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1 Introduction

Only finite simple graphs are considered. We adopt the notaion and terminology in [7]. Paths
P1, . . . , Pk are said to be independent if for any 1 ≤ i 6= j ≤ k no end of Pi is an internal vertex
of Pj . A separation of a graph G is a pair (G1, G2) of subgraphs of G such that G = G1 ∪G2,
E(G1 ∩ G2) = ∅, and E(Gi) ∪ V (Gi − G3−i) 6= ∅ for i ∈ {1, 2}. If |V (G1 ∩ G2)| = k, then
(G1, G2) is a k-separation. For a subgraph H of a graph G, an H-bridge of G is a subgraph
of G that is induced by the edges contained in some component D of G − V (H) and edges
from D to H. The vertices in H that are neighbors of D are called the attachments of this
H-bridge. For S ⊆ V (G), the G[S]-bridges of G are also called S-bridges. Let G be a graph
and S ⊆ V (G), and let k be a positive integer. We say that G is (k, S)-connected if, for any
cut T of G with |T | < k, every component of G − T contains a vertex from S.

For a graph K, we follow Diestel [3] to use TK to denote a subdivision of K. The well known
Kuratowski’s theorem states that a graph is planar iff it contains neither TK5 nor TK3,3. It
is known that 3-connected nonplanar graphs contain TK3,3. Seymour [8] conjectured in 1975
that every 5-connected nonplanar graph contains a TK5, which was posed independently by
Kelmans [6] in 1979. For convenience, the vertices with degree 4 in a TK5 are called branch
vertices.

Clearly if G is 5-connected and contains a K4 then G contains a TK5; since for any vertex
v there are four paths from v to the vertices of K4 which have only v in common. It is shown
in [7] that if a 5-onnected graph G contains K−

4 on vertices x1, x2, y1, y2 with y1y2 /∈ E(G), and
if G contains an induced path P from x1 to x2 such that G−P is 2-connected and y1, y2 /∈ P ,
then G contains a TK5 in which x1, x2, y1, y2 are branch vertices.

In this paper we prove Seymour’s conjecture for those graphs that contain K−
4 as a sub-

graph.

Theorem 1.1 If G is a 5-connected non-planar graph and contains K−
4 as a subgraph, then

G contains a TK5.

Note that K−
4 -free graphs have nice structural properties; for example, it is shown in [4]

that if G is 5- connected and K−
4 -free then G contains a contractible edge (see [5] for more

results). It is our hope that by excluding K−
4 (and perhaps some other graphs) one can force

usful structural properties that would lead to an eventual resolution of Seymour’s conjecture.
It is shown in [7] that if G is a 5-connected nonplanar graph and has a 5-separation (G1, G2)

such that |G2| ≥ 7 and G2 has a planar drawing in a closed disc in the plane with vertices in
V (G1 ∩ G2) occur on the boundary of the disc, then G has a TK5. This result will be used
to prove Theorem 1.1, and we believe that it will also be useful in an enentual resolution of
Seymour’s conjecture.

The proof of Theorem 1.1 can be outlined as follows. Let G be 5-connected nonplanar
graph and let x1, x2, y1, y2 ∈ V (G) such that G[{x1, x2, y1, y2}] = K−

4 , with y1y2 /∈ E(G).
First, we use a lemma in [7] to show that there is an induced path P in G from x1 to x2 such
that G−P is 2-connected, and {y1, y2} 6⊆ P . If y1, y2 /∈ P , then Theorem 1.1 follows from one
of the two main results in [7]. So we may assume by symmetry that y1 /∈ P and y2 ∈ P . Now
y2 divides P to two subpaths x1Py2 and x2Py2, each has at least three vertices (since P is
induced in G and xiy2 ∈ E(G)). By contracting xiPy2 −{xi, y2} in G−{x1, x2} we show that
either the resulting graph contains disjoint paths between the new vertices and between y1 and
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y2, or G contains a TK5. This allows us to assume that there exist zi ∈ V (xiPy2 − {xi, y2})
such that G has disjoint paths Y,Z from y1, z1 to y2, z2, respectively, and internally disjoint
from P . Choose Y,Z so that z1Pz2 is maximal. We then show that either we can find a
TK5 in G or (by symmetry) there are three independent paths, A and C from z1 to y1 and B
from y2 to z2 (see Figure 1). So we may assume A,B and C exist, and we choose such paths
satisfying certain requirements. Then either there is a TK5 in G, or there exist disjoint paths
P,Q, with P from C to B and Q from A to B. See Figure 1. We then use this structure to
show that to force a 5-separation (G1, G2) such that |G2| ≥ 7 and G2 has a planar drawing in
a closed disc in the plane with vertices in V (G1 ∩G2) occur on the boundary of the disc. Now
Theorem 1.1 follows from the second main result in [7].

Those results in [7] which we will use are stated in Section 2, along with Seymour’s char-
acterization of graphs without disjoint paths between two pairs of vertices. In Section 3, we
show how to force the structure consisting of paths X,A,B,C, P,Q. In Section 4, we show
how to force the desired separation (G1, G2).

2 Previous results

In this section we state a few results that we need to prove Theorem 1.1. The first lemma is
proved in [7] which says that given an induced path X and a chain of blocks H in G−X, one
can, with one exception, modify X to a nonseparating induced path X ′ such that H ⊆ G−X ′.
A graph is said to be a chain of blocks if its blocks can be labeled as B1, . . . , Bk such that
|Bi ∩ Bi+1| = 1 for i = 1, . . . , k − 1, and Bi ∩ Bj = ∅ when 1 ≤ i < j − 1 ≤ k − 1. In
addition, if k = 1 and y1, y2 are distinct vertices of B1, or if k ≥ 2 and y1ıV (B1 − B2) and
y2 ∈ V (Bk − Bk−1), then we say that B1 is a chain of blocks from y1 to y2.

Lemma 2.1 Let G be a graph and let x1, x2, y1, y2 be distinct vertices of G such that G is
(5, {x1, x2, y1, y2})-connected. Suppose X is an induced path in G from x1 to x2, and H is a
chain of blocks in G − V (X) from y1 to y2. Then precisely one of the following holds:

(i) H = y1y2 and G− y1y2 can be drawn in a closed disc in the plane without edge crossings
such that x1, y1, x2, y2 occur on the boundary of the disc in this cyclic order.

(ii) There is an induced path X ′ from x1 to x2 such that H ⊆ G− V (X ′), and G− V (X ′) is
a chain of blocks from y1 to y2.

Lemma 2.1 is used in [7] to prove the following lemma, which gives an induced path X
from which we will build our structure in Figure 1.

Lemma 2.2 Let G be a 5-connected nonplanar graph and x1, x2, y1, y2 distinct vertices of
G such that G[{x1, x2, y1, y2}] ∼= K−

4 and y1y2 /∈ E(G). Then there is an induced path X
in G − {x1x2, x1y1, x1y2, x2y1, x2y2} from x1 to x2 such that G − V (X) is 2-connected and
{y1, y2} 6⊆ V (X).

The case {y1, y2} ∩ V (X) = ∅ is taken care of by the following lemma proved in [7].
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Lemma 2.3 Let G be a 5-connected nonplanar graph and let x1, x2, y1, y2 be distinct vertices
of G such that G[{x1, x2, y1, y2}] ∼= K−

4 and y1y2 /∈ E(G). Suppose there is an induced path X
in G− x1x2 from x1 to x2 such that G− V (X) is 2-connected and {y1, y2} ∩ V (X) = ∅. Then
G contains a TK5 in which x1, x2, y1, y2 are branch vertices.

We now state the result proved in [7] about TK5 when a 5-connected graph admits a
5-separation such that one side of the separation is planar.

Theorem 2.4 Let G be a 5-connected nonplanar graph and let (G1, G2) be a 5-separation in
G. Suppose |G2| ≥ 7 and G2 has a planar representation in which the vertices of V (G1 ∩ G2)
are incident with a common face. Then G contains a TK5.

In our proof of Theorem 1.1, we need the characterizaion of graphs containing no disjoint
paths between two pairs of vertices. For convenience, we introduce the following definition.

Definition 2.5 A 3-planar graph (G,A) consists of a graph G and a set A = {A1, . . . , Ak}
of pairwise disjoint subsets of V (G) (possibly A = ∅) such that

(a) for i 6= j, N(Ai) ∩ Aj = ∅,

(b) for 1 ≤ i ≤ k, |N(Ai)| ≤ 3, and

(c) if p(G,A) denotes the graph obtained from G by (for each i) deleting Ai and adding new
edges joining every pair of distinct vertices in N(Ai), then p(G,A) can be drawn in a
closed disc D with no edge crossings.

If, in addition, b0, b1, . . . , bn are vertices in G such that bi /∈ Aj for all 0 ≤ i ≤ n and Aj ∈ A,
p(G,A) can be drawn in a closed disc D with no edge crossings, and b0, b1, . . . , bn occur on the
boundary of D in this cyclic order, then we say that (G,A, b0, b1, . . . , bn) is 3-planar. If there
is no need to specify A, we will simply say that (G, b0, b1, . . . , bn) is 3-planar.

The following result is due to Seymour [9]; equivalent results can be found in [2, 10,11].

Theorem 2.6 (Seymour) Let G be a graph and s1, s2, t1, t2 be distinct vertices of G. Then
exactly one of the following holds:

(i) G contains disjoint paths from s1 to t1 and from s2 to t2.

(ii) (G, s1, t1, s2, t2) is 3-planar.

For convenience, we say that (G,X, x1, x2, y1, y2) is a 6-tuple if the following holds:

• G is a 5-connected nonplanar graph,

• x1, x2, y1, y2 are distinct vertices of G such that G[{x1, x2, y1, y2}] ∼= K−
4 and y1y2 /∈

E(G), and

• there is an induced path X in G−{x1x2, x1y1, x1y2, x2y1, x2y2} from x1 to x2 such that
G − V (X) is 2-connected, y1 /∈ V (X), and y2 ∈ V (X).

Note that in a 6-tuple (G,X, x1, x2, y1, y2), |V (xiXy2)| ≥ 3.
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3 Substructure

In this section, we show that in a 5-connected nonplanar graph we can find a TK5 or a
substructure (see Figure 1) satisfying a list of useful properties.

Lemma 3.1 Let (G,X, x1, x2, y1, y2) be a 6-tuple. Then G contains a TK5, or there exist z1 ∈
V (x1Xy2)−{x1, y2} and z2 ∈ V (y2Xx2)−{x2, y2} such that G− (V (X −{z1, z2, y2})∪E(X))
has disjoint paths Z, Y from z1, y1 to z2, y2, respectively.

Proof. Let G′ be the graph obtained from G − {x1, x2} by contracting xiXy2 − {xi, y2} to
vertex ui for i = 1, 2. Note that G′ is 2-connected; since G is 5-connected, X is induced, and
G − X is 2-connected.

Suppose G′ contains disjoint paths, say U, Y , from u1, y1 to u2, y2, respectively. Let vi

denote the neighbor of ui in the path U , and let zi ∈ V (xiXy2)− {xi, y2} be a neighbor of vi.
Let Z := (U − {u1, u2}) ∪ {z1, z2, z1v1, z2v2}. Now Z, Y are the desired paths.

So we may assume that such disjoint paths U, Y do not exist in G′. Then by Theorem 2.6,
there exists a collection A of subsets of V (G′)− {u1, u2, y1, y2} such that (G′,A, u1, y1, u2, y2)
is 3-planar. Since G − V (X) is 2-connected, |{u1, u2} ∩ N(A)| 6= 2 for all A ∈ A. Let
A′ = {A ∈ A : |{u1, u2} ∩ N(A)| = 0} and A′′ = {A ∈ A : |{u1, u2} ∩ N(A)| = 1}. For each
A ∈ A′, since G is 5-connected, we have {x1, x2} ⊆ N(A).

Note that in p(G′,A) (see Definition 2.5) there are edges joining the vertices in each
N(A)−{u1, u2}. Since G is 5-connected and G− V (X) is 2-connected, p(G′,A)−{u1, u2, y2}
is a 2-connected plane graph; and the edges joining vertices of N(A) − {u1, u2} (for each
A ∈ A′′) occur on the outer cycle, say D, of p(G′,A) − {u1, u2, y2}. Let y′2, y

′′
2 ∈ V (D) be the

neighbors of y2 such that y1, y
′
2, y

′′
2 occur on D in clockwise order and, subject to this, y′2Dy′′2

is maximal. Possibly, y′2 = y′′2 .
We may assume that N(x1) − X ⊆ V (y′′2Dy1) ∪

⋃
{A∈A′′:u1∈N(A)} A, and N(x2) − V (X) ⊆

V (y1Dy′2)∪
⋃

{A∈A′′:u2∈N(A)} A. For, suppose x1 has a neighbor a such that a /∈ X, a /∈ y′′2Dy1,

and a /∈ A for any A ∈ A′′ with u1 ∈ N(A). Let w1 ∈ V (D) such that u1w1 ∈ E(G′) and
w1Dy1 is minimal, and let z1w1 ∈ E(G) with z1 ∈ x1Xy2 − {x1, y2}. Let w2 ∈ V (D) such
that u2w2 ∈ E(G′) and y1Dw2 is minimal, and let z2w2 ∈ E(G) with z2 ∈ y2Xx2 − {x2, y2}.
Since G′ and H are 2-connected, there exist two independent paths P1, P2 from z2 to D in
G − V (X − z2) internally disjoint from V (p(G′,A)), such that P1 ends at w3 and P2 ends
at w2 where y1, w2, w3 occur on D in clockwise order. If there exists a path P ′

3 from w3

to a in p(G′,A) − {u1, u2, y2} and disjoint from w1Dw2, then P ′
3, w1Dy1, y1Dw2 give three

paths P3,W1,W2 in G (with the same ends of P ′
3, w1Dy1, y1Dw2, respectively) such that

(P1 ∪P3 ∪ ax1)∪ (P2 ∪W2)∪ (z2Xx2)∪ (y2Xz2)∪ (W1 ∪w1z1 ∪ z1Xy2)∪G[{x1, x2, y1, y2}] is
a TK5 in G with branch vertices x1, x2, y1, y2, z2. So we may assume such a path P ′

3 does not
exist. Then by planarity, there is a 2-cut {s1, s2} in p(G′,A)−{u1, u2, y2} separating w3 from
a, with s1, s2 ∈ w1Dw2. This implies that {x1, x2, s1, s2} is a 4-cut in H separating {a, y1}
from X, contradicting the assumption that G is 5-connected.

Therefore, since G is not planar, there must exist i ∈ {1, 2} and vertices v1, v2 ∈ xiXy2−y2

such that x1, v1, v2, x2 occur on X in this order, and one of the following holds:

(a) vj is adajcent to wj ∈ V (D) in G such that y1, y
′
2, y

′′
2 , w1, w2 (if i = 1) or y1, w1, w2, y

′
2, y

′′
2

(if i = 2) occur on D in clockwise order, and in this case we let Qj = vjwj ;
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(b) there is some A ∈ A such that G[A ∪ V (v1Xv2)] has disjoint paths Q1, Q2 from v1, v2

to w1, w2 respectively, where w1, w2 are neighbors of A in G′ that are not u1 or u2, and
y1, y

′
2, y

′′
2 , w1, w2 (if i = 1) or y1, w1, w2, y

′
2, y

′′
2 (if i = 2) occur on D in clockwise order.

Without loss of generality we may assume that the above occurs with i = 1. Let z be a
vertex in y2Xx2 − {x2, y2}. Then by planarity of p(G′,A) − {u1, u2, y2} there exist neighbors
z′, z′′ of z in G − V (X) such that G − V (X) contains independent paths P1, P2, P3 with P1

from y1 to z′, P2 from z′′ to w1, and P3 from w2 to y1. Now zXx2 ∪ zXy2 ∪ ({z, zz′′} ∪ P2 ∪
Q1∪x1Xv1)∪(P1∪{z, zz′})∪(P3∪Q2∪v2Xy2)∪G[{x1, x2, y1, y2}] is a TK5 in G with branch
vertices x1, x2, y1, y2, z.

For convenience, we say that (G,X, x1, x2, y1, y2, z1, z2) is an 8-tuple if

• (G,X, x1, x2, y1, y2) is a 6-tuple,

• there exist z1 ∈ V (x1Xy2)−{x1, y2}, z2 ∈ V (y2Xx2)−{x2, y2}, and disjoint paths Z, Y
in G − (V (X − {z1, z2, y2}) ∪ E(X)) from z1, y1 to z2, y2, respectively, and

• subject to above, z1Xz2 is maximal.

For any 8-tuple (G,X, x1, x2, y1, y2, z1, z2), we let H := G − (V (X − {z1, z2, y2}) ∪ E(X)).
Clearly, each zi has at least three neighbors in H−{z1, z2, y2}, and y2 has at least one neighbor
in H. So H is connected, and H−y2 is 2-connected. We will derive more structural information
of H.

Lemma 3.2 Let (G,X, x1, x2, y1, y2, z1, z2) be an 8-tuple. Then G contains a TK5, or the
following holds:

(1) for any i ∈ {1, 2}, H has no path through zi, z3−i, y1, y2 in order, and y1zi /∈ E(G);

(2) there exists i ∈ {1, 2} such that H contains independent paths A,B,C, with A and C
from zi to y1, and B from y2 to z3−i.

Proof. First, suppose there is a path in H from zi (for some i ∈ {1, 2}) to y2 such that
zi, z3−i, y1, y2 occur on P in order. Then G[{x1, x2, y1, y2}] ∪ (X − V (ziXy2 − {y2, zi})) ∪ P is
a TK5 in G with branch vertices x1, x2, y1, y2, z3−i. So we may assume that such P does not
exist. Hence by Lemma 3.1, we have y1z1, y1z2 /∈ E(G), and (1) holds. Thus we have shown
that G has a TK5 or (1) holds.

We now show that G has a TK5 or (2) holds. Clearly, if (1) fails then G has a TK5; so we
may assume that (1) holds. For each i ∈ {1, 2}, let Hi denote the graph obtained from H by
duplicating zi and y1, and let z′i and y′1 denote the duplicates of zi and y1, respectively.

First, suppose some Hi contains three disjoint paths A′, B′, C ′ from {zi, z
′
i, y2} to {y1, y

′
1, z3−i},

with zi ∈ A′, z′i ∈ C ′ and y2 ∈ B′. If z3−i /∈ B′, then after identifying y1 with y′1 and zi with z′i,
we obtain from A′ ∪B′ ∪C ′ a path in H from zi to y2 through z3−i, y1 in order, contradicting
our assumption that (1) fails. Hence z3−i ∈ B′, and we get the desired paths for (2) from
A′ ∪ B′ ∪ C ′, by identifying y1 with y′1 and zi with z′i.

So we may assume that for any i ∈ {1, 2}, Hi does not contain three disjoint paths from
{zi, z

′
i, y2} to {y1, y

′
1, z3−i}. Then Hi has a separation (H ′

i,H
′′
i ) such that |V (H ′

i ∩ H ′′
i )| ≤ 2,

{zi, z
′
i, y2} ⊆ V (H ′

i) and {y1, y
′
1, z3−i} ⊆ V (H ′′

i ).
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We claim that y1, y2, z1, z2 /∈ V (H ′
i ∩ H ′′

i ) for i = 1, 2. Note that {y1, y
′
1} 6= V (H ′

i ∩ H ′′
i ),

since otherwise y1 would be a cut vertex in H separating z3−i from {y2, zi}. Now suppose one
of y1, y

′
1 is in V (H ′

i ∩ H ′′
i ); then since y1, y

′
1 are duplicates (with same neighbors), the other

vertex in V (H ′
i ∩H ′′

i ) is a cut vertex in H separating {z3−i, y1} from {zi, y2}, a contradiction.
So y1, y

′
1 /∈ V (H ′

i∩H ′′
i ). Similar argument shows that zi, z

′
i /∈ V (H ′

i∩H ′′
i ). Since H−{z1, z2, y2}

is 2-connected, z3−i, y2 /∈ V (H ′
i ∩ H ′′

i ).
For i = 1, 2, let V (H ′

i ∩ H ′′
i ) = {si, ti}, and let F ′

i (respectively, F ′′
i ) be obtained from

H ′
i (respectively, H ′′

i ) by identifying z′i with zi (respectively, y′1 with y1). Then (F ′
i , F

′′
i ) is a

2-separation of H such that V (F ′
i ∩F ′′

i ) = {si, ti}, y2, zi ∈ F ′
i −{si, ti}, and y1, z3−i ∈ F ′′

i . Let
Z1, Y2 denote the {s1, t1}-bridges of F ′

1 containing z1, y2, respectively; and let Z2, Y1 denote
the {s1, t1}-bridges of F ′′

1 containing z2, y1, respectively.

Case 1. Y1 6= Z2 and Y2 6= Z1.
Then since G is 5-connected, {x1, x2, s1, t1} cannot be a cut in G; and hence there exists

y ∈ V (X) − {x1, x2, z1, z2} such that y ∈ N(Y1) − {s1, s2}.
Suppose y ∈ z1Xz2 − {z1, z2}. Since H − y2 is 2-connected and by symmetry between s1

and t1, we may assume that there is a path Q1 in G[Y1 + y] − s1 from y to t1 and containing
y1. Now Q1 ∪ yXy2 and a path in (Y1 ∪ Y2)− s1 between y1 and y2 form a cycle, say D. Note
that the union of (Z1 ∪ Z2) − t1 and x1Xz1 ∪ z2Xx2 contains a path from x1 to x2, say X ′,
which is disjoint from D. In fact, in (G− x1x2)−D we may choose X ′ to be an induced path
from x1 to x2. Now applying Lemma 2.1 we see that there is an induced path X ′ in G− x1x2

from x1 to x2 such that G − X ′ is 2-connected and y1, y2 /∈ X ′. By Lemma 2.3, G contains a
TK5, contradicting our assumption.

Thus, by symmetry between x1Xz1 and x2Xz2, we may assume that y ∈ x1Xz1−{x1, z1}.
Since G is 5-connected and X is induced, y has a neighbor, say y′, such that y′ /∈ X, y′ /∈
{y1, y2}, and if y2 has a unique neighbor y′2 in H then y′ 6= y′2.

If y′ ∈ Z1 ∪ Z2 then we may assume (by symmetry between s1 and t1) that (Z1 ∪ Z2) − t1
contains a path Q′ from y′ to z2. Clearly, in (Y1 ∪ Y2) − s1 there is a path Y ′ from y1 to y2,
which is disjoint from Q′. Now Q′+{y, yy′} and Y ′ contradict the choice of Y,Z in the 8-tuple.

So we may assume y′ ∈ Y1 ∪ Y2. An easy check and symmetry between s1 and t1 allows us
to assume that there are disjoint paths Q′, Y ′ in Y1 ∪ Y2 from y′, y1 to s1, y2, respectively. Let
Q′′ be a path in Z2 − t1 from s1 to z2. Now Q′ ∪ Q′′ and Y ′ contradict the choice of Y,Z in
the 8-tuple.

Case 2. Z1 = Y2 or Z2 = Y1.
We first show that Z1 = Y2 and Z2 = Y1. We only deal with the case Z2 = Y1 and Z1 6= Y2;

the other case is symmetric. So assume Z2 = Y1 and Z1 6= Y2. Then one of {s2, t2}, say s2,
must be a cut vertex of F ′

1 = Z2 = Y1 separating y1 from z2. By symmetry between s1 and
t1 and since H − y2 is 2-connected, we may assume that s2 separates {s1, y1} from {t1, z2}.
Since {s2, t2} separates z1 from y2, t2 ∈ (Y2 ∪ Z1) − {s1, t1}. If t2 ∈ Y2 − {s1, t1} then in
H − {s2, t2} there is a path from y1 to z1 through s1, a contradiction. So t2 ∈ Z1 − {s1, t1};
then in H − {s2, t2} there is a path from y2 to z2 through t1, a contradiction.

Since Z1 = Y2 and Z2 = Y1, we may assume that s2 is a cut vertex of F ′
1 = Z2 = Y1

separating y1 from z2, and t2 is a cut vertex of F ′′
1 = Z1 = Y2 separating y2 from z1. Since H−y2

is 2-connected and by symmetry between s1 and t1, we may assume that in Z2, s2 separates
{s1, y1} from {z2, t1}. Since in H, {s2, t2} separates y2 from z1, we have t2 ∈ Z1 − {s1, t1}.
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Moreover, since in H, {s2, t2} separates y1 from z2, we see that t2 separates {s1, z1} from
{t1, y2} in Z1. But this implies that there is no disjoint paths in H from z1, y1 to z1, y2,
respectively, contradicting the existence of Y,Z in an 8-tuple.

We note in passing that the structure of H satisfying (1) of Lemma 3.2 is well characterized
by a result proved in [12–14]. However, we do not need the full strength of that result, and it
is simpler to deal with H directly.

x1

x2

y1

y2

z1

z2

p q

a

c

QP

Figure 1: The substructure.

In the argument below we do not fix i = 1 or i = 2 (for the sake of symmetry). However,
in the rest of this section one may view i = 1 as suggested by Figure 1.

Lemma 3.3 Let (G,X, x1, x2, y1, y2, z1, z2) be an 8-tuple. Then G has a TK5, or there exists
i ∈ {1, 2} such that H contains independent paths A,B,C, with A and C from zi to y1, and
B from y2 to z3−i, and the following hold:

(1) there exist disjoint paths P,Q in H from p, q ∈ V (B − y2) to c ∈ V (C) − {y1, zi}, a ∈
V (A) − {y1, zi}, respectively, and internally disjoint from A ∪ B ∪ C, and

(2) z3−ix3−i ∈ E(X).

Proof. We may assume that G has no TK5, since otherwise the assertion of the lemma holds.
First, we prove (1). By Lemma 3.2,

(i) for any i ∈ {1, 2}, H has no path through zi, z3−i, y1, y2 in order, and y1zi /∈ E(G);

(ii) there exist i ∈ {1, 2} and independent paths A,B,C in H with A and C from zi to y1,
and B from y2 to z3−i.

We choose A,B,C such that the following are satisfied in the order listed:

(a) A,B,C are induced paths in H,

(b) if possible the (A ∪ C)-bridge of H containing B has attachments on both A − {zi, y1}
and C − {y1, zi},

(c) the (A ∪ C)-bridge of H containing B is maximal, and
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(d) B′, the union of B and the B-bridges of H not containing A ∪ C, is maximal.

Since G − V (X − z3−i) is 2-connected, there are disjoint paths P,Q from B − y2 to s, t ∈
V (A ∪ C) − {zi} and internally disjoint from A ∪ B ∪ C.

Claim 1. We may choose P,Q so that s 6= y1 and t 6= y1.
For otherwise, H −{zi, y2} has a separation (H1,H2) such that V (H1∩H2) = {y1, v} for some
v ∈ V (H), (A ∪ C) − zi ⊆ H1 and B − y2 ⊆ H2. Recall that G − V (X − {z1, z2}) contains
disjooint paths Z, Y from z1, y1 to z2, y2, respectively. If v /∈ Z then Z−zi ⊆ H2−{y1, v}, and
hence we may choose Y so that Y ∩A = {y1} or Y ∩C = {y1}; now Z ∪A∪Y or Z ∪C ∪Y is
a path that contradicts (i). So v ∈ Z. Hence Y − y2 ⊆ H2 − v, and so we may choose Z with
Z ∩ A = {zi} or Z ∩ C = {zi}. Again, Z ∪ A ∪ Y or Z ∪ C ∪ Y gives a path contradicting (i).

If s ∈ A− y1 and t ∈ C − y1 or s ∈ C − y1 and t ∈ A− y1, then P,Q give the desired paths
for (1). So we may assume by symmetry that s, t ∈ C. We may further choose P,Q so that
sCt is maximal, and assume that zi, s, t, y1 occur on C in order. Let P ∩B = {p}, Q∩B = {q}.

Claim 2. We may assume that the (A ∪ C)-bridge of H containing B has no attachment
in A − {y1, zi}.
For, otherwise, there is a path R from some r ∈ V (A) − {y1, zi} to B internally disjoint from
A ∪ B ∪ C. If R ∩ (P ∪ Q) 6= ∅, then P ∪ Q ∪ R contains the desired paths for (1). So we
may assume R ∩ (P ∪ Q) = ∅. If y2 /∈ R, then P,R are the desired paths for (1). So we may
assume y2 ∈ R. Now consider B′ defined in (d) above. If B′ − y2 contains independent paths
P ′, Q′ from z3−i to p, q, respectively, then ziCs∪P ∪P ′∪Q′∪Q∪ tCy1∪y1Ar∪R is a path in
H through zi, z3−i, y1, y2 in order, contradicting (i). So such paths P ′, Q′ do not exist in B′.
Then there is a vertex z ∈ B′ − y2 such that in B′ − y2, z separates z3−i from p, q. Clearly,
z ∈ qBz3−i − z3−i. Choose z so that zBz3−i is minimal, and let B′′ denote the z-bridge of
B′ − y2 contaiing z3−i. T Note that z3−iBz ⊆ B′′. Recall that G is 5-connected, X is induced
in G, and H − y2 is 2-connected. H − y2 must contain a path W from w′ ∈ V (B′′) − z to
w ∈ V (P ∪ Q ∪ R ∪ A ∪ C) − {zi, y2} and internally disjoint from P ∪ Q ∪ R ∪ A ∪ C. By the
definition of B′ in (d) above, we see that any path from B′ to P ∪Q∪R∪A∪C must intersect
B. Hence we may further choose W so that w′ ∈ zBz3−i and W is internally disjoint from B.
Then by the choice of P,Q, we have w = y1. By the minimality of zBz3−i, B′′ has independent
paths P ′′, Q′′ from z3−i to z,w′, respectively. Now ziCt ∪ Q ∪ qBz ∪ P ′′ ∪ Q′′ ∪ Q ∪ y1Ar ∪ R
is a path in H through zi, z3−i, y1, y2 in order, contradicting (i).

Let J denote the union of C and the (A ∪ C)-bridge of H containing B. Then by (i)
and Theorem 2.6, there exists a collection A of subsets V (J) − {y1, zi, y2, z3−i} such that
(J,A, zi, y2, z3−i, y1) is 3-planar. We choose A so that for any D ∈ A, if NH(D) = {w1, . . . , wk}
(where k ∈ {2, 3}) and D′ := H[D∪NH(D)] then (D′, w1, . . . , wk) is not 3-planar; for otherwise
there is a collection of subsets A′ of D such that D′,A′′, w1, . . . , wk) is 3-planar, and we see
that with A′′ = (A− {D}) ∪ A′, (J,A′′, zi, y2, z3−i, y1) is 3-planar.

Let v1, . . . , vk denote the vertices on C − {zi, y1} in order from zi to y1 such that each vi

is an attachment of some (A ∪ C)-bridge of H that does not contain B but has attachments
on both A − {y1, zi} and C − {y1, zi}.

Claim 3. (J, v1, . . . , vk, y1, z3−i, y2, zi) is 3-planar.
For, otherwise, there exist i ∈ {1, . . . , k} and D ∈ A such that vi ∈ D and |NJ(D)| = 3
(since there is only one C-bridge in J and (J,A, zi, y2, z3−i, y1) is 3-planar). Let NJ(D) =
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{c1, c2, c} such that c1, c2 ∈ C, c /∈ C, and c is in the (A ∪ C)-bridge containing B; and let
D′ = H[D∪{c1, c2, c}]. If D′ contains no disjoint paths from c1 to c2 and from c to vi, then by
Theorem 2.6, there is a collection of subsets A′ of D such that (D′,A′, c1, vi, c2, c) is 3-planar.
This contradicts the choice of A. So D′ contains disjoint paths R from vi to c and T from c1

to c2. We may assume T is induced. Let C ′ be obtained from C by replacing c1Cc2 with T .
We now see that the (A∪C ′)-bridge of H containing B has attachments on both A−{y1, zi}
and C ′ − {y1, zi} (because of P,Q and T ), contradicting (b).

For any (A∪C)-bridge T of H not containing B, if T has attachments on A we define a1(T )
and a2(T ) to be the attachemnets of T on A with a1(T )Aa2(T ) maximal, and if T has attach-
ments on C we define c1(T ) and c2(T ) to be the attachemnets of T on C with c1(T )Cc2(T )
maximal. We assume zi, a1(T ), a2(T ), y1 occur on A in order, and zi, c1(T ), c2(T ), y1 occur on
C in order. We now further choose A,C so that subject to (a)–(d), the union of (A∪C)-bridges
of H with attachments on both A − {y1, zi} and C − {y1, zi} is maximal.

Claim 4. If T1, T2 are (A ∪ C)-bridges of H not containing B such that T2 has attach-
ments on both A − {y1, zi} and C − {y1, zi}, and T1 has attachments on C (or A) only, then
c1(T1)Cc2(T1)−{c1(T1), c2(T1)} (or a1(T1)Aa2(T1)−{a1(T1), a2(T1)}) contains no attachment
of T2.
For, otherwise, we may modify C (or A) by replacing c1(T1)Cc2(T1) (or a1(T1)Aa2(T1)) with
an induced path in T1 from c1(T1) to c2(T1) (or from a1(T1) to a2(T1)). The new A and C
do not affect (a)–(d) but enlarge the union of (A ∪C)-bridges of H with attachments in both
A − {y1, z1} and C − {y1, z1}, a contradiction.

Remark: Claim 4 basically allows us to modify A and C through the (A∪C)-bridges of H
not containing, without affecting (a)–(d).

Since G − V (X) is 2-connected, there exists at least one (A ∪ C)-bridge in H with at-
tachments on both A − {y1, zi} and C − {y1, zi}. Because of the disjoint paths Z and Y ,
(H, zi, y1, z3−i, y2) is not 3-planar. Hence, since (J, v1, . . . , vk, y1, z2, y2, z1) is 3-planar and the
(A∪C)-bridge of H containing B has no attachment in A−{y1, zi}, either there exist (A∪C)-
bridges T1, T2 of H not containing B such that for any j = 1, 2, ziAa2(Tj) properly contains
ziAa1(T3−j), or for any j = 1, 2, c1(Tj)Cy1 properly contains c2(T3−j)Cy1, or there exists an
(A∪C)-bridge T of H not containing B such that T ∪a1(T )Aa2(T )∪c1(T )Cc2(T ) has disjoint
paths from a1(T ), a2(T ) to c2(T ), c1(T ), respectively.

Therefore, there exist disjoint paths R1, R2 from r1, r2 ∈ V (C) to r′1, r
′
2 ∈ V (A), respec-

tively, and internally disjoint from A ∪ C, such that zi, r1, r2, y1 occur on C in this order and
zi, r

′
2, r

′
1, y1 occur on A in this order.

Claim 5. We may assume that for any choice of R1, R2, we have r1, r2 ∈ tCy1 or r1, r2 ∈
ziCs.
For otherwise, there exist R1, R2 such that r1 ∈ ziCs and r2 ∈ tCy1, or r1 ∈ sCt − {s, t}, or
r2 ∈ sCt − {s, t}. Let A′ := ziAr′2 ∪ R2 ∪ r2Cy1 and C ′ := ziCr′1 ∪ R1 ∪ r1Ay1. Note that
(A′ ∪ C ′)-bridge of H containing B contains the (A ∪ C)-bridge of H containing B, but we
see that there are disjoint paths from B − y2 so that one ends in A′ −{zi, y1} and one ends in
C ′ − {y1, zi}, which are the desired paths.

If R1, R2 may be chosen so that r1, r2 ∈ ziCs, then choose R1, R2 so that ziAr′1 and ziCr2

are maximal, and let z′ := r′1 and z′′ = r2; otherwise, define z′ = z′′ = zi. Similarly, if R1, R2
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may be chosen so that r1, r2 ∈ tCy1, then choose R1, R2 so that y1Ar′2 and y1Cr1 are maximal,
and let y′ := r′2 and y′′ = r1; otherwise, define y′ = y′′ = y1.

By Claim 5, zi, z
′, y′, y1 occur on A in order, and zi, z

′′, s, t, y′′, y1 occur on C in order.
Moreover, by Claim 2 and Claim 4, if z′, z′′ 6= zi then {z′, z′′, z3−i} is a cut in H, and if y′, y′′ 6=
y1 then {y′, y′′, y1} is a cut in H. So by Claim 3 and Claim 4, we see that (H, zi, y1, z3−i, y2)
is 3-planar, contradicting (i). This completes the proof of (1).

Proof of (2). So by (1) and by the symmetry between A and C, we may assume that
y2, p, q, z3−i occur on B in order. We may choose P,Q so that pBz3−i is maximal, and qBz3−i

is minimal; and subject to these, cCy1 is maximal, and aAy1 is minimal.
Suppose there exist x ∈ V (z3−iXx3−i) − {x3−i, z3−i}. Then by the choice of Y and Z, all

neighbors of x in H must be ocntained in B′. Consider B′′ := G[(B′ − z3−i) + x].
If B′′ contains disjoint paths P ′, Q′ from y2, x to p, q, respectively, then P ′ ∪ P ∪ cCy1

and Q′ ∪ Q ∪ aAzi contradict the choice of Y,Z. So such paths P ′, Q′ do not exist. Then by
Theorem 2.6, (B′′, x, y2, q, p) is 3-planar.

If B′′ contains disjoint paths P ′′, Q′′ from x, y2 to p, q, respectively, then P ′′∪P ∪cCz1 and
Q′′ ∪ Q ∪ aAy1 contradict the choice of Y and Z. So there is a cut vertex z in B′′ separating
{x, y2} from p, q}. Note that z ∈ y2Bp.

Since x has at least three neighbors in B′′ (because G is 2-connected and X is induced),
we see that the component B∗ of B′′ − z containing {y2, x} has other vertices. Therefore, we
see from the choice of P and Q (and because G − X is 2-connected), there is a path from y1

to B∗ − z internally disjoint from P ∪ Q ∪ A ∪ C ∪ (B′′ − B∗); and so there is a path Y ′ from
y1 to y2 internally disjoint from P ∪Q∪A∪C ∪ (B′′ −B∗). Now z3−iBp ∪P ∪ cCzi ∪A∪ Y ′

is a path in H through z3−i, zi, y1, y2 in order, contradicting (i).

Remark. By Lemma 3.3 and its proof, we see that if G has no TK5, then A,B,C may
be chosen so that (a), (b), (c) and (d) are satisfied in the order listed, and subject to this (1)
and (2) hold.

4 Proof of Theorem 1.1

Let (G,X, x1, x2, y1, y2) be a 6-tuple, and assume that G contains no TK5. Then by Lemma 3.1,

(1) there exist z1 ∈ V (x1Xy2)−{x1, y2} and z2 ∈ V (y2Xx2)−{x2, y2} such that G−(V (X−
{z1, z2, y2}) ∪ E(X)) has disjoint paths Z, Y from z1, y1 to z2, y2, respectively.

We choose z1, z2, Y, Z so that

(2) z1Xz2 is maximal.

Then (G,X, x1, x2, y1, y2, z1, z2) is an 8-tuple. By Lemma 3.2,

(3) for any i ∈ {1, 2}, H has no path through zi, z3−i, y1, y2 in order, and y1zi /∈ E(G);

(4) there exist i ∈ {1, 2} and independent paths A,B,C in H with A and C from zi to y1,
and B from y2 to z3−i.

We choose A,B,C such that the following are satisfied in the listed order:
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(a) A,B,C are induced paths in H,

(b) if possible the (A ∪ C)-bridge of H containing B has attachments on both A − {zi, y1}
and C − {y1, zi},

(c) the (A ∪ C)-bridge of H containing B is maximal, and

(d) the union of B and the B-bridges of H not containing A∪C, denoted by B′, is maximal.

Note that by (d), every path in H from B′ to A ∪ C must intersect B.
By Lemma 3.3 and the remark following its proof,

(5) there exist disjoint paths P,Q in H from p, q ∈ V (B − y2) to c ∈ V (C) − {y1, zi}, a ∈
V (A) − {y1, zi}, respectively, and internally disjoint from A ∪ B ∪ C, and

(6) z3−ix3−i ∈ E(X).

Without loss of generality we may assume i = 1, see Figure 1. So by (6), z2Xx2 = z2x2.
By symmetry between A and C, we may assume that y2, p, q, z2 occur on B in order. We

may further choose P,Q so that

(7) pBz2 is maximal and qBz2 is minimal; and subject to this, cCy1 is maximal and aAy1

is minimal.

Suppose T is a path from t ∈ V (aAy1 − a) to t′ ∈ V (z1Cc − c) internally disjoint from
A ∪B ∪C ∪ P ∪Q. Then z2Bq ∪Q ∪ aAz1 ∪ z1Ct′ ∪ T ∪ tAy1 ∪ y1Cc∪ P ∪ pBy2 is a path in
H through z2, z1, y1, y2 in order, contradicting (3). So

(8) there is no path in H from aAy1−a to z1Cc−c internally disjoint from A∪B∪C∪P ∪Q.

We proceed by proving a few lemmas.

Lemma 4.1 B′ − y2 has no cut vertex contained in qBz2.

Proof. Otherwise, let u ∈ qBz2 be a cut vertex of B′ − y2, with uBz2 minimal. Then u 6= z2,
since H − y2 is 2-connected and B′ contains no vertex in the B-bridge of H containing A∪C.
Since H − y2 is 2-connected, there is a path S in H from s′ ∈ V (uBz2 − u) to s ∈ V (A ∪ C)
internally disjoint from A ∪ C ∪ B′. Note that S is disjoint from (P − c) ∪ (Q − a); otherwise
we could revise the path B using S ∪ (P − c) ∪ (Q − a) so that the new B′ is larger while (a),
(b) and (c) are not affected. By the choice of u, the component of B′ − (y2Bu − u) which
contains uBz2 − u has independent paths R1, R2 from z2 to s′, u, respectively. By the choice
of Q in (7), s ∈ C. We choose S so that sCy1 is minimal.

Claim 1. s ∈ cCy1 − y1, and there is no path in H from y1 to B internally disjoint from
A ∪ B ∪ C.
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Suppose s ∈ z1Cc− c. Then (z1Cs∪ S ∪R1)∪ (R2 ∪ uBq ∪Q∪ aAy1)∪ (y1Cc∪ P ∪ pBy2) is
a path through z1, z2, y1, y2 in order, contradicting (3).

If s = y1, then (R1 ∪ S) ∪ (R2 ∪ uBq ∪ Q ∪ aAz1 ∪ z1Xx1) ∪ z2x2 ∪ z2Xy2 ∪ (y1Cc ∪ P ∪
pBy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2, contradicting
our assumption.

So s 6= y1. Now assume that there is a path Y ′ in H from y1 to some y ∈ V (B) internally
disjoint from A ∪ B ∪ C. By the choice of S, y ∈ y2Bu and Y ′ is disjoint from S. Hence
z2Bs′ ∪ S ∪ sCz1 ∪ A ∪ Y ′ ∪ yBy2 is a path contradicting (3). This proves Claim 1.

Since G is 5-connected, {a, s, x1, x2} is not a cut in G. So there is a path T in G from
t ∈ V (aAy1 ∪ sCy1) − {a, s} to t′ ∈ V (X − {x1, x2}) ∪ V (A ∪ B ∪ C ∪ P ∪ Q ∪ S) internally
disjoint from A ∪ B ∪ C ∪ P ∪ Q ∪ S ∪ X.

Claim 2. t′ ∈ A ∪ C ∪ (x1Xz2 − {x1, x2, z1, z2}).

By the choice of Q and S, we have t′ /∈ S. To prove t′ /∈ B ∪ P ∪ Q, we consider two cases.
First, assume t ∈ aAy1−{a}. Then by Claim 1 and the choice of S, we have t′ /∈ uBz2−u.

Moreover, by Claim 1 (when t = y1) or by the choice of Q in (7) (when t 6= y1), we have
t′ /∈ Q ∪ qBz2. If t′ ∈ y2Bq − q, then the path (y2Bt′ ∪ T ∪ tAy1) ∪ C ∪ (z1Aa ∪ Q ∪ qBz2)
passes through z2, z1, y1, y2 in order, contradicting (3). So we have t′ /∈ Q ∪ B. If t′ ∈ P − c,
then the path (y2Bp ∪ pPt′ ∪ T ∪ tAy1) ∪ C ∪ (z1Aa ∪ Q ∪ qBz2) passes through z2, z1, y1, y2

in order, again contradicting (3). So t′ /∈ P − c, and in this case Claim 2 holds.
Now assume t ∈ sCy1 − s. By the choice of S, t′ /∈ uBz2 − u. We claim t′ /∈ y2Bu; for,

otherwise, the path (y2Bt′ ∪ T ∪ tCy1)∪A∪ (z1Cs∪S ∪ s′Bz2) passes through z2, z1, y1, y2 in
order, contradicting (3). Also, t′ /∈ P − c; as otherwise the path (y2Bp∪pPt′∪T ∪ tCy1)∪A∪
(z1Cs∪S ∪ s′Bz2) goes through z2, z1, y1, y2 in order, contradicting (3). Finally, t′ /∈ Q−{a},
for otherwise the path (y2Bq ∪ qQt′ ∪ T ∪ tCy1) ∪ A ∪ (z1Cs ∪ S ∪ s′Bz2) passes through
z2, z1, y1, y2 in order, contradicting (3). So the assertion of Claim 2 holds.

By Claim 2, we have the following four cases.

Case 1. {t, t′} ⊆ A or {t, t′} ⊆ C.
Suppose {t, t′} ⊆ A. G[z1At′ ∪ T ∪ tAy1] contains an induced path A′ from z1 to y1 such

that, with A′ replacing A, (a) and (b) are not affected, but the (A′∪C)-bridge of H containing
B is larger, contradicting (c).

Similarly, we derive a contradiction if {t, t′} 6⊆ C.

Case 2. t′ ∈ A ∪ C.
Then by Case 1, t ∈ sCy1 − s and t′ ∈ z1Aa − a, or t ∈ aAy1 − a and t′ ∈ z1Cs − s.
If t ∈ sCy1−s and t′ ∈ z1Aa−a, then (z2Bs′∪S∪sCz1∪z1At′∪T ∪tCy1∪y1Aa∪Q∪qBy1

is a path through z2, z1, y1, y2 in order, contradicting (3).
If t ∈ aAy1 − a and t′ ∈ z1Cs− s, then (R1 ∪S ∪ sCy1)∪ (R2 ∪uBq∪Q∪ aAz1 ∪ z1Xx1)∪

z2x2 ∪ z2Xy2 ∪ (y1At ∪ T ∪ t′Cc ∪ P ∪ pBy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G with branch
vertices x1, x2, y1, y2, z2.

Case 3. t′ ∈ x1Xz1 − {x1, z1}.
If t ∈ aAy1 − a, then y1Cc ∪ P ∪ pBy2 and T ∪ tAa ∪ Q ∪ qBz2 contradict the choice of

Z, Y in (1) and (2).
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If t ∈ sCy1 − s, then y1Aa ∪ Q ∪ qBy2 and z2Bs′ ∪ S ∪ sCt ∪ T contradict the choice of
Z, Y in (1) and (2).

Case 4. t′ ∈ z1Xz2 − {z1, z2}.
If t ∈ aAy1 − a then X ′ := x2z2 ∪ z2Bq ∪ Q ∪ aAz1 ∪ z1Xx1 is a path in G from x1 to

x2, and in G − V (X ′), {y1, y2} is contained in the cycle y1At ∪ T ∪ t′Xy2 ∪ y2Bp ∪ P ∪ cCy1.
If t ∈ sCy1 − s then X ′ := x2z2 ∪ z2Bs′ ∪ S ∪ sCz1 ∪ z1Xx1 is a path from x1 to x2, and in
G − V (X ′), {y1, y2} is contained in the cycle y1Ct ∪ T ∪ t′Xy2 ∪ y2Bq ∪ Q ∪ aAy1.

In either case, we may assume X ′ is induced (for we can simply take an induced path in
G[X ′] from x1 to x2). Hence by applying Lemma 2.1 we can find an induced path X ′′ in G
from x1 to x2 such that G−V (X ′′) is 2-connected and {y1, y2}∩V (X ′′) = ∅. Now Lemma 2.3
shows that G contains a TK5, a contradiction to our initial assumption.

Lemma 4.2 There is a path R in H from z1 to r ∈ V (B − y2) internally disjoint from
A ∪ B ∪ C.

Proof. Suppose R does not exist. Define a′ ∈ V (z1Aa − z1) with z1Aa′ minimal such that
there is a path Q′ in H from a′ to q′ ∈ V (B) internally disjoint from A ∪ B ∪ C, or there is a
path Q′ from a′ to a′′ ∈ V (cCy1 − c) internally disjoint from A ∪ B′ ∪ C.

Define c′ ∈ V (z1Cc) with z1Cc′ minimal such that c′ = c or there is a path R′ from c′ to
r′ ∈ V (a′Ay1 − a′) internally disjoint from A ∪ B′ ∪ C.

We further choose A,B,C so that, subject to (a), (b), (c) and (d), z1Aa′∪z1Cc′ is minimal.

Claim 1. If c′ 6= c then Q′ ends at q′ ∈ B.

For, suppose c′ 6= c and Q′ ends at a′′ ∈ cCy1 − c. Then G[z1Aa′ ∪Q′ ∪ a′′Cy1] and G[z1Cc′ ∪
R′ ∪ r′Ay1] contain induced paths A′, C ′, respectively, from z1 to y1. Clearly, A′, C ′ satisfy (a)
and (b); but the (A′ ∪ C ′)-bridge of H containing B is larger than the (A ∪ C)-bridge of G
containing B, contradicting (c). Hence we have Claim 1.

Claim 2. {a′, c′} is a cut in H separating z1Aa′ ∪ z1Cc′ from a′Ay1 ∪ c′Cy1 ∪ B′.

Suppose Claim 2 is flase. Then there is a path T in H from t1 ∈ V (z1Aa′ ∪ z1Cc′) − {a′, c′}
to t2 ∈ (B − y2) ∪ (a′Ay1 − a′) ∪ (c′Cy1 − c′) internally disjoint from A ∪ B ∪ C. By (8) and
the choice of a′ and c′, there are only three possibilities: t2 ∈ B − y2; t1 ∈ z1Cc′ − c′ and
t2 ∈ c′Cy1 − c′; t1 ∈ z1Aa′ − a′ and t2 ∈ a′Ay1 − a′.

Suppose t2 ∈ B − y2. Then by the choice of a′ and since R does not exist, t1 ∈ z1Cc′ −
{c′, z1}. Then by the choice of P , T intersects (Q− a)∪ (pBz2 − p) before it intersects P ; and
hence we may assume T ∩ P = ∅ and t2 ∈ pBz2 − p. Now the path (z2Bt2 ∪ T ∪ t1Cz1) ∪ A∪
(y1Cc ∪ P ∪ pBy2) passes through z2, z1, y1, y2 in order, contradicting (3).

Now suppose t1 ∈ z1Cc′ − c′ and t2 ∈ c′Cy1 − c′. First, assume that T is contained in the
(A ∪ C)-bridge of H containing B. Then since R does not exist, t1 6= z1, and there exists a
path T ′ from some t′ ∈ V (T ) − {t1, t2} to some t′′ ∈ V (B) which is internally disjoint from
A∪B∪C∪T . By the choice of P , T ′ is disjoint from P , and t′′ = y2 or t′′ ∈ pBz2−p. If t′′ = y2,
then z1Xx1∪z1Xy2∪A∪(z1Cc∪P ∪pBz2∪z2x2)∪A∪(y1Ct2∪ t2Tt′∪T ′)∪G[{x1, x2, y1, y2}]
is a TK5 with branch vertices x1, x2, y1, y2, z1. If t′′ ∈ pBz2 − p, then (z2Bt′′ ∪ T ′ ∪ t′Tt1 ∪
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t1Cz1) ∪ A ∪ (y1Cc ∪ P ∪ pBy2) is a path in H through z2, z1, y1, y2 in order, contradicting
(3). Therefore, T is not contained in the (A ∪ C)-bridge of H containing B. Then c′ 6= c and
t2 ∈ c′Cc− c′; as otherwise, let C ′ be an induced path in G[(C − (t1Ct2 − {t1, t2})) ∪ T ] from
z1 to y1, and we see that A and C ′ satisfy (a) and (b), but the (A∪C ′)-bridge of H containing
B is larger than the (A ∪ C)-bridge of G containing B, contradicting (c). If t1 = z1 then let
A′ be an induced path in G[z1Cc′ ∪R′ ∪ r′Ay1] from z1 to y1 and let C ′ be an induced path in
G[T ∪ c′Cy1] from z1 to y1; and we see that A′, C ′′ satisfy (a) and (b), but the (A′∪C ′)-bridge
of H containing B is larger than the (A ∪ C)-bridge of G containing B, contradicting (c). So
t1 6= z1. Then let C ′ be an induced path in G[z1Ct1 ∪ T ∪ t2Cy1] from z1 to y1. Now A,B,C ′

satisfy (a)–(d); but we see that t1Cc′∪R′, t1 become the new R′, c′, respectively, contradicting
the choice of c′.

Hence, t1 ∈ z1Aa′ − a′ and t2 ∈ a′Ay1 − a′. We claim that Q′ must end at a′′; otherwise,
the same argument in the previous case gives a contradiction (by symmetry between A and
C, the choice of Q′, and the nonexistence of R). Hence by Claim 1, c′ = c, and Q′ is contained
in an (A ∪ C)-bridge of H not containing B. Suppose T is contained in an (A ∪ C)-bridge
of H not containing B. If t1 = z1 then G[T ∪ t2Ay1] has an induced path A′ from z1 to y1

and G[z1Aa′ ∪ Q′ ∪ a′′Cy1] has an induced path C ′ from z1 to y1, such that A′, C ′′ satisfy (a)
and (b), but the (A′ ∪ C ′)-bridge of H containing B is larger than the (A ∪ C)-bridge of G
containing B, contradicting (c). So t1 6= z1. Then G[z1At1 ∪ T ∪ t2Ay1] has an induced path
A′ from z1 to y1 such that A′, B,C satisfy (a)-(d), but t1, t1Aa′ ∪ Q′ become the new a′, Q′,
respectively, contradicting the minimality of z1Aa′ ∪ z1Cc′. So T is contained in the (A ∪ C)-
bridge of H containing B. Then there is a path S from s′ ∈ V (T ) − {t1, t2} to s′′ ∈ V (B)
internally disjoint from A ∪ C ∪ B ∪ T . Since R does not exist, t1 6= z1. If s′′ 6= y2, then
t1, t1Ts′ ∪ S constradict the choice of c′, Q′. So s′′ = y2. Now z1Xx1 ∪ z1Xy2 ∪ (z1Cc ∪ P ∪
pBz2 ∪ z2x2) ∪ (z1Aa′ ∪ Q′ ∪ a′′Cy1) ∪ (S ∪ s′Tt2 ∪ t2Ay1) ∪ G[{x1, x2, y1, y2}] is a TK5 in G
with branch vertices x1, x2, y1, y2, z1, contradicting our assumption that G contains no TK5.
This proves Claim 2.

Let F denote the union of z1Aa′∪z1Cc′ and the (A∪C)-bridges of H whose attachments are
all contained in z1Aa′∪z1Cc′, which is not empty since R does not exist. Since H−{z1, z2, y2} =
G − V (X) is 2-connected, we have

Claim 3. F −{z1, a
′} contains a path T1 from z1Aa′−{z1, a

′} to z1Cc−z1, and F−{z1, c}
has a path T2 from z1Aa′ − z1 to z1Cc − {z1, c}.

Let u ∈ V (x1Xz1), w ∈ V (z1Xy2) with uXw maximal such that u,w each have a neighbor
in F −{z1, a

′, c′}. Since {u,w, a′, c′} cannot be a cut in G (as G is 5-connected), there is a path
S from s ∈ V (uXw − {u,w}) to s′ ∈ V (a′Ay1) ∪ V (cCy1) ∪ V (P ∪ Q′ ∪ Q) ∪ V (B − y2) such
that s /∈ {a′, c′}, and S is internally disjoint from F ∪ uXw ∪ a′Ay1 ∪ c′Cy1 ∪ P ∪Q∪Q′ ∪B.
By Claim 2, s′ 6= z1.

We will cosider two cases according to the location of s. But first, we need the following
which follows from Lemma 4.1 and planarity of B′.

Claim 4. (i) B′ has independent paths P1, P2 from z2 to q, p, respectively; and (ii) if
q′ 6= p then either B′ has independent paths from z2 to p, q′, or q 6= q′ and B′ has
independent paths from z2 to q′, q disjoint from y2Bp.
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Case 1. s ∈ uXz1 − {u, z1}.
Then s′ /∈ A; as otherwise, the paths S ∪ s′Aa∪Q∪ qBz2 and y2Bp∪P ∪ cCy1 contradict

the choice of Z, Y in (1) and (2). Similarly, s′ /∈ Q, s′ /∈ pBz2 − p, and s′ /∈ Q′ when q′ ∈ Q′

and q′ 6= p.
Subcase 1.1. s′ ∈ y2Bp−{y2, p}. Then by Lemma 4.1, (B′−y2)− qBz2 has a path S′ from

z2 to s′. Then (z2Bq∪Q∪aAy1)∪(S′∪S∪sXx1)∪z2x2∪z2Xy2∪(C∪z1Xy2)∪G[{x1, y1, x2, y2}]
is a TK5 with branch vertices x1, x2, y1, y2, z2, a contradiction.

Subcase 1.2. s′ ∈ P − c. Then by Claim 4(ii), B′ has independent paths P ′
1, P

′
2 from z2 to

q, s′, respectively. Now (P ′
1 ∪ Q ∪ aAy1) ∪ (P ′

2 ∪ S ∪ sXx1) ∪ z2x2 ∪ z2Xy2 ∪ (C ∪ z1Xy2) ∪
G[{x1, y1, x2, y2}] is a TK5 with branch vertices x1, y1, x2, y2, z2, a contradiction.

Subcase 1.3. s′ ∈ Q′ − a′. If Q′ ends at q′ ∈ B then we have q′ = p, and by Claim
4(ii) there are independent paths P ′

1, P
′
2 in B′ from z2 to q, q′, respectively; and hence (P ′

1 ∪
Q ∪ aAy1) ∪ (P ′

2 ∪ pQ′s′ ∪ S ∪ sXx1) ∪ z2x2 ∪ z2Xy2 ∪ (C ∪ z1Xy2) ∪ G[{x1, y1, x2, y2}] is a
TK5 in G with branch vertices x1, x2, y1, y2, z2. So Q′ ends at a′′ ∈ cCy1 − c. Let T ′ be a
path in G[V (F + u)] − z1 from u to c′ (which exists by the path T1 in F − {z1, a

′}). Then
(P1 ∪Q∪ aAy1)∪ (P2 ∪P ∪ cCc′ ∪T ′ ∪ uXx1)∪ z2x2 ∪ z2Xy2 ∪ (y1Ca′′ ∪ a′′Q′s′ ∪S ∪ sXy2)∪
G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2, a contradiction.

Subcase 1.4. s′ ∈ c′Cy1− c′. If s′ ∈ cCy1− c then we derive a contradiction as in the above
paragraph by replacing (y1Ca′′∪a′′Q′s′∪S∪sXy2) with (y1Cs′∪S∪sXy2). So s′ ∈ c′Cc− c′.
In particular, c 6= c′ and so R′ ends at r′ ∈ a′Ay1 − a′. By (8), r′ ∈ a′Aa − a′.

By Claim 1, Q′ ends at q′ ∈ B. Let T ′ be a path in G[V (F + u)] − z1 from u to c′ (which
exists by the path T1 in F − {z1, a

′}).
If r′ = a then aAy1 ∪ (Q ∪ qBz2 ∪ z2x2) ∪ (aAa′ ∪ Q′ ∪ q′By2) ∪ (R′ ∪ T ∪ uXx1) ∪

(y1Cs′ ∪ S ∪ sXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, a, a
contradiction. So r′ 6= a. By Claim 4(ii), B′ − y2 contains independent paths P ′

1, P
′
2 from z2

to q, q′, respectively. (P ′
1 ∪ Q ∪ aAy1) ∪ (P ′

2 ∪ Q′ ∪ a′Ar′ ∪ R′ ∪ T ′ ∪ uXx1) ∪ z2x2 ∪ z2Xy2 ∪
(y1Cs′ ∪ S ∪ sXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2, a
contradiction.

Case 2. s ∈ z1Xw − {z1, w}.
If s′ ∈ P − c, then (P2 ∪ pPs′ ∪S ∪ sXx1)∪ (P1 ∪Q∪ aAy1)∪ z2x2 ∪ z2Xy2 ∪ (y1Cc∪ T ′

1 ∪
wXy2) ∪G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2. So s′ /∈ P − c.

If s′ ∈ B − q then by Lemma 4.1 and by planarity, B′ contains independent paths P ′
1, P

′
2

from z2 to q, s′, respectively. Now (P ′
1∪Q∪aAy1)∪(P ′

2∪S∪sXx1)∪z2x2∪z2Xy2∪(y1Cc∪T ′
1∪

wXy2) ∪G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2. So s′ /∈ B − q.
Hence we have the following four cases. Note that G[V (F + w)] − {z1, a

′} has a path T ′
1

from w to c (because of T1 in F − {z1, a
′}).

Subcase 2.1. s′ ∈ a′Ay1 − a′.
If s′ ∈ aAy1 − a, then (P1 ∪Q∪ aAz1 ∪ z1Xx1)∪ (P2 ∪P ∪ cCy1)∪ z2x2 ∪ z2Xy2 ∪ (y1As′ ∪

S ∪ sXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, z2.
If s′ = a then (s′Az1 ∪ z1Xx1) ∪ s′Ay1 ∪ (S ∪ sXy2) ∪ (Q ∪ qBz2 ∪ z2x2) ∪ (y1Cc ∪ P ∪

y2Bp) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, a.
So we may assume s′ ∈ a′Aa − {a, a′}.
If a′′ ∈ Q′ then (P1 ∪Q∪ aAy1)∪ (P2 ∪P ∪ cCz1 ∪ z1Xx1)∪ z2x2 ∪ z2Xy2 ∪ (y1Ca′′ ∪Q′ ∪

a′As′ ∪ S ∪ sXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, z2.
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So we amy assume q′ ∈ Q′.
If q = q′, then (P1 ∪ Q′ ∪ a′Aq1 ∪ z1Xx1) ∪ (P2 ∪ P ∪ cCy1) ∪ z2x2 ∪ z2Xy2 ∪ (y1Cs′ ∪ S ∪

sXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, z2.
So q 6= q′. By Lemma 4.1, B′−y2 has independent paths P ′

1, P
′
2 from z2 to q, q′, respectively.

Now (P ′
1 ∪ Q ∪ aAy1) ∪ (P ′

2 ∪ Q′ ∪ a′As′ ∪ S ∪ sXx1) ∪ z2x2 ∪ z2Xy2 ∪ (y1Cc ∪ T ′
1 ∪ wXy2) ∪

G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, z2.
Subcase 2.2. s′ ∈ c′Cy1 − c′.
If s′ ∈ cCy1 − c, then (P1 ∪Q∪ aAy1)∪ (P2 ∪P ∪ cCz1 ∪ z1Xx1)∪ z2x2 ∪ z2Xy2 ∪ (y1Cs′∪

S ∪ sXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2.
So s′ ∈ c′Cc − c′. In particular, c 6= c′ and so R′ ends at r′ ∈ a′Ay1 − a′. By (8),

r′ ∈ a′Aa − a′. By Claim 1, Q′ ends at q′ ∈ B.
If q = q′, then (P1 ∪Q′ ∪ a′Aq1 ∪ z1Xx1)∪ (P2 ∪ P ∪ cCy1)∪ z2x2 ∪ z2Xy2 ∪ (y1Cr′ ∪R′ ∪

T ′
1 ∪ wXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, z2.

So q 6= q′. By Lemma 4.1, B′−y2 has independent paths P ′
1, P

′
2 from z2 to q, q′, respectively.

Now (P ′
1 ∪ Q ∪ aAy1) ∪ (P ′

2 ∪ Q′ ∪ a′Az1 ∪ z1Xx1) ∪ z2x2 ∪ z2Xy2 ∪ (y1Cs′ ∪ S ∪ sXy2) ∪
G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, z2.

Subcase 2.3. s′ ∈ Q.
Note that G[V (F + w)] − {z1, c} has a path T ′

2 from w to a′ (because of the path T2 in
F − {z1, c}).

Then (P1 ∪ qQs′ ∪ S ∪ sXx1) ∪ (P2 ∪ P ∪ cCy1) ∪ z2x2 ∪ z2Xy2 ∪ (y1Aa′ ∪ T ′
2 ∪ wXy2) ∪

G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2.
Subcase 2.4. s′ ∈ Q′.
We may assume Q′ ends at q′ ∈ B, as otherwsie, we may revise S so that s′ = a′′ ∈ cCy1−c,

and we derive a contradiction as in Subcase 2.2.
If q′ = q then (P1 ∪ qQ′s′ ∪ S ∪ sXx1) ∪ (P2 ∪ P ∪ cCy1) ∪ z2x2 ∪ z2Xy2 ∪ (y1Ar′ ∪ R′ ∪

T ′
2 ∪ wXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2.

So q′ 6= q. Then by Claim 4(ii), let P ′
1, P

′
2 be independent paths in B′ − y2 from z2 to q, q′,

respectively. Now (P ′
2 ∪ q′Q′s′ ∪ S ∪ sXx1) ∪ (P ′

1 ∪ Q ∪ aAy1) ∪ z2x2 ∪ z2Xy2 ∪ (y1Cc′ ∪ T ′
1 ∪

wXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2.

Lemma 4.3 There is no path in H from y1 to B internally disjoint from A ∪ B ∪ C.

Proof. Suppose that H has a path R′ from y1 to r′ ∈ V (B) internally disjoint from A∪B ∪C,
with r′Bz2 minimal.

Since G is 5-connected and X is induced, x1 has a neighbor in G − V (X + y1), say x. If
x ∈ A∪B∪C, let D := {x} and x′ = x; otherwise, let D denote the (A∪B∪C∪P∪Q∪R∪R′)-
bridge of H containing x, and let x′ be an attachment of D such that x′ /∈ {z1, y2, z2, y1}
(since H − y2 is 2-connected). Let T be a path in D from x1 to x′ internally disjoint from
A ∪ B ∪ C ∪ P ∪ Q ∪ R ∪ R′.

Case 1. For any choice of x′ we have x′ ∈ B′.
Then x ∈ B′. If x = r′, then R′∪r′x1∪(r′Bz2∪z2x2)∪r′By2∪(C∪z1Xy2)∪G[{x1, y1, x2, y2}]

is a TK5 in G with branch vertices x1, x2, y1, y2, r
′. So assume x 6= r′.

If r′ ∈ qBz2 or x′ ∈ qBz2, then by Lemma 4.1, B′ has independent paths Q1, Q2 from z2 to
r′, x′, respectively. Then (Q1∪R′)∪(Q2∪x′Tx1)∪z2x2∪z2Xy2∪(C∪z1Xy2)∪G[{x1, y1, x2, y2}]
is a TK5 in G with branch vertices x1, x2, y1, y2, z2.
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If {x′, r′} ⊂ y2Bq−{q}, then there exist two disjoint paths Q1, Q2 from z2 to x′, q, respec-
tively, then (Q1 ∪ x′Tx1)∪ (Q2 ∪Q∪ aAy1) ∪ z2x2 ∪ z2Xy2 ∪ (C ∪ z1Xy2) ∪G[{x1, x2, y1, y2}]
is a TK5 with branch vertices x1, x2, y1, y2, z2.

Case 2. x′ ∈ A ∪ Q ∪ R′ and r′ 6= q.
Then by Lemma 4.1, B′ has independent paths from z2 to r′, q, respectively, and hence

B′ ∪ A ∪ Q ∪ R′ has independent paths P1, P2 from z2 to y1, x
′, respectively. So P1 ∪ (P2 ∪

T ) ∪ z2x2 ∪ z2Xy2 ∪ (C ∪ z1Xy2) ∪ G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices
x1, x2, y1, y2, z2.

Case 3. x′ ∈ A ∪ Q ∪ R′ and r′ = q.
If x′ ∈ Q∪R′, then there exists two independent paths Q1, Q2 from z2 to x′, p which are in

B′∪Q∪R′. Now, (Q1 ∪T )∪ (Q2∪P ∪ cCy1)∪ z2x2 ∪ z2Xy2 ∪ (A∪ z1Xy2)∪G[{x1, x2, y1, y2}]
is a TK5 with branch vertices x1, x2, y1, y2, z2.

So assume that x′ ∈ A, then we consider R. Note r /∈ pBz2 − {p}; otherwise, there exists
a path through z2, z1, y1, y2 in order: (z2Br ∪ R)∪ A ∪ (y1Cc∪ P ∪ pBy2). So r ∈ y2Bp, then
there exist two disjoint paths Q1, Q2 form z2 to r, q in B′, then z1Xx1 ∪ z1Xy2 ∪ (R ∪ Q1) ∪
(C ∪ y1x2)∪ z2x2 ∪ z2Xy2 ∪ (Q2∪Q∪aAx′∪T )∪G[{x1, x2, y2}] is a TK5 with branch vertices
x1, x2, y2, z1, z2.

Case 4. x′ ∈ R ∪ P .
By Lemma 4.1, B′ has two independent paths from z2 to q, r(or p), then there exist two

independent paths from z2 to q, x′ in B′ ∪ R ∪ P , called Q1, Q2 respectively. Now, (Q1 ∪ Q ∪
aAy1)∪(Q2∪T )∪z2x2∪z2Xy2∪(C∪z1Xy2)∪G[{x1, x2, y1, y2}] is a TK5 with branch vertices
x1, x2, y1, y2, z2.

Case 5. x′ ∈ C.
We consider R. Note, r′ /∈ y2Bp−{p}; otherwise, there exists path through z2, z1, y1, y2 in

order: (z2Bp ∪ P ∪ cCz1) ∪ A ∪ (R′ ∪ r′By2). So assume that r′ ∈ pBz2.
If r′ ∈ pBq−{q}, there is a path through y2, y1, z1, z2 in order: (y2Br′ ∪R′)∪C ∪ (z1Aa∪

Q ∪ qBz2), contradicting to (3).
If r′ = q, then there exist two independent paths Q1, Q2 from z2 to q, p in B′ − {y2},

respectively, then (Q1∪R′)∪(Q2∪P∪cCx′∪T )∪x2z2∪x2Xy2∪(A∪z1Xy2)∪G[{x1, x2, y1, y2}]
is a TK5 with branch vertices x1, x2, y1, y2, z2.

If r′ ∈ qBz2 − {q}, then there exist two independent paths Q1, Q2 in B′ − pBy2 from z2

to q, r′ respectively, then (Q1 ∪ Q ∪ aAz1 ∪ z1Xx1) ∪ (Q2 ∪ R′) ∪ z2x2 ∪ z2Xy2 ∪ (y1Cc ∪ P ∪
pBy2) ∪ G[{x1, x2, y1, y2}] is a TK5 with branch vertices x1, x2, y1, y2, z2.

Lemma 4.4 There is a 2-cut {t1, t2} in H separating {y1, z1} from {y2, z2}, and {y1, y2, z1, z2}∩
{t1, t2} = ∅.

Proof. Suppose such a 2-cut does not exist. Then by the same argument as for (4), H has
three independent paths, two from y1 to z2, and one from z1 to y2. Hence by (6), we may also
assume x1z1 ∈ E(G). By (3), y1z1, y1z2 /∈ E(G).

If all neighbors of y1 are contained in A ∪ C ∪ X then let a′ ∈ V (A), c′ ∈ V (C) such that
y1a

′ ∈ E(A), y1c
′ ∈ E(C), and S = y1a

′ ∪ y1c
′.
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Next we define S, a′, c′ when y1 has a neighbor not in A∪C ∪X. So let T1 be an (A∪C)-
bridge of H with y1 as an attachment. By Claim 3, B 6⊆ T1. Recall in (6) the definition of
ai(T ) and ci(T ) for (A ∪ C)-bridges T not containing B.

Let T1, . . . , Tk be a maximal sequence of (A ∪ C)-bridges of H not containing B such
that for each i = 1, . . . , k − 1, Ti+1 has an attachment not in

⋃i
j=1(c1(Tj)Cy1 ∪ a1(Tj)Ay1),

and an attachment not in
⋃i

j=1(z1Cc1(Tj) ∪ z1Aa1(Tj)). To simplify the notation, we let
ai ∈ V (A), ci ∈ V (C) with z1Aai and z1Cci minimal such that ai is an attachment of some
Tj with 1 ≤ j ≤ i, and ci is an attachment of some Tj with 1 ≤ j ≤ i. Let Si := (

⋃i
j=1 Tj) ∪

aiAy1 ∪ ciCy1.

Claim 1. For any 1 ≤ i ≤ k and for any ri ∈ Si − {ai, ci} there exist three independent
paths Ai, Ci, Ri in Si from y1 to ai, ci, ri, respectively.

This is obvious for i = 1 (if ai = y1, or ci = y1, or ri = y1 then Ai or Ci or Ri is a trivial path).
Now assume it is true for some i ≤ k − 1. Let ri+1 ∈ Si+1 − {ai+1, ci+1}. When ri+1 ∈

Si −{ai, ci} let ri := ri+1; otherwise, let ri ∈ V (aiAy1 − ai)∪ V (ciCy1 − ci) be an attachment
of Ti+1. By induction there are three independent paths Ai, Ci, Ri in Si from y1 to ai, ci, ri,
respectively.

If ri = ri+1 then Ai+1 := Ai ∪ aiAai+1, Ci+1 := Ci ∪ ciCci+1, Ri+1 := Ri are the desired
paths in Si+1.

If ri+1 ∈ Ti+1 − (A ∪ C) then let Pi+1 be a path in Ti+1 from ri to ri+1 internally disjoint
from A∪C; we see that Ai+1 := Ai ∪ aiAai+1, Ci+1 := Ci ∪ ciCci+1, Ri+1 := Ri ∪Pi+1 are the
desired paths in Si+1.

So we may assume by symmetry that ri+1 ∈ ai+1Aai − ai+1. Let Qi+1 be a path in
Ti+1 from ri to ai+1 internally disjoint from A ∪ C. Now Ri+1 := Ai ∪ aiAri+1, Ci+1 :=
Ci ∪ ciCci+1, Ai+1 := Ri ∪ Qi+1 are the desired paths in Si+1.

Claim 2. ak ∈ aAy1 and ck ∈ cCy1.

Otherwise, let i ∈ {1, . . . , k} be minimum such that ai ∈ z1Aa − a or ci ∈ z1Cc − c.
Suppose ai = z1. Then i ≥ 2 by (9), and there is a path L in Ti from z1 to some

ri−1 ∈ Si−1 − {ai−1, ci−1} internally disjoint from Si−1 ∪ A ∪ C. Now y2Bp ∪ P ∪ cCci−1 ∪
Ci−1 ∪ Ri−1 ∪ L ∪ z1Aa ∪ Q ∪ qBz2 is a path in H contradicting (3). Therefore, ai 6= z1.
Similarly, ci 6= z1.

Suppose ai ∈ z1Aa − {a, z1}. Let A′ := Ai ∪ z1Aai and C ′ := Ci ∪ z1Cci. We see that the
(A′ ∪ C ′)-bridge of H containing B is larger than the (A ∪ C)-bridge of H, contradicting (c)
of (5) (while (b) of (5) is not affected). So ak ∈ aAy1. Similarly, ck ∈ cCy1.

Define a′ := ak, c′ := ck, and S := Sk. Now {a′, c′, x1, x2} cannot be a 4-cut in G (as
G is 5-connected). So there is a path D in G from some vertex r′ ∈ V (S) − {a′, c′} to
y ∈ V (X ∪ A ∪ B ∪ C) − V (S) internally disjoint from X ∪ A ∪ B ∪ C ∪ S.

By Lemma 4.3, y /∈ B. Indeed, the (A∪C)-bridge of H containing S has no attachment on
B (otherwise we may choose S so that y ∈ B). Thus by the definition of a′ and c′, y /∈ A∪C.
So y ∈ z1Xz2 − {z1, z2}. By Claim 1, let Q1, Q2 be independent paths in B′ − y2 from z2 to
q, p, respectively. Let A′, C ′, R′ be independent paths in S from y1 to a′, c′, r′, respectively.

If y ∈ z1Xy2 − z1 then (Q1 ∪ Q ∪ aAa′ ∪ A′) ∪ (Q2 ∪ P ∪ cCz1 ∪ z1x1) ∪ z2x2 ∪ z2Xy2 ∪
(R′ ∪ D ∪ yXy2) ∪ G[{x1, x2, y1, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z2.
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So assume y ∈ z2Xy2−{z2, y2}. Then X ′ := x1z1∪z1Aa∪Q∪qBz2∪z2x2 is a path in G from
x1 to x2. In G−V (X ′), {y1, y2} is contained in the cycle D∪R′∪C ′∪ c′Cc∪P ∪pBy2∪y2Xy.
Hence by Lemma 2.1, there is an induced path X ′′ in G form x1 to x2 such that G − V (X ′′)
is 2-connected and {y1, y2} ∩ V (X ′′) = ∅. Now Lemma 2.3 finds a TK5 in G.

By Lemma 4.4, H has a separation (H ′,H ′′) such that |V (H ′∩H ′′)| = 2, {y1, z1} ⊆ H ′′ and
{y2, z2} ⊆ H ′, and {y1, z1, y2, z2}∩V (H ′∩H ′′) = ∅. We choose (H ′,H ′′) so that H ′ is minimal.
Then, because of the existence of R,P,Q and by (5) and (7), we see that A∪C ∪P ∪R ⊆ H ′′.
Note, if t1 = p, then t2 ∈ Q or t2 ∈ qBz2; if t1 6= p, then t2 ∈ qBz2. Thus we may assume that
t1 ∈ y2Br, t2 ∈ Q or t2 ∈ qBz2. Let T ′ = t2Bq ∪ Q,T ′′ = t2Bz2 if t2 ∈ B; otherwise define
T ′ = t2Qa, T ′′ = qBz2 ∪ qQt2.

Let z ∈ z1Xy2 with zXz1 minimal such that z = y2 or z has a neighbor in H ′ −
{y2, z2, t1, t2}.

Lemma 4.5 {x2, y2, z, t1, t2} is a 5-cut in G, G[V (H ′∪zXx2) is 2-connected and (5, {x2, y2, z, t1, t2})-
connected, G[V (H ′∪zXx2) has a plane representation in which x2, y2, z, t1, t2 occur on a facial
cycle in this cyclic order.

Proof. Let H∗ := G[V (H ′ ∪ y2Xz2)]. Then (H∗, y2, t1, t2, z2) is 3-planar. Since otherwise
by Theorem 2.6, H∗ contains disjoint paths T1, T2 from z2, y2 to t1, t2, respectively. Now
z1Xx1 ∪ z1Xy2 ∪ C ∪ (R ∪ rBt1 ∪ T1 ∪ z2x2) ∪ (y1Aa ∪ T ′ ∪ T2) ∪ G[{x1, x2, y1, y2}] is a TK5

on branch vertices x1, x2, y1, y2, z1.
We may assume that if z 6= y2 and zz′ ∈ E(G) with z′ ∈ V (H∗)−{t1, t2, y2}, then z′ ∈ y2Bt1

or H∗ has a 2-cut contained in y2Bt1 and separating z′ from {t2, z2}. For otherwise, by the
minimality of H ′ (and by planarity), H ′−y2Bt1 has independent paths P1, P2 from z2 to z′, t2,
respectively; and z2x2 ∪ z2Xy2 ∪ (P1 ∪ zz′ ∪ zXx1) ∪ (P2 ∪ Q ∪ aAy1) ∪ (y1Cp ∪ P ∪ y2Bp) ∪
G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, y1, x2, y2, z2. Actually, this paragraph
tells us more: for any vertex v ∈ z1Xy2, the conclusion holds.

If x2 ha a neighbor x ∈ H ′ − T ′′ then, since G is 5-connected, H ′ − (T ′′ + y2) contains a
path X ′ from x to t1; and hence z1Xx1∪z1Xy2∪A∪ (R∪ rBt1∪X ′∪xx2)∪ (y1Aa∪T ′∪T ′′∪
z2Xy2) ∪G[{x1, y1, x2, y2}] is a TK5 in G with branch vertices x1, x2, y1, y2, z1. Therefore, we
may assume that all neighbors of x2 in H ′ must be contained in T ′′.

Suppose zXz2−z has no neighbor in H ′′−{t1, t2}. Note, x1Xz1−{x1, z1} has no neighbor
in H ′ − {y2}; otherwise, contradicting to (2). Then {x2, y2, z, t1, t2} is a 5-cut in G, and
G[V (H ′ ∪ zXx2) is 2-connected and (5, {x2, y2, z, t1, t2})-connected. Suppose Claim 5 fails.
Then there exist s, t ∈ V (zXy2 − y2) and s′, t′ ∈ V (y2Bt1 − y2) such that ss′, tt′ ∈ E(G),
y2, s, t, z occur on X in order, and y2, t

′, s′, t1 occur on B in order. Since H −y2 is 2-connected
and by 3-planarity of H∗ and minimality of H ′, (H ′ − y2)− (T ′′ − z2) has a path L from z2 to
t′ disjoint from t1Bs′. Then z2x2 ∪ z2Xy2 ∪ (L∪ tt′ ∪ tXx1) ∪ (T ′′ ∪ T ′ ∪ aAy1) ∪ (y1Cc∪ P ∪
pBs′ ∪ ss′ ∪ sXy2) ∪ G[{x1, y1, x2, y2}] is a TK5 with branch vertices x1, x2, y1, y2, z2.

Therefore, we may assume that there is w ∈ V (zXz2 − z) that has a neighbor in V (H ′′)−
{t1, t2}. Then there is a path W in G from w to w′ ∈ V (A ∪C ∪P ∪ t1Bp∪ T ′ ∪R)−{t1, t2}
internally disjoint from A ∪ B ∪ P ∪ t1Bp ∪ T ′ ∪ R. Note that w 6= z2, w 6= y2.

First, assume w ∈ y2Xz2 − z2. If w′ ∈ (R ∪ t1Bp ∪ P ) − C then (W ∪ R ∪ t1Bp ∪ P ) −
((C − z1) + t1) has a path W ′ from w to z1; and let L be a path in H ′ − z2 from t2 to y2, we
see that z1Xx1 ∪ z1Xy2 ∪ (W ′ ∪wXx2)∪C ∪ (y1Aa∪ T ′ ∪L)∪G[{x1, y1, x2, y2}] is a TK5 in
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G with branch vertices x1, x2, y1, y2, z1. If w′ ∈ C, then let L be a path in H ′ − y2 from t1 to
z2; and z1Xx1 ∪ z1Xy2 ∪A∪ (R∪ t1Br∪L∪ z2x2)∪ (y2Xw ∪W ∪w′Cy1)∪G[{x1, y1, x2, y2}]
is a TK5 in G with branch vertices x1, x2, y1, y2, z1. If w′ ∈ A ∪ T ′, then A ∪ T ′ ∪ W has
a path W ′ from w to y1; and let L be a path in H ′ − y2 from t1 to z2, and we see that
z1Xx1 ∪ z1Xy2 ∪C ∪ (R ∪ t1Br ∪L∪ z2x2) ∪ (y2Xw ∪W ′)∪G[{x1, y1, x2, y2}] is a TK5 in G
with branch vertices x1, x2, y1, y2, z1. This paragraph also shows that z 6= y2.

Now assume that w ∈ zXy2 −{z, y2}. Let z′ ∈ t1By2−{t1, y2} such that there is a path Z
from z to z′ which is independent with other paths. By the choice of (H ′,H ′′) and since H−y2

is 2-connected, H ′ − {y2, t1} contains independent paths P1, P2 from z2 to t2, z
′, respectively;

and by planarity, H ′ has disjoint paths Q1, Q2 from t1, z
′ to z2, y2, respectively. If w′ ∈ R∪P∪C

then W ∪R∪P ∪C contains a path W ′ from w to y1; and z2x2∪z2Xy2∪(P1∪T ′∪aAy1)∪(P2∪
zZz′∪zXx1)∪(W ′∪wXy2)∪G[{x1, y1, x2, y2}] is a TK5 with branch vertices x1, x2, y1, y2, z2.
So we may assume w′ ∈ A∪T ′∪t1Bp; then W∪A∪T ′ has a path W ′ from w to y1 avoiding z1 and
t2. Hence z1Xx1∪(z1Xz∪zZz′∪Q2)∪(R∪t1Br∪Q1∪z2x2)∪C∪(W ′∪wXy2)∪G[{x1, y1, x2, y2}]
is a TK5 with branch vertices x1, x2, y1, y2, z1.
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