P,UPUcCy;)U zowg U 20Xy2 U (11 Ar' UR' U
T, UwXys) UG[{x1,y1,22,y2}] is a TK5 in G with branch vertices x1, z2,y1, Y2, 22.

So ¢’ # q. Then by Claim 4(ii), let Py, Pj be independent paths in B’ — y, from 23 to ¢, ¢/,
respectively. Now (PjU¢'Q's' USUsXx)U(P{UQUaAy;) U zoza U 29 Xys U (1nCd UT] U
wXys) UG[{x1,y1,22,y2}] is a TK5 in G with branch vertices x1, 2, y1, Y2, 22- [ |

Lemma 4.3 There is no path in H from y; to B internally disjoint from AU BUC'.

Proof. Suppose that H has a path R’ from y; to ' € V(B) internally disjoint from AUBUC,
with 7' Bz9 minimal.

Since G is 5-connected and X is induced, 21 has a neighbor in G — V(X + y1), say =. If
x € AUBUC, let D := {z} and 2’ = x; otherwise, let D denote the (AUBUCUPUQURUR')-
bridge of H containing z, and let ' be an attachment of D such that 2/ ¢ {z1,92, 22,91}
(since H — yo is 2-connected). Let T be a path in D from z7 to 2’ internally disjoint from
AUBUCUPUQURUR.

Case 1. For any choice of 2’ we have 2’ € B'.

Then z € B'. If x =/, then R'Ur'z1U(1' BzaUzox9)Ur' BysU(C Uz Xy2 )UG[{x1, Y1, 22, y2 }]
is a TK5 in G with branch vertices x1, x2,y1,y2,7’. So assume x # 1.

If v’ € qBzy or 2’ € qBz9, then by Lemma 4.1, B” has independent paths Q1, Q2 from 25 to
r’, 2’| respectively. Then (Q1UR")U(Q2Uz'Tx1)Uz0moUze X y2U(CU21 Xy2)UG[{21,y1, T2, Y2 }]
is a T K5 in G with branch vertices x1, x2, Y1, Y2, 22.
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If {2/, 7'} C y2Bq—{q}, then there exist two disjoint paths Q1, Qs from 29 to ', q, respec-
tively, then (Q1 Uz'Tx1) U (Q2UQUaAy;) U zexs UzoXyo U (C'U 21 Xy2) UGH{x1, 72, y1,y2}]
is a T K5 with branch vertices x1, z2, Y1, Y2, 22.

Case 2. ¥’ € AUQU R and 7’ # q.

Then by Lemma 4.1, B’ has independent paths from 29 to 7/, q, respectively, and hence
B'"UAUQU R has independent paths Pj, P> from 29 to y1,2', respectively. So Py U (Py U
T) U zoxo U 20 Xyo U (C U 21 Xy2) U G[{x1,y1,22,y2}] is a TK5 in G with branch vertices
T1,22,Y1,Y2, 22.

Case 3. ¥’ € AUQU R and 7’ = q.

If 2’ € QU R/, then there exists two independent paths Q1, Q2 from 25 to 2/, p which are in
B'"UQUR'. Now, (QiUT)U(Q2UPUcCy1)UzoxaU 2z Xys U (AU 21 Xy2) UG[{x1, 22,91, y2}]
is a T K5 with branch vertices x1, z2, Y1, Y2, 2.

So assume that 2’ € A, then we consider R. Note r ¢ pBzs — {p}; otherwise, there exists
a path through z, 21,y1,y2 in order: (z20Br U R)U AU (y1CcU P UpBys). So r € y2Bp, then
there exist two disjoint paths Q1, Q2 form 23 to r,q in B’, then 21 Xz U 21 Xy U(RU Q1) U
(CUy1z9)Uzox0U 20Xy U (Q2UQ UaAz' UT)UG[{x1,22,y2}] is a T K5 with branch vertices
T1,22,Y2,21,%2-

Case 4. ' € RUP.

By Lemma 4.1, B’ has two independent paths from z5 to ¢,r(or p), then there exist two
independent paths from 29 to ¢,2’ in B'U RU P, called Q1, Q2 respectively. Now, (@1 U Q U
aAy)U(Q2UT)Uzoz0Uzo Xy U(C U2z Xy2) UG{x1, 22, Y1, y2}] is a T K5 with branch vertices
Z1,22,Y1,Y2, 22-

Case 5. 2’ € C.

We consider R. Note, 1’ ¢ yoBp — {p}; otherwise, there exists path through 29, 21, y1, y2 in
order: (zo0BpU P UcCz)U AU (R ' Ur'Bys). So assume that ' € pBzs.

If v’ € pBq — {q}, there is a path through ys, 91, 21, 22 in order: (yoBr' UR')UC U (21 AaU
Q U qBz9), contradicting to (3).

If ¥ = g, then there exist two independent paths Q1,Q2 from z3 to ¢,p in B' — {ys},
respectively, then (Q1UR)U(QaUPUcCx'UT)Uzo20Uz0XyoU(AU2 Xyo)UG[{x1, 22, y1,Y2}]
is a T K5 with branch vertices z1, z2, Y1, Y2, 2.

If v’ € qB29 — {q}, then there exist two independent paths Q1,Q2 in B’ — pBys from 29
to ¢, 7’ respectively, then (Q1 U QU aAz; U2z Xx1) U (QaUR') U 2929 U 20X ys U (y1CcU P U
pBy2) U G[{x1,z2,y1,y2}] is a T K5 with branch vertices x1, x2,y1, Y2, 22. |

Lemma 4.4 There is a 2-cut {t1,t2} in H separating {y1, 21} from {ys, 22}, and {y1,y2, 21, 22 }N
{t1,t2} = 0.

Proof. Suppose such a 2-cut does not exist. Then by the same argument as for (4), H has
three independent paths, two from y; to z2, and one from z; to y2. Hence by (6), we may also
assume x121 € E(G). By (3), y121, 1122 ¢ E(QG).

If all neighbors of y; are contained in AU C U X then let o’ € V(A),d € V(C) such that
y1a’ € E(A), y1d € E(C), and S = y1a’ Uy, .
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Next we define S,a’, ¢ when y; has a neighbor not in AUC U X. So let 7} be an (AU C)-
bridge of H with y; as an attachment. By Claim 3, B Z T;. Recall in (6) the definition of
a;(T) and ¢;(T) for (AU C)-bridges T not containing B.

Let Ty,...,T; be a maximal sequence of (A U C)-bridges of H not containing B such
that for each ¢ = 1,...,k — 1, T;41 has an attachment not in U;Zl(cl (T3)Cy1 U a1 (T}) Ayr),
and an attachment not in Ué-:l(zlccl(ly) U z14a1(T})). To simplify the notation, we let
a; € V(A),¢; € V(C) with z1Aa; and z;C¢; minimal such that a; is an attachment of some
T; with 1 < j <, and ¢; is an attachment of some T with 1 < j <. Let S; := (U;le]) U
a; Ay U ¢;Cy.

Claim 1. For any 1 <1i < k and for any r; € S; — {a;,¢;} there exist three independent
paths A;, C;, R; in S; from y; to a;, ¢;, ;, respectively.

This is obvious for ¢ = 1 (if a; = y1, or ¢; = y1, or r; = y; then A; or C; or R; is a trivial path).

Now assume it is true for some i < k — 1. Let r;41 € Si11 — {aij+1,¢i41}. When r; g €
S; —{aj, ¢} let r; := r;yq; otherwise, let r; € V(a;Ay; — a;) UV (¢;Cy1 — ¢;) be an attachment
of T;;1. By induction there are three independent paths A;, C;, R; in S; from y1 to a;,c;, 1y,
respectively.

If r; = rjuq then A = A; Ua;Aairr,Ciq = C; Uc;Ceiyq, Riv1 := R; are the desired
paths in S;yq.

If ripy1 € Tiy1 — (AUC) then let Piyq be a path in T;4; from 7; to ;41 internally disjoint
from AU C'; we see that A; 11 := A; Ua;Aa;rq,Ciq := C;Uc;Ceijvr, Riv1 := R; U P,y are the
desired paths in Sjy1.

So we may assume by symmetry that r,.1 € a;11A4a; — a;01. Let Q;11 be a path in
T;+1 from r; to a;41 internally disjoint from A U C. Now Ry = A; U a;Ariy1,Cipq =
C;UciCci1,Ajr1 := R; U Q11 are the desired paths in S;11.

Claim 2. ai € aAyy and ¢ € cCyy.

Otherwise, let 7 € {1,...,k} be minimum such that a; € z14a —a or ¢; € z1Cc — c.

Suppose a; = z1. Then i > 2 by (9), and there is a path L in 7; from z; to some
ri—1 € Si—1 — {a;—1,¢;—1} internally disjoint from S;_ 1 U AU C. Now y,BpU P U cCc;—q1 U
Ci-1UR;_1 UL U z1Aa U Q U ¢qBzs is a path in H contradicting (3). Therefore, a; # z;.
Similarly, ¢; # 21.

Suppose a; € z14a — {a,z1}. Let A’ := A; U 21Aa; and C' := C; U 21C¢;. We see that the
(A" U C)-bridge of H containing B is larger than the (4 U C)-bridge of H, contradicting (c)
of (5) (while (b) of (5) is not affected). So ax € aAy;. Similarly, ¢ € cCy.

Define o’ := ay, ¢ := ¢k, and S := Sp. Now {d’,c, 1,29} cannot be a 4-cut in G (as
G is 5-connected). So there is a path D in G from some vertex ' € V(S) — {d’,c'} to
ye V(XUAUBUC)—V(S) internally disjoint from X UAUBUCUS.

By Lemma 4.3, y ¢ B. Indeed, the (AUC')-bridge of H containing S has no attachment on
B (otherwise we may choose S so that y € B). Thus by the definition of a’ and ¢/, y ¢ AUC.
So y € 21X29 — {21,22}. By Claim 1, let Q1, Q2 be independent paths in B’ — y, from z3 to
q, p, respectively. Let A, C’, R’ be independent paths in S from y; to d’,c,7’, respectively.

If y € 21 Xy2 — 21 then (Q1 UQ Uadd UA)U (QaUPUcCz Uzixy) U 2oz U 20 Xy9 U
(RRUDUyXys) UG{z1,22,y1,92}] is a TK5 in G with branch vertices 1, %2, Y1, Y2, 22-
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So assume y € 29 Xy2—{22,92}. Then X' := x121Uz; AaUQUqBz3Uzo24 is a path in G from
x1 to x2. In G—V(X"), {y1, y2} is contained in the cycle DUR' UC'U'CcUPUpBys,Uys Xy.
Hence by Lemma 2.1, there is an induced path X” in G form x; to x2 such that G — V(X")
is 2-connected and {y1,y2} NV (X"”) = . Now Lemma 2.3 finds a TKj; in G. ]

By Lemma 4.4, H has a separation (H', H") such that |V (H'NH")| = 2, {y1,z1} € H"” and
{y2,20} € H', and {y1, 21,92, 22} NV (H'NH") = 0. We choose (H', H") so that H' is minimal.
Then, because of the existence of R, P,Q and by (5) and (7), we see that AUCUPUR C H".
Note, if t1 = p, then t5 € Q or t5 € qBzy; if t1 # p, then t5 € ¢Bzy. Thus we may assume that
t1 € yoBr, ts € Q or ty € qBzy. Let T = toBqU Q,T" = tyBzy if t9 € B; otherwise define
T =t3Qa, T" = qBzo U qQts.

Let 2 € 23Xy with 2X2; minimal such that z = ys or z has a neighbor in H' —
{y2, 22,1, L2}

Lemma 4.5 {x9,ys,2,t1,t2} is a 5-cut in G, G|V (H'UzXx5) is 2-connected and (5,{x2,y2, z,t1,t2})-
connected, G|V (H'UzXx5) has a plane representation in which xa,ys, z,t1, ty occur on a facial
cycle in this cyclic order.

Proof. Let H* := G[V(H' UysXz)]. Then (H*, ys,t1,t2,292) is 3-planar. Since otherwise
by Theorem 2.6, H* contains disjoint paths 77,75 from z9,ys to ti,ts, respectively. Now
71Xz Uz Xy UC U (R UrBty UTy U ngg) U (ylAa uT'uy Tg) U G[{xl,xg,yl,yg}] is a TK5
on branch vertices x1, x2, Y1, Y2, 21-

We may assume that if z # ys and 22’ € F(G) with 2’ € V(H*)—{t1,t2,y2}, then 2’ € y2 Bty
or H* has a 2-cut contained in yoBt; and separating 2’ from {t3, 22}. For otherwise, by the
minimality of H' (and by planarity), H' —y2Bt; has independent paths Py, P» from 25 to 2/, to,
respectively; and zomo U 20 Xys U (Py U 22" U 2X 1) U (P2 U QU aAy;) U (y1CpU P UyeBp) U
G[{z1,y1,x2,y2}] is a TK5 in G with branch vertices x1,y1, z2, Y2, z2. Actually, this paragraph
tells us more: for any vertex v € z; Xy, the conclusion holds.

If zo ha a neighbor € H' — T” then, since G is 5-connected, H' — (T” 4 y2) contains a
path X’ from z to ¢1; and hence 21 Xx1 U2z Xy UAU(RUrBty UX Uzas)U (y1 AaUT' UT" U
20X y2) UG[{x1,y1,x2,y2}] is a TK5 in G with branch vertices x1, x2,y1,y2, 21. Therefore, we
may assume that all neighbors of x5 in H' must be contained in 7”.

Suppose 2X z9 — z has no neighbor in H” —{t1,t2}. Note, x1X 21 — {21, 21} has no neighbor
in H' — {y2}; otherwise, contradicting to (2). Then {x2,ys2,2,t1,t2} is a 5-cut in G, and
G[V(H' U 2Xx3) is 2-connected and (5, {x2,y2, 2,11, t2})-connected. Suppose Claim 5 fails.
Then there exist s,t € V(2Xya — y2) and §',t' € V(yaBt1 — y2) such that ss',tt' € E(G),
Y2, 8,1,z occur on X in order, and yo,t’, s’,t; occur on B in order. Since H — y» is 2-connected
and by 3-planarity of H* and minimality of H', (H' — y2) — (T” — 22) has a path L from z to
t" disjoint from t1 Bs’. Then zoz9 U 20 Xy U (LUt UtXx1) U (T" UT' UaAy;) U (y1CcU P U
pBs' Uss'UsXys) UG[{x1,y1,22,y2}] is a T K5 with branch vertices x1, 22,91, y2, 22.

Therefore, we may assume that there is w € V(2Xz9 — z) that has a neighbor in V(H") —
{t1,t2}. Then there is a path W in G from w to w' € V(AUCUPUt;BpUT'UR) — {t1,t2}
internally disjoint from AU B U P Ut BpUT’ U R. Note that w # 22, w # ys.

First, assume w € y9Xz9 — 2. If w' € (RUt;BpU P) — C then (WU RUt;BpU P) —
((C' = z1) + t1) has a path W' from w to z1; and let L be a path in H — 25 from to to ya, we
see that 21 X1 U 21 Xyo U(W UwXao) UCU (y1AaUT U L) UG[{x1,y1,22,y2}] is a TK5 in

20



G with branch vertices 1, 22,41, Y2, z1. If w’ € C, then let L be a path in H' — ys from ¢; to
z9; and 21 Xxq1 Uz1 Xy UAU (RUEBrU LU 2929) U (g2 Xw U W Uw'Cyy) UG 21, y1, 22, Y2}
is a TK5 in G with branch vertices x1,x9,y1,y2,21. If w' € AUT’, then AUT' U W has
a path W' from w to y;; and let L be a path in H' — yo from t; to 2o, and we see that
21 Xx1 U1 Xy UCU(RUHBrULU z9m9) U (yo Xw UW')UG[{x1, 91, 22,92} is a TK5 in G
with branch vertices x1, z2,y1,y2, z1. This paragraph also shows that z # ys.

Now assume that w € 2Xys — {2,y2}. Let 2’ € t1 Bys — {t1,y2} such that there is a path Z
from z to 2’ which is independent with other paths. By the choice of (H', H"”) and since H —ys
is 2-connected, H' — {ys,t1} contains independent paths P;, P> from z3 to to, 2/, respectively;
and by planarity, H' has disjoint paths Q1, Q2 from t1, 2’ to 2o, 2, respectively. If w’ € RUPUC
then WURUPUC contains a path W’ from w to y1; and zoweU 29 Xy U (P UT ' UaAy;)U(PyU
2772 UzXx ) U(W' UwXys) UG[{x1,y1,x2,y2}] is a T K5 with branch vertices x1, x2, y1, Y2, 22-
So we may assume w’ € AUT'Ut; Bp; then WUAUT” has a path W’ from w to y; avoiding z; and
to. Hence z1 Xx1U(21 X 2Uz2Z2'UQ2)U(RUt; BruQ1Uzews ) UCU(W UwX y2 )UG[{ 21, y1, T2, Y2 }]
is a T' K5 with branch vertices x1, x2, Y1, Y2, 21- |
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