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Abstract

In this paper, we construct two generalized cyclotomic binary sequences of period 2 p™ based
on the generalized cyclotomy and compute their linear complexity, showing that they are of
high linear complexity when m > 2.
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1 Introduction

A sequence s*° = {so, 51, 52, ...} is called a binary sequence of period N if s; € F, and
s; = sj4+n foralli > 0. The linear complexity (LC) of a periodic binary sequence s>, denoted
by LC(s*), is the length of shortest linear feedback shift register (LFSR) that generates the
sequence [10], i.e., the smallest positive integer / such that s; = ¢;si—;1 + -+ + casi—2 +
c18i—1 for i > [ and constants ¢co = 1,cy,...,c; € Fa. For s a sequence of period N,
the characteristic power series/polynomial of s*° and sV = {s0,s1,...,sy_1)} are defined
respectively as ¢*°(x) = so + s1x + --- and ANx) =50+ s1x + -+ sy_1xV L the
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minimal polynomial [3] of s* is

m(x) = (x — 1)/ ged (cN(x),xN - 1).

Then we have the following classical relation

LC(s®) = deg(m(x)) = N — deg (gcd (xN 1, cN(x))). )

The linear complexity of a sequence is an important criteria of its quality. As we all know,
sequences with high linear complexity (such that LC(s*°) > %) have important applications
in cryptography.

Cyclotomic generators based on cyclotomy can generate sequences with large linear
complexity. Generalized cyclotomic classes with respect to pg and p> were introduced by
Whiteman and Ding for the purposes of searching for residue difference sets [19] and cryp-
tography [4] respectively. Based on Whiteman’s generalized cyclotomy of order 2, Ding [5]
constructed a class of generalized cyclotomic sequences of period pg and determined their
linear complexity. Autocorrelation and linear complexity of period p? and p3 were studied in
[18,22]. The linear complexity of generalized cyclotomic sequences of period p™ were inves-
tigated in [14,15]. In addition, the generalized cyclotomy of order 2 was extended to the case

of period p{' - - - p", which is not consistent with the classical cyclotomy [7]. Subsequently,
new generalized cyclotomic sequences of period p{' - - P that include the classical ones

as special cases were presented in [6], and the linear complexity of such sequences of period
pq were calculated in [1]. Furthermore, new classes of generalized cyclotomic sequences of
period 2 p" were proposed in [8], which included the sequence presented in [12] as a special
case, and they were shown to have high linear complexity. For recent development of the
linear complexity of generalized cyclotomic sequences with different periods, the reader is
referred to [2,11-13,16,17,21,23].

In this paper, we construct two new classes of generalized cyclotomic binary sequences
of period 2p™ and compute their linear complexity, showing that they are of high linear
complexity when m > 2.

2 Generalized binary cyclotomic sequences of period 2p™

Let p be an odd prime and g be a primitive root module p™. Replace g by g+ p™ if necessary,
without loss of generality, we may assume that g is an odd integer, and thus g is a common
primitive root module p/ and 2p/ forall 1 < j < m. For a decomposition p — 1 = ef, write

dj = %ﬂ) = p/~! f for each j where ¢(-) is Euler’s totient function. Fori € Z, s = p/ or
2p/, define
Di(s) = {gi+df’ (mod s): 0<r< e} = giD(()s). 2

One can see immediately Di(‘v) depends only on the congruence class i (mod d;). By abuse
of notation we say an integer n € Dl.(s) ifn (mod s) € Di(s) .
For (s,a) = (p/, p" /), (p/,2p™ /) or 2p/, p™~/), we define

aDi(S) = [agi+dft (modas): 0<t < e}. 3)
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It is well known that [Dépj), Dipj), e, D[(Ifi)l } forms a partition of Z;j (see [24]), which
we call the generalized cyclotomic class of order d; with respect to p/, and
m dj—1 .
Zpm=J | "D U0}, )
j=1 i=0
m dj_l . .
Zo = J U p"~ (20" U D) U0, p"). )
j=1 i=0

From now on, take

d: J=1
fF=2 0=, beZ 5,;=7’=p2f~

In the following we define two families of generalized cyclotomic sequences of period
2p™. The ideal of construction comes from Xiao et al. [20], where generalized cyclotomic
sequences of period p™ were constructed and studied.

(i) The generalized cyclotomic binary sequence of period 2p™ is defined as s*° = {s;};>0
with

1, ifi (mod2p™) e Cy,
P :o, ifi  (mod 2p™) e Co, ©
where
m dj—l . .
co=J U " (20 v ) utrm.
j=1i=5;
m ‘31‘71 . .
e QU r ooty oo
j=1i=0

For the above sequence s, the following theorem holds.
Theorem 1 For the generalized cyclotomic sequence defined by (6) of period 2p™,
(1) if2¢ £ £1 (mod p) or2¢ =1 (mod p) but2° £ 1 (mod p?), then LC(s*®) = 2p™;
(2) if2¢ = —1 (mod p) but 2¢ # —1 (mod p2), then 2p™ — 2(p — 1) < LC(*®) <
2p™ —(p—D.
(i1) The modified generalized cyclotomic binary sequence of period 2p™ is defined as
§% = {§i}i»0 with

(N

~ |1 ifi (mod2p™) € Ci,
o, ifi (mod 2p™) e Co,

where
8—1

m o dj—1 )
~ —j (p?) 2p’)
0= U Pm / U 2Di+b U Di.:,_b U {pm},
i=0 i=3;

™\

m 8;—1

dj—1 . )
—j (p?) 2p’)
U (U 2o U pi oo
j=1 i=4; i=0

1 =
For the above sequence $*°, the following theorem holds.
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Theorem 2 For the modified generalized cyclotomic sequence defined by (7) of period 2p™,

(1) if2° #1 (mod p), then LC(s*®) = 2p™;

(2) if2¢ =1 (mod p) but 2¢ # 1 (mod p?), then 2p™ — 2(p — 1) < LCE>®) < 2p™ —
(p—D.

We give two remarks about our main results.

Remark (1) The two theorems covers all non-Wieferich primes, as in this case, 27 -1 # 1
(mod p?) implies 2° % £+1 (mod ). Consequently the case that 2 = +1 (mod p*)
but # +1 (mod p*t!) fora > 1is rare.

(2) A key argument of our computation follows from the work of Edemskiy et al. [9]. Based
on our computation, a new (but essentially the same) proof of the conjecture by Xiao et
al. in [20] can be achieved.

The inequalities in Theorems 1(2) and 2(2), arising from the inseparability of the polyno-
mial x27" — 1 over [F», are strong enough to deduce that the two generalized sequences are
of high linear complexity if m > 2. For the exact values there, based on numerical evidence,
we have the following conjecture:

Conjecture [f2¢ = —1 (mod p) but 2¢ £ —1 (mod p2), then LC(s®) = 2p™ — (p — 1).

Remark If 2° = 1 (mod p) but 2¢ # 1 (mod pz), we expected that LC(3*°) = 2p™ —
(p — 1) — e and checked many examples. However, as pointed out by the referee, if p = 73,
m = 1and f = 4, then LC(§*°) = 38 # p + 1 — e = 56. So the prediction is false and we
now expect LC3™) <2p" — (p—1) —e.

3 Proof of the main results

Let B = B be a fixed primitive p"-th root of unity, then the field F2(8) = Fa» where n is
the order of 2 module p™. For j < m, B; = ﬁ,,ple is a primitive p/-th root of unity.

We fix the decomposition p—1 =ef, f =2"forr > 1,8; = % = pj;f forl<j<m
and b € 7Z. Note that §; = % andd; = f.Forv € Z, set

: 8j—1 , . , _ -1 .
J . J J J 2pd i 2pl
Hy) =) "ol ml) =2l wit) = pminih)
=0 i=0
and
j j j 2pi
o)=Y 2 B = Y =B, B o= Y
teHLﬁ{,) teH,ﬁ,’fp teH,(,,z_ﬁj)

The characteristic polynomials of $°° and $*° are

m . .
s i= 3 a =143 (B8 + B ).

teCy j=l1

m

~ J 2p)

S0 = Yo =1 Y (Hs, 0+ HEY @),
=1

1651
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To study the linear complexity of s and $°°, note that there is some subtlety here: the

polynomial x27" — 1 is inseparable, each root 8¢ (a € Z pm) is of multiplicity 2, so by Eq.
(1), we have the inequalities

2p™ —2l{a € Zpn | s(B?) = 0}] < LC(s™) <2p" —a € Zpn | s(B*) =0}l,  (®)

" —2a € Zpn |5(B") =0} =LCGE™) <2p™ —l{a € Zpm |S(BY) =0}.  (9)

Since the polynomial is valued over a field of characteristic 2, for v € Z, we have

HEY (%) = B (829) = a(BY) (B)a)?, (10)
HE (%) = B (). an

To study s(B8“) and 5(B%), it suffices to evaluate H(p )(/3“) for each j < m.

Lemma 1 ([20], Lemma 4) For v € Z, we have

(p) (p) _ t_
L@ +H” B= ), =L (12)
Ep’”*lZ’;)
HY (B +HO), = Y. p=0if2<j=<m. (13)
t€pm_/Z;j
m—l
Lemma2 Leta = plu € plDlgp ) where 0 <l<m—1.Thenfor j=1,2,--- ,m,

() i =L (0 = 22D
Q) ifj=1+1, H(’ﬂ)(ﬂ“) = _1 +H("2+k(ﬁ)
B) ifj>1+1, H(" )(ﬁ“ H,(,Z'k ().

Proof First note the computation here is carried out in F2(8). By definition,

' 8j—1 8j—1
»’) t tp! t
BB = ) p"=2 ) BT'=2 X AN a9
[EHLIP.;)) i=0 tep’”’jD,(ﬂ,) i=0 tep”‘”’jD;Jpr;,)

If j <1, eachterm in H,(rl’f;?) (B“) defined in (14) equals to 1, hence

jap—1 _pl~ ](P—l)

(p ) ) .
H (,3 ) |D,+h|_61p ] lf 2
Itj>1Ilets =j—1I,then
_ 8—1 8i—1
J m—s
SACIED D SIS 3D SR (R
= ,e,,mﬂf.mg;p = ienfr)
!
Note that when i passes through {0, 1,...,8; — 1}, i (mod d;) takes value pT_l times on
each elementin {0, 1, ..., d; — 1} and one additional time on elementsin {0, 1, ..., §; — 1}.

Hence the multiset
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ltu (mod p*) | 1e D), 0<i<s; —1]

i+b >
passes % times through Z;\ , and one additional time over the union of Dl( kb for0 <
i <& — 1. Since ﬂpnﬂ is a primitive p*-th root of unity, by (15), we have
1+1 m—s
", (pY) = ZjW’”+H@Agm
aEZ
which is £5— H(p)b+k(ﬂ) if s = 1 and H(pb+k(,3) if s > 2 by Lemma 1. ]
Forl < j<mandv € Z, set
J R
Amjo() = B ). (16)
s=1
Note that Hyf' (8,,) = H'”,(8;) for s < j. then
i i
AmjwBn) =D HL)(Ba) =D HL)(B)) = Aj j.u(B)).
s=1 s=1
Set
Ajyi=Ajjv(B)) € F2B)). )

m—I
By Lemma 2 and Egs. (10)~(11), fora € p' D" 7,0 <1 < m, lett = m — I, then
S(BY) =1+ Appik + Al pge 5B = 1+ Appakrs, + AL pig
By Lemma 1, 1 4+ A; p4x+s, = Ar,p+k. In conclusion, then we have:

m—I
Proposition 1 For a = 0, one has s(1) = 5(1) = 1. Fora € p'D{"" 7,0 <1 < m, let
t=m — |, then

S(,Ba) =1+ At btk + Atz,b+k, (18)
S(BY) = Arprk + Atz,b%. (19)

It now suffices to study the values of A; , for j > 1 and v € Z. We first list three key
identities about A y:

Lemma3 Foreach j > 1 and v € Z, one has

(1) Ajv=A4Ajv+q;-
2 Ajv+Ajvs =1

(3) If2€ D), then A% = Aj i,

Proof (1) is trivial. (2) follows immediately from Lemma 1.
For (3),if2 € D(p ) ,then2 € D(ps) forall s < j. For any i, we have {27 | t € Dl.(ps)} =
D" hence HY, )(,3,)2 H'Y, )(5 ) =H) () and (3) follows. D

Following the proof of [9, Proposition 2], we have the following essential result.
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Lemma4 Suppose [F2(B;) : F2(Bj—1)] = p. Then Aj y + Aj vi 2 & F2(Bj—1). In partic-
ular, for0 <t < j, set

7
A = Aj— A = 0 HYVB)).
s=t+1

Then A&t,]v + A&t,]v 12 ¢ F2(Bj—1), and consequently, ASF,]U #* Ag.t‘]v +f2

Proof Note thatin our case j > 2 as [F2(81) : Fo(Bo)] < p—1 < p.Leté = H;{’If)(ﬂj) +
H%jrf/z(ﬁj). IfAj,+Ajursn €Fa(Bj_1), then

E=(Ajo+Ajurr2) —(Aj1p+Aj 101 72) € Fa(Bj-1).
On the other hand, by definition we have & = Zke 2 ,Bj?, where

fr2—-1

_ »h )
7 = U (DiJrv UDi+8j+v)
i=0

is the same Z (with translation by v) in the proof of [9, Proposition 2]. Note that if k; #
ko € 2, then k; (mod p) # k» (mod p), and the set Z mod p is nothing but the set Z;.
We have
p—1
=) cB), 0#c¢ eFaBj-1).

i=1

Thus the minimal polynomial of B; over F>(8;_1) is of degree [F2(8;) : F2(8;-1)] < p,
which leads to a contradiction. ]

Lemma5 For j > 1, suppose 2 € D;(lpj). Then one of the following holds:

(1) 2¢ £ £1 (mod p), equivalently, §; = g 1 h.

(2) 2¢ = 1 (mod p?) and 2¢ # 1 (mod p*th), equivalently, 2 € D(()pj)forj < a and
2¢ DY) for j > a.

3) 2° = —1 (mod p*%) and 2¢° # —1 (mod p““), equivalently, 2 € D;fj)forj < aand
2 ¢ Dgfj)forj > a.

Furthermore,
(4) If (2) holds, then F2(B1) = F2(Bs) and [F2(B;) : F2(Bj-1)] = p for j > a.
(5) If (3) holds, then F2(B1) = F2(Bs) and [F2(B;) : F2(Bj—1)] = p for j > a.

Proof The equivalence of different descriptions of each condition is easy to get. (4) and (5)
can be proved in the same way. We only show (5) here.

Let 7; be the order of 2 mod pl and t = 11. Itis well-known F, (8 1) = Fyr;. It suffices
toshow 7, =7 and 7; = Tpl=forj > a.

On one hand 7; | 7;41. On the other hand, 2% = 1 mod p/, then 257" = 1 mod pItk,
hence 74 | rjpk. The condition (3) means t; is a factor of 2e for j < a, thus 7, |
ged(zp?~!, 2¢) = 7, and F2(Ba) = F2(B1).
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2592 Y. Ouyang, X. Xie

Now we have 27 = 1 mod p® and 27 % 1 mod p*! (otherwise 22¢ = 1 mod p?*! and
2¢ = —1 mod p*!). Write 27 = 1 4 Ap“, then p { A. For j > a,

2P A apHP T T =1 4api £ (mod pd).
Hence 7; { Tp/~*~!. Along with 7 | 7; | Tp/~¢, one must have 7; = 7 p/ 4. |

Proposition 2 For any v € Z, we have

(1) If2° =1 (mod p), then Ajy eFy If2° #£ 1 (mod p), then A; , ¢ F> for j > 1.

(2) If2° =1 (mod p) but 2° # 1 (mod p?), then Ay, € Fy and Ajy & Fyforj>2.

3) If2¢° = —1 (mod p) but 2° # —1 (mod pz), then Ay, € Fy —TFp and A; , ¢ Fy for
j=2

(4) If2° # %1 (mod p), then A; , ¢ F4 for any j > 1.

Proof Suppose 2 € D;IP',). We may assume 0 < h < d;.

(1) The condition 2¢ = 1 (mod p’) means & = 0. Then Lemma 3(3) implies A% = Ay,
hence A, € [F».

The condition 2¢ # 1 (mod p) means 2 ¢ D(p), hence f 1 h, there exists x; > 0 such
that ~x; = §; (mod d;). By Lemma 3(2), we have

Ajothx, = Ajoys; = Ajo+ 1
On the other hand, if A, € F», by Lemma 3(3), for all n € Z, we have
Ajo=Ajoxh == Ajotnh € F2.

This is a contradiction. )

(2) The condition means 2 € D"’ but 2 ¢ D§”). That A; ,, € F5 follows from (1). For
J = 2, the assumption means gcd(h, dj) = d; = f and hence ged(h, §;) = &; = f/2. For
AN = Aj ., = Ay, by Lemma 3(2),

[1] [1] _ _ 4l
A]U_Ajvzt5 _..._Aj,v_,’_nsj,neZ.
If A; , € IFp, then A;”U € IF», and forn € Z,
[1] [1] _ _ 4l
Aj,v Aj,vj:h - = Aj v+nh € Fz'
1 1 1 1
Hence A;J AE L+nlh+nz§ for any ny, ny € Z, and Ag'yl = AE Jv+n61 forn € Z. In

particular, AL} = All) = A[;I]v+f/2 By Lemma 5(4), [F2(8,) : F2(8;-1)] = p for

Jj = 2. Then Lemma 4 implies A ;é Ag“v + /20 @ contradiction. Hence A , ¢ .
If Aj, € Fy — Fa, then AL.” € Fy — Fp, we have ALl = (alll)2 = alll 41

SV ,v+h

[1] . (1] 2 4l 2 4l
andAv+2h_A]v,and(A _n) _A’v_(Aj, 1), juh_A +1and
ASI]U o = A Agam we get A = Al

i, v+n81 which is impossible by Lemma 4.

2
(3) The condmon means 2 € D(gf ) but 2 ¢ Déf ) Hence
A% v = A1,v+51 = Al,v +1

and A, € Fy. For j > 2, then (A'))2 = al!l | 1f Al!) €y, we have al!) | = al!! 1f

Am € F4—T,, we have Amﬂh = Am Since by assumption, ged(h, §;) = ged(2h, §;) =
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51, we get ALY = alll By Lemma 5(5), [F2(8;) : F2(B;-1)] = p. and by Lemma 4,
AB{]U # AE”U 48, We get a contradiction.

(4) The condition means % 1 h, in particular % = 2"~ is even and there exists an even
integer x; > 0 such that hx; = % (mod f).If A;, € 4, by the proof of (1), we may

assume A, = € ¢ Fa, thus €5 + €9 + | = 0. By Lemma 3(2),
€pi-lhy, ‘= Aj,v_i_pj—lhxl = AJF"”;‘ =Aj,+1=€+ 1

By Lemma 3(3), we have €] = A 4 = eg =e+1l,e=A;10 = 612 = €, hence
€) =€ =" =€pj-lpy- This is a contradiction. ]

Remark For the case 2¢ = +1 (mod p?) but # +1 (mod p*!) fora > 1,if j > 2a,
we can imitate the proof of Lemma 4 and Proposition 2 (i.e., the method in the proof of
[9, Proposition 2]) to show A;, ¢ 4. However, we don’t know how to treat the case
a<j<2a.

We are now ready to prove our main results by applying Propositions 1 and 2.

ProofofTheorem 1 If2¢ =1 (mod p)but2¢ # 1 (mod p2), then Ay elFrandAj, ¢ Fy
for j > 2, in both cases, s(8%) =1 # 0.If 2° # £1 (mod p), then d; { hand A; , ¢ F4,
hence s(B%) # 0. Therefore LC(s*) = 2p™.

If 2¢ = —1 (mod p) but 2¢ # —1 (mod pz), then Ay, € Fy —Fr and A;, ¢ Fy
for j > 2. Hence s(B8%) = 0 fora € pm_lZ; and s(B%) # 0 for all other a’s. Hence
2p™ —2(p —1) <LC(s>®) <2p™ — (p — 1. o

Proof of Theorem 2 1If 2¢ # 1 (mod p), then 2 ¢ D(()p). Hence A, ¢ F, for all j and
5(B*) # 0. Therefore LC(8*°) = 2p™.

If 2¢ = 1 (mod p) but 2° # 1 (mod pz), then only A}, € F, and 5(8%) = 0 for

a € p"~'Z%. Forallother a,5(8%) # 0. Hence 2p™ —2(p—1) < LCE™) < 2p™ —(p—1).

O

4 Numerical evidence

By using Magma, we compute the following examples to check our results.

Example1 Let p =7, m =2and g = 3. Take f =2 and ¢ = 3, then 2> = I (mod p) and
23 £ 1 (mod p?).Forb =0,

§>° =1111011101100111001000000111111010001101010101010
0101010101010011101000000111111011000110010001000,

§°° =1101110111001101100010101101010000100111111111111
0000000000000110111101010010101110010011000100010.

Then LC(s*®) = 98 = 2p™ and LC(™) = 89 = 2p™ — (p — 1) — e, consistent with
Theorems 1(1) and 2(2).

Example2 let p =5, m =2 and g = 3. Then f can be taken either 2 or 4.

@ Springer



2594 Y. Ouyang, X. Xie

Table 1 LC(s*®) for

2¢ = —1 mod p but # —1 p m™ ¢ g ° LCs™ 2" - -1
(mod p?) 5 2 2 3 0,1,3 46 46
3 246 246
4 1246 1246
1mn 2 5 7 2,19 232 232
B3 2 6 7 6,11 326 326
11 5,12
3 7 5,12 4382 4382
11
17 1 4 3 0,3 18 18
5
2 3 562 562
5 ,
19 2 9 3 1,6 704 704
13 3,22

(i) If one takes f = 2, then e = 2,22 = —1 (mod p) and 22 % —1 (mod p?). For
b =0,

§*° = 11111110011010000011000100010001100000101100111111,
$° = 11010100110000101101101110111011000010000110010101.

Then LC(s*®) = 46 = 2p™ — (p — 1) and LC(3*°) = 50 = 2p™, consistent with Theo-
rems 1(2) and 2(1).
(ii) If one takes f = 4,thene = 1,2 # 1 (mod p). Forb =0,

s = 11111110111110011010001010010111010011000001000000,
$°° = 11010100010100110000100000111101111001101011101010.

Then LC(s*°) = LC(8*°) = 50 = 2p™, consistent with Theorems 1(1) and 2(1) respectively.

Example3 Let p = 31,m = 1, g = 3 and e = 15. Then 2'°> = 1 (mod 31) and 21° £ 1
(mod 31?). For b = 0,

s = 11101101111000101011100001001000110110111100010101110000100100,
$°° = 11000111010010000001001011100010011100010110111111011010001110.

Then LC(s*®) = 62 = 2p and LC(s*°) = 17 = 2p — (p — 1) — e, consistent with
Theorems 1(1) and 2(2).

Because of the above examples, we form our conjecture and try more examples in Table 1.

5 Conclusion

In this paper, we introduced two generalized cyclotomic binary sequences of period 2p™,
which include the sequences in [13,25] as special cases. We computed their linear complexity
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in most cases (all cases for p a non-Wieferich odd prime) and showed each of our sequences
is of high linear complexity if m > 2.
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