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1. ELLIPTIC FUNCTIONS

1.1. Periodic functions. A function f: R — C is periodic of period 1 if
(1.1) flx4+n)=f(x), forallzeRandneZ.

There are two natural ways constructing periodic functions. One can simply take
any function on the segment [0, 1) and extend its values uniquely to R by requiring
periodicity. Another construction uses the averaging method. Let g : R — C be
any function of rapid decay at 0o so that the series

(1.2) @)= gl +n)

nez
converges absolutely. Then f defines a periodic function of period one.
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By classical Fourier analysis any periodic and piecewise continuous function f :
R — C has the Fourier series representation

(1.3) f(z) = Zane(nx)
nez
with coefficients given by

1
(1.4) an, ::/0 f(@)e(—nz) dx.

For f asin (1.2) we note
an= [ gt ne(naydr= [ g)e(—nz)dr = Gln),
(> /.

where
gly) == / g(x)e ™ d
R
is the Fourier transform of g. Therefor the Fourier expansion (1.3) becomes
S g+ n) = 3 Gme(na).
neL nez
Taking x = 0 we get the Poisson summation formula
D gn)=> gn).
neL nez

More generally, for g : R — C a “nice” function of rapid decay, we have the higher
dimensional Poisson summation formula

> gn)= > gn).
nez nez"

Remark 1.5. Poisson summation formula is a key input in proving the analytic
continuation and functional equation of the Riemann zeta function

((s) = % for PRe(s) > 1.

1.2. Elliptic functions. The next generalization of periodic functions are “peri-
odic” functions on the complex plane C viewed not just as R?, but as a Riemannian
manifold with a complex structure.

Note that Z™ is a lattice in R™, i.e. it is a discrete free abelian subgroup of R"
of (full) rank n. We also need a lattice in C. Let wy,ws be two complex numbers
which are linearly independent over R, that is

C = wiR + wsR.
Let
A =wZ+ wZ
be the lattice generated by w; and ws.
Definition 1.1. A function f : C — C is elliptic with respect to A iff

(1) f is meromorphic on C,
(2) f is periodic with periods A, i.e.

(1.6) flu+w)= f(u) forallueCand we A.
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Choose a fundamental parallelogram for the lattice A,
P =tw +tows+pu, 0<1t,t0 <1,
with u € C such that f has no poles or zeros on 0P.
Some easy observations:

(1) f is completely determined by its values on P, thus can be viewed as a
function on the tours C/A.
(2) If f is holomorphic, then f is a constant: Since P is precompact, f is
bounded on P. Then periodicity implies that it is also bounded on C.
Then by Liouville’s theorem (see e.g. [SS03, p. 50, Corollary 4.5]), f is a
constant.
Recall that around every w, f has a power series expansion
(oo}
Fw) =3 an(u—w)*
k=m
with coefficients ay, € C and a,, # 0. Then m = ord,,(f) is the order of f at w and
a_1 = res,(f) is the residue of f at w.

Proposition 1.1. Let f be an elliptic function with respect to A. Then we have

(1.7) D resw(f) =0,

weP
(1.8) > ordy(f) =0,
weP
and
(1.9) Z ord,, (f)w =0 (mod A).

weP

Here the last equation means that the left side is always an element in A, indepen-
dent of the choice of P.

Proof. Integrating along 0P and noting that the integrals along opposite sides
cancel out by periodicity we have by Cauchy’s theorem (see e.g. [SS03, p. 77,
Corollary 2.2])

1

o 211 (')pf

= (w)du =" res,(f),

weP
finishing the proof of (1.7). Similarly, (1.8) follows by applying (1.7) to the elliptic
functions fT/ and noting that ord, (f) = res, (f'/f) which follows from an easy

computation. We leave the proof of (1.9) as an exercise. g

Exercise 1. Prove case (3) in Proposition 1.1. (Hint: Consider the function uf'/f.
Note that it is no longer elliptic, but you can still integrate it along OP. The integral
may depend on the choice of P, but you only need to show it lies in A.)

Definition 1.10. Define the order of f to be the sum of orders of zeros in P or
the negative of the sum of orders of poles in P, i.e.

ord(f) := Z max{ord,(f),0} = — Z min{ord,(f),0}.

weP weP
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Note that relation (1.8) guarantees that this definition is well-defined.

Corollary 1.2. (1) There is no elliptic function of order 1, i.e. there is no
elliptic functions with one simple zero (or one simple pole).
(2) For any ¢ € C, f takes the value ¢ for exactly ord(f) points in P counted
with multiplicity

Proof. For (1), suppose an elliptic function f is of order 1, then it has exactly a
simple pole in P, say at wg € P. Then ) pres,(f) = resy,(f) # 0, contradicting
(1.7).

For (2), applying (1.8) for f and f — ¢ we get

ord(f) = — Z min{ord, (f),0}

weP
=— Z min{ord,,(f — ¢),0}
weP
— Z max{ord, (f — ¢), 0},
weP

where the last sum exactly counts the number of times (with multiplicity) when
f(u) = cfor u € P. O

From (1) above we know that for an function to be elliptic, it must be of order at
least 2. One natural way to construct an elliptic function is to start with a function

with a double pole and then apply the averaging trick. For example, we can take

g(z) = % and then define the sum

(1.11) > ﬁ

weA

However there is some convergence issue with this construction. We need to add
some “corrected terms” to resolve it.

Definition 1.12. The Weierstrauss p function is defined by

(1.13) o(u) == % + Z’ <(u_1w)2 - u;) . udA,

weA

where ' means that w = 0 is skipped in the summation.
The convergence of the above series will be guaranteed by the following lemma.

Lemma 1.3. Let A be a lattice in C. For any R > 0 and u € C with |u| < R, the

series
1
w%:A T SR 1
lw|>2R
for any ¢ > 2.

Remark 1.14. In this course for any two quantities A, B, we will use the notation
A <, B to mean that there exists some constant C' > 0 such that A < CB,
and here the subscript means that the bounding constant C' may depend on the
parameter .
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We now give the proof of this lemmal.

Proof. For any t > 0 consider the set
P(t) = {aw; 4+ bws : a,b € R, max{|a|, |b|} =t}.

Note that A\ {0} = ],~,(P(n) N A) and it is easy to check |[P(n) N A| = 8n and
P(n) = nP(1). There exist constants B > 0 and N > 1 sufficiently large such that
lw| > B+ £ for any w € P(1). Since P(n) = nP(1), for any integer n > N and
for any w € P(n)

lw| >n(B+£)>nB+R.

In particular, for any |u| < R, |u + w| > |w| — |u| > nB. Hence the series
1 .
w ——— 1s bounded from above b
ol S2r 1T Y
1
Y —— <Y [P)NAIR+ ) [P(n) N A|(nB)~°
weA |u + w| n<N n>N
lw|>2R
<8N’R“+8B"° — <raAcl,
n>N n
finishing the proof. t

Exercise 2. Let A be a lattice in C. For any R > 0 and u € C with |u| < R. Show

that the series
Z :
|u 4+ w|?

weA
|u|>2R

diverges.

Proposition 1.4. The Weierstrauss p function is a meromorphic function with
double poles only at lattice points. Similarly, its derivative

(1.15) o) =23 ﬁ wé A

weA
is a meromorphic function with triples poles only at lattice points.
Proof. We only prove the statement for g; the statement for ¢’ follows from similar

arguments. It suffices to show for any R > 0, g is meromorphic for |u| < R. For
this rewrite

o=+ X (p )t (e w):
|w|<2R jw|>2R
Note that for the terms in the second sum, using |u| < R < 3|w| we have
1 1] 12R
2 = Jwl?

(u—w)? w
Then by Lemma 1.3 we see that the second sum is absolutely convergent, hence
defines a holomorphic function in |u| < R. We are thus left with a finite sum which

(2w — u)u

(u — w)?w?

INote that the proof given here differs slightly from the one I gave in class, but they use the
same ideas of grouping the summation terms.
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clearly is meromorphic with double poles at all the lattice points inside the ball
{ueC:|ul < R}. O
Remark 1.16. Clearly g’ is elliptic with respect to A.

Proposition 1.5. p is even and elliptic with respect to A = wiZ + woZ.

Proof. To see g is even, for any u ¢ A,

o =5+ X (G~ )~

weA

where for the last equality we used that —(A\ {0}) = A\ {0}. To show p is elliptic
with respect to A, it suffices to show

plutw) =p(u) and  p(u+w)=p(u), VugA.
Consider F;(u) := p(u + w;) — p(u). Since g’ is elliptic with respect to A,
Fj(u) = ¢'(u+wi) — ¢'(u) = 0.

Hence Fj(u) = ¢; is a constant. Now take u = —** to get
Wi Wi Wi Wi
w=v(3)-0(-5) =0 () -0(3) -0
This finishes the proof. O

Exercise 3. Show that p and p' generate the field of elliptic functions with respect
to A, that is any elliptic function can be written as a rational function in p and @'.

Remark 1.17. Let us discuss some of the consequences of this proposition. On the
torus C/A, there are three 2-torsion points (i.e. u ¢ A,2u € A), namely - + A,
2+ Aand P + A with ws = wy + wa.

Since ¢’ is elliptic, for i = 1,2,3

4 (3)-0(5) 5 -9 -0(3)

implying that g (%) = 0. For @', we know it is an order 3 odd elliptic function.
It has zeros at the three 2-torsion points in C/A, Thus these are exactly the three
simple zeros modulo A of .

For g, we know it is an order 2 even elliptic function. Thus it takes any value
exactly twice counted with multiplicity. For any ¢ € C, there exists some w ¢ A
such that p(w) = ¢. If w Z —w (mod A), (i.e. w+ A is not a 2-torsion point), since
p is even, then +w (mod A) are the two simple zeros of p(u) — c¢. If w+ A is one
of the three 2-torsion points, then the function p — ¢ has a double zero modulo A
at w, since its derivative, being ¢’, also vanishes at w.

This analysis also implies that the thgee values p(%5), p(“2), p(5) are distinct

2

since otherwise we have e.g. () = p(“%*) = ¢, then the function p(u) — ¢ has at

least four zeros (counted with multiplicity) which is a contradiction.
Proposition 1.6. Let p be the Weierstrauss function with respect to A = w1Z +
woZi. Then

(1) The Laurent expansion of ¢ is

pu) = 25+ 3 b+ DG,

k=1
k even
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for all w such that 0 < |u| < inf{|w|: w € A\ {0}}. Here
1
Gr(A):= ) —

weEA

is the weight k Fisenstein series.
(2) The functions p and @' satisfy the relation

(1.18) (0'(u)? = 4(p(u)® = g2(A)p(u) — g3(A),
where ga(A) = 60G4(A) and g3(A) = 140G¢(A).
(3) Let e; = p(w;/2) fori=1,2,3 with w; as above. Then the cubic equation
satisfied by p and @' is equivalent to
(9" (u)® = 4(p(u) — e1)(p(u) = e2)(p(u) — e3).

This equation is nonsingular, meaning the right side has distinct roots.

Proof. For (1), we use the geometric series square formula
! i(k F1)E Ve <1
= z z .
(1—2)? ’

k=0

Thus for |u| < |w| we have

1 1 1 1 (k+1)u
(u—w)2 w? ((1—u/w ) Z wh+2
Hence for |u| < inf {|w|:w € A\{O}} we have

L
weA k=1

+ Z (k‘ + 1)Gk+2(A)uk,

k=1
k even

1
u2

where for the second line we changed order of summationand used the fact that
Gr(A) = 0 whenever k is odd.
For (2) let us define

F(u) = (¢'(u))? = 4(p(u)” + g2(A)p(u) + g3(A)
and we wish to show F(u) = 0. Since F' is meromorphic, it suffices to show F'(u) = 0
for |u| < inf{|w|: w € A\{0}}. By direct computation we see that for |u| < inf{|w] :
w € A\ {0}} the Laurent expansion of (p’(u))? and 4(p(u))3 — g2(A)p(u) — g3(A)
both equal

4u~8 — 24G 4 (A)u™? — 80Gs(A) + O(u?).

In particular, this implies that F is holomorphic with a Laurent expansion F(u) =
O(u?). But since F is elliptic, it must be a constant, which then together with
F(u) = O(u?) implies that F' = 0 as desired.

For (3), first the fact that ej,eq, es are distinct already follows from Remark
1.17. Now factoring the cubic polynomial in the right side of (1.18) we have there
exist complex numbers ¢y, ¢z, c3 such that

(' (u)* = 4p(u) — c1)(p(u) = c2)(p(u) = c3).
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W1 w2 w3

Plugging in v = %+, %2, % respectively and noting that the left side vanishes (cf.

Remark 1.17) we get that {e1, ea,e3} C {c1,c2,c3}. But since ey, ea, e3 are distinct,
this must be an equality, concluding the proof. O

1.3. The modular discriminant and j-invariant.

Definition 1.19. The modular discriminant A = A(A) is defined by
(1.20) A:=16 [] (ei—¢)?

1<i<j<3
where ey, €3, e3 are the simple roots of the cubic polynomial in (1.18).
Lemma 1.7. For any lattice A, A(A) = go(A)? — 27g3(A)? and A(A) # 0.

Proof. The non-vanishing of A follows from the definition (1.20) and the fact that
e1, ez, ez are distinct. We thus only need to prove this expression for A. Abbreviate
g2 = g2(A) and g3 = g3(A). Consider the Vandermonde matrix determined by
€1, €2, €3:

1 1 1

V= €1 €2 €3
2 2 2

€1 € €3

From linear algebra we know its determinant is given by det(V) =[], ., <3(e; —
e;). Hence

3 81 S
A =16det(V)? = 16det(VV?) = 16det | S1 S2 S3 |,
Sy Sz Sy

where S, = e]f + 6’5 + e’§ for 1 < k < 4. From the equation
(x—e1)(z —ex)(x —e3) = 2® + Az — B,
with A = —g5/4 and B = g3/4 we get
B =-e1e0e3, A=e1es+esest+eze;r and Sy =e1 +e+e3=0.

From the above third relation we get Sy + 24 = (e; + ea + e3)? = 0; hence Sy =
—2A. Moreover, we can check that for each j = 1,2,3, e? = —Ae; + B. Hence
S3 = —A(e; +e3+e3)+ 3B =3B and e? = —Ae? + Bej. The latter then implies
that Sy = —ASy = 242, Thus get
3 0 —2A
A=16det | 0 —24 3B | =16(—4A4%-27B%) = g5 — 27473,
—2A 3B 242

finishing the proof. O

Definition 1.21. The j-invariant function is defined by

J(A) = 17229(1()/”3.

Since A(A) # 0, this function is well-defined.
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2. MODULAR FORMS: DEFINITION AND EXAMPLES
The functions Gx(A), A(A), j(A) can all be viewed as functions in
L:={ACC:Aisa lattice in C},
the space of lattices in C. Some of them are in fact examples of modular forms.

Definition 2.1. Let k£ be a non-negative integer. A modular form of weight k is a
function

F:L—>C
satisfying the following properties:

(1) F is homogeneous of degree —k, i.e.
(2.2) FOA) = A7Ff(A) for any A € C* and A € L,

(2) “F is holomorphic in £”,
(3) “F is holomorphic at co”.

To make the above definition more clear, we need a parameterization of the
domain for functions defined above, namely the space of latices L.

Definition 2.3. A pair of complex numbers (w1, ws) is called positive if jm(i—;) >
0.

We can use positive pairs to parameterize £: Clearly, each positive pair (w1, ws)
is R-linearly independent, thus gives rise to a lattice A = w1Z + wsZ. Moreover,
each lattice can be realized by a positive pair: Given any lattice A, let {wy,ws}
be a basis so that A = w1Z + weZ. Up to replacing w; by —wi, we can have
Im(Z) >0, ie. (wi,ws) is a positive pair. However, there is some redundancy in
this parameterlzation as shown in the following lemma.

Lemma 2.1. Two positive pazrs (w1, ws) and (W, wh) give the same lattice if and
only if there exists some v = ( ) € SLy(Z) such that

= (- D)
Here
SLy(Z) == { (1) € Ms(Z) : ad — be =1}

is the modular group, i.e. the group of two by two integral matrices with determinant

1.

Proof. This direction “<” is clear. We only need to prove the other direction.
Assume w1 Z + woZ = WiZ + whZ. First since wi,w) € wiZ + wyZ, there exist
a,b,c,d € Z such that w] = awy + bwe and w) = cw;y + dws. Similarly, there exist
a', b, ,d € Z such that wy = d/w] + b'w) and we = 'w| + d'w}. This implies that

wi\ _ (a b (w1  (wi\  fa b\ [d b\ [w]
wh)] \e d) \wa) \wh) \ec d)\c d)\wy)"
Thus (¢4) (% %) = I, implying that v = (¢}) is an invertible integral matrix,

cd
i.e. det(y) = £1. It thus remains to show det(y) > 0. This is an easy exercise. [
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For any positive pair (wy,ws) we denote by z = z(wy,ws) = z—; € H, where
Hi={:=z+iyeC:y >0}

is the usual upper half plane of the complex plane. Let F' be a modular form
of weight k. The homogeneity condition (2.2) implies that for any positive pair

<w17 w2 >7

(2.5) F(w1Z+ wyZ) = wy "F(L 7+ 7).

Thus F' is uniquely determined by its values on the subset {2Z +Z: z € H} C L is
can be naturally parameterized by H. We thus define

f(z) =F(Z+ 7).
Now condition (2) in Definition 2.1 just means that f is holomorphic in the variable

z € H. We also need to rephrase the homogeneity condition (2.2) in terms of f.
For any z € H and v = (% %) € SLy(Z). By definition we have

f)=F(Z+ 2Z) = F((az + b)Z + (cz + d)Z)

= (ca+ d) MRS+ 2) = (cz +d) ™ f (2288).

Or equivalently,
f(y2) = (cz+d)*f(2), Vvye€SLly(Z),2 € H.
%is is the usual linear fractional transformation. (Lemma 2.2 below

shows that this is a well-defined action on H.) We now give an alternative definition
of a modular form in terms of this function f.

Here vz =

Definition 2.6. Let k be a non-negative integer. A function f : H — C is a
modular form of weight k if

(1) f satisfies the transformation rule

(2.7) f(yz) = (ez+d)* f(2), VzeH, v=(2}) €SLy(2),
(2) f is holomorphic on H,
(3) f is holomorphic at oco.

If f further vanishes at oo then f is called a cusp form of weight k.

We denote the set of modular forms (resp. cusp forms) of weight k by M (SL2(Z))
(resp. Sk(SL2(Z)); when there is no ambiguity we simply write M}, and S.

Remark 2.8. Let us make the following few remarks.

(1) From the homogeneity condition we see modular forms of different weights
are linearly independent over C.

2)

Mk,le2 C Mk1+k2 for any kl,kg 2 0

(3) Taking v = —1I, (2.10) becomes f(z) = (—1)*f(z). Hence M;, = {0} if k
is odd.

(4) Let T= (1) and S = (° §). Applying (2.10) for these two transforma-
tions we have

(2.9) fz4+1)=f(z) and f(~1/2) = (=2)"f(z), VzeH.

We will see later that in order to verify (2.10), it suffices to verify it for
these two transformations.
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Here we need to explain the definition a bit. Let ¢ = q(z) = 2™%* = e?TiTe =27y,
This map sends H to the punctured disc D' := {g € C\ {0} : |q| < 1}2. Define
g : D' — C, corresponding to f, by g(q) = (log( )/2mi). Note that apriori g may
not be well-defined since the complex logarithmic function is defined only up to
an integer multiple of 2wi. However, the first transformation rule in (2.9) removes
this ambiguity. Namely, around every ¢ € I’ we can choose a branch for loggq.
Then any other choice of branch is of the form loggq + 2nmi and we have by the
transformation rule

f((logq + 2nmi)/2mi) = f(logq/2mi +n) = f(log q/27i),

implying that g is well-defined and is holomorphic on I’ and it has a Laurent
expansion g(q) = Y, ., anq"™ for ¢ € D'. Now note that [q| = e~2™ thus ¢ — 0 as
y — 0o. Then the condition f is holomorphic at co just means that g can extends
holomorphically to the punctured point ¢ = 0, i.e. the Laurent series sums only
over n € N. This means that f has a Fourier expansion

(2.10) f(z2) = an(fle(n2)
n=0

Similarly, f vanishes at co means that ag(f) = 0 in the above Fourier expansion,
that is,

(2.11) 1) =3 an(fe(n
n=1

Remark 2.12. Let f : HH — C be a function satisfying conditions (1) and (2) in
Definition 2.6 and denote by f(co) := limy_, f(iy). Then we have the following
criterion for whether f is a modular or cusp form:

f is a modular form (resp. cusp form) < f(c0) < oo, (reps. f(oco) =0).

For any 7 € SLy(Z) and non-negative integer k define the weight k operator ]
on functions f : H — C by

(FIDk(2) = jy(2) " f(v2), VzeH,

where j,(z) = cz + d is called the factor of automorphy. Note that under this new
terminology condition (2.7) becomes

fVe = f, Vv e€SLa(Z).
Below we list some basic properties of this operator.

Lemma 2.2. For all v,v" € SLy(Z) and z € H,

(1) Jyy (2) = Jy(v'2)jy (2) (chain rule),
(2) (1)z=7(v2),

B) Tk = (F]e) [ Tk

(4)

4) Im(y2) = 5t

2But it’s not biholomorphic since g is Z-periodic, i.e. q(z + 1) = q(z) for any z € H. In fact it
sends each of the strip {z € H : Re(z) € [a,a + 1)} biholomorphically to D’.
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Exercise 4. Prove this lemma.
Hint: Note that for v = (2Y) € SLy(Z),

e @) ()= () =a )

2.1. Examples of modular forms. In fact, we have already encountered some
explicit modular forms. Recall for any integer k > 3,

11
Gr(A) =) —
w
weA
As a function on H, Gy is given by

(2.13) Gil2) = Gh(:Z+Z) = 3
(c,d)ez?

o
(cz+d)F

The following proposition asserts that Gy is a weight £ modular form.
Proposition 2.3. For any integer k > 3, Gy, € My, but Gy, ¢ Sk.

Proof. 1t is clear from the original definition that G (A) is homogeneous of degree
—k which is equivalent to the fact that G (z) satisfies the transformation rule (2.7).
Next, we show the defining series of G (z) converges absolutely and uniformly in
the compact set

KB::{z:x+iy:|x|§B, BilgySB}

for any B > 1, and hence defines a holomorphic function on H. For this, first we
show |cz + d|? >p ¢ + d? uniformly for any z € K. By direct computation

lcz +d|? = |e(z +iy) + d)* = (cx + d)* + Py* > (cx + d)* + B2,
If |d| > 2|cz|, then (cz + d)* > (|d| — |cz|)? > ;d?. Hence in this case

1
lcz +d*> > B72c* + Zd2 >pc+d2.
If |d| < 2|cz|, then ¢® + d? < ¢ +4B2c?, ie. 2 > ¢ +d°  Hence in this case

11482 °
2 2
_ c+d
|cz—|—d|2 > B 22 >

2 2
_exd 2.
“Baapy) BT

In both cases we have for z € Kp, |cz +d| >p (c* + dQ)%. Hence for z € K5,
/ 1 / 1
RN R . E
k E
et dF <P 2 (@)

Here the convergence is guaranteed by Lemma 1.3. This proves that Gy is holo-
morphic on H.
Finally, an easy computation shows that

(2.14) Gr(o0) = lim Gi(iy) = 2¢(k) < oo,
Yy—00
implying that G is also holomorphic at oo. O

Remark 2.15. As mentioned before, G, = 0 when k > 3 is odd.
Corollary 2.4. A € Si5.
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Proof. Recall [
A = g3 —27¢2 = 216000G3 — 529200G2.

Hence in view of Proposition 2.3, A € Mjy. Moreover, using identities ((4) = §5

and ¢(6) = % we have

64712 64712
(2.16) A(0) = 57 T o7

This finishes the proof. O

=0.

Remark 2.17. The j-invariant function j = 1728¢3 /A has a simple pole at co and
hence is not a modular form. It is an example of weight 0 modular function; see
Definition 4.3 below.

We have the following precise Fourier expansion formulas for Gy.

Proposition 2.5. For any even k > 4,
2mi)k
Gu(2) = 20(6) + 275 s meln)

where for any s > 0, o4(n) = Zd|n d* is the s-divisor function.

Remark 2.18. The divisor function oy is multiplicative, i.e. os(mn) = os(m)os(n)
for any ged(m,n) = 1, and satisfies the growth condition that os(n) < ns*e.

To prove this Fourier expansion formula we need the following identity.

Lemma 2.6. For any integer k > 2 and z € H,

o0

1 —27i)k
(2.19) > e ((k_ 1))! S mhle(me).

meZ =1

Proof. Tt suffices to prove this identity for £k = 2. We apply the following infinite
product identity for the sine function which can be proved by comparing zeros on
both sizes (see e.g. [SS03, p. 142, Equation (3)])

= 22 = z z
sin(mz) =z [ (1- —3) =z [[a- =)+ —).

Taking logarithmic derivatives in both sides we get
cos(7z) e(z/2) +e(—z/2) e(z)+1

LHS = 7rsin(7rz) - me(z/2) —e(—z/2) - me(z) -1

i1+ e(z)%) =mi(1 -2 e(m2)),
m=0

and

1 1
_|_
z4+m zZ—m

1 o0
RHs_;+mZ::1( ).

Further differentiating both sides we get

= 1L 1 1 N
—2wz£<2wzm>e<mZ>— 22 ;((z+m)2+(z—m)2)_ mzezzwm)?'

We can then finish the proof by negating both sides. O
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We can now easily prove Proposition 2.5.
Proof of Proposition 2.5. Rearrange the sum we get
G it
G- F+> D e aF d

d;éo c#£0 d€Z
o0

= 2¢(k +2§: (2mi)" 'Zm e(emz)
= 2¢(k) +2 (2mi)" 'sz

n= 1m\n

=2¢(k) +

as desired. O

Remark 2.20. Using this Fourier expansion formulas we can compute

A(z 1271' i

with 7(1) = 1, 7(2) = —24, 7(3) = 252, 7(4) = —1472,---. The coefficient function
7 is called the Ramanujan function. It is not a coincidence that these coeflicients
are all integers. In fact we will see later that A has the following infinite product
expression

oo

A(z) = (2m)%e(2) [ (1 - e(n2))*.

n=1
from which it follows easily that 7(n) € Z. Based on many numerical computations,
Ramanujan (1916) made the following conjecture regarding this function.

Conjecture 2.21 (Ramanujan).
(1) 7 4is multiplicative, i.e. T(mn) = 7(m)7(n) whenever ged(m,n) =1,
(2) 7(p" ) = 7(p)7(p") — p"'r(p"") for all primes p,
(3) |7(p)| < 2p= for all primes p.
The first two statements were proved by Mordell [Morl17] one year later and the

last statement was proved by Deligne [Del74] as a consequence of his proof of the
WEeil conjectures.

Remark 2.22. The normalized Fisenstein series is defined by

1
Ek(Z) = T(ki)

We have seen from the first homework that Ej, has the following series expression

1 1
Ex®=5 > (cz + d)F

ged(e,d)=1

Gi(2) =1+ are(z) + aze(2z) +

and its Fourier expansion formula is given by

(2.23) Ey(z)=1— — Z or—1(n)e(nz),
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where By, is the k-th Bernoulli number defined by the formal power series expansion
t >tk
et—1 Z Bkﬁ'
k=0

3. THE MODULAR GROUP AND ITS FUNDAMENTAL DOMAIN

In this section we study more closely the SLy(Z)-linear fractional action on the
upper half plane. Two important transformations are given by S = (_01 (1)) and
T = (1), where

Sz=-1/z and Tz=2z+1, VzeH.
Theorem 3.1. The modular group SLa(Z) is generated by S and T.

Proof. Tt suffices to show for any v = (‘; Z) € SLo(Z) after finitely many steps of
left multiplying S and T" we can reduce « into the identity matrix. Note that

a b —c —d
S(C d>_(a b)
(@ b\ _ (a-+cn b+dn
c d) c d ’

If c =0, then v = £ (} 1) for some n € Z. Applying T~™ we get +I5. Applying
S2? = —1I if necessary to kill the negative sign, we can get the identity matrix. If
¢ # 0, then apply T for some appropriate n € Z we can get a new top left entry
a’ with 0 < @’ < |¢|. Then apply S to get a new bottom left entry with absolute
value strictly smaller than |c|. After applying this process finitely many times we
can get a matrix with bottom left entry 0, reducing the argument to the first case.
This finishes the proof. O

and

Remark 3.1. In view of Lemma 2.2 and the above theorem, in order to check
condition (2) in the definition of a modular form, it suffices to check (2.7) for v =
S,T. That is, (2.7) is equivalent to saying that f satisfies the two transformation
rules in (2.9).

Definition 3.2. A set F C H is called a fundamental domain for the modular
group I' = SLy(Z)-action on H if

(1) F is a domain (i.e. a nonempty and connected open set) in H,
(2) every orbit of T" has a point in F or on the boundary 0.F,
(3) distinct points in F are not in the same orbit of T

Theorem 3.2. The set
(3.3) Fi={z€H:|z| > 1, [Re(z)| < 3}

is a fundamental domain for the SLa(Z)-action on H.
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FIGURE 1. The fundamental domain F with boundary identified.

Remark 3.4. Roughly speaking, the quotient space I'\H (with I' = SLy(Z)) is where
a modular form lives® . It can be visualized as F with the boundary of F identified
by T and S respectively as shown in Figure 1. After gluing the equivalent sides of
the boundary, F becomes a punctured sphere. (The missing point is the point at oo
and is called a cusp of T\H.) One can add this point at infinity to T'\H and equip
suitable complex charts on T\H U {co} to make it a compact Riemann surface, i.e.
a connected 1-dimensional complex manifold.

Proof of Theorem 3.2. Clearly, F is a domain. We thus only need to verify condi-
tions (2) and (3). For (2), take any z = = + iy € H, we need to show there exists
7' € Tz such that 2/ € F = {z € H: |2| <1, |Re(z)| < 5}. First we claim that
there exists z” € T'z attains the maximal height (the imaginary part) among all
points in I'z. Moreover, each such a point satisfies the property that |z”| > 1. To
prove this claim, note that for any v = (‘; Z) el

1 1 :
Yy Yy {chyﬁy if ¢ # 0,

- |cz+d|2: (cx+d)?+c2y? | =y if c=0.

Jm(vyz)

In other words, heights of elements in I'z is uniformly bounded by max{y,y~1}.
This implies the existence of such a point with maximal height. For the moreover
part, suppose not, then we have some 2’ € I'z with maximal height but |z < 1.
Then clearly Sz” € T'z, but

Jm(z")

|Z”|2

violating the maximality of the height of 2”. Now take such a 2z’ € I'z, applying
T"z" = 2" +n for some appropriate n € Z we can make 2/ = T™z" with [Re(2’)] <
%. But since this action does not change the height, 2’ is still of maximal height.
Thus |2’| > 1. In other words, 2’ € F. This verifies condition (2).

Jm(S2") = > Jm(z"),

3Let f be a modular form. If f is of weight 0, then it is left I'-invariant and can be viewed
as a function on I'\H. If f is of positive weight, then it is no longer a function on I'\H due to
the factor j,(z) in (2.7). However, it is still uniquely determined by its values on a fundamental
domain of I'\H.
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For (3), let 21,29 € F with 2y = vz and v € I'. We would like to show z; = zs.
Without loss of generality we may assume Jm(z1) > Jm(z2). Write z2 = z + iy and
note that y > @ Using similar computation as above we see that Jm(z1) > Jm(z3)
implies that

(3.5) (cx +d)* +cy* < 1.

In particular, we have ¢*y* < 1, implying that ¢ < y=2 < 3. Hence ¢ = 0,+1.
If ¢ = 0, then v = £T™ for some n € Z, implying that z; = 25 + n. But
max{|Re(z1)],[Re(z2)|} < & forces n = 0. Hence 2, = 2 as desired.

If ¢ = +1, since |z| < 3, we have |cx + d| > § unless d = 0. If d # 0, then

1 3
(cx+d)2+02y2:(cx+d)2+y2>Z—|—1:1,

violating (3.5). If d = 0, then (3.5) is equivalent to 2% + y? < 1, or equivalently,
|z2| < 1, violating zo € F. Hence we can not have ¢ = +1. This verifies condition
(3) and hence finishes the proof. O

4. DIMENSION FORMULA

The main goal of this section is to prove the following dimension formula for
M.

Theorem 4.1. Let k > 0 be an even integer. The dimension of the space My, is
given by

. |k/12] k=2 (mod 12),
(4.1) dime My, = { [k/12] +1 k #2 (mod 12).

We first have the following preliminary lemma.

Lemma 4.2. For k > 4 even, we have
(4.2) dim¢ S = dime My, — 1.

Proof. Let k > 4 be even. Consider the map My — C given by f +— f(00). Since
G € My, and G(00) # 0, this map is surjective. One easily sees that this map is
a group homomorphism with kernel Sy, concluding this lemma. ]

4.1. The zero-pole theorem. The key ingredient to prove the dimension formula
(4.1) is the following zero-pole theorem for modular forms. To state this theorem
we need to introduce some more notation.

Definition 4.3. A weight-k modular function is a weight-k modular form except
we only require it to be meromorphic on HU {oo}.

Example 4.4. The j-invariant function 1728g3 /A is a weight-0 modular function,
which is holomorphic on H but has a simple pole at oo (since ga(00) # 0 and A has
a simple zero at 0o; see Remark 2.20).

Let f be a weight k modular function. For any z € H, ord,(f) is the order of

f at z defined as before. We also need to define the order of f at co: Similar to
modular forms, f also has a Fourier expansion at oo
f(Z) = Z an(f>6(nz)v

n=m
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with m € Z the smallest integer (not necessarily non-negative) such that a,,(f) # 0.
Then m is defined as the order of f at oo, denoted by orde(f).
We also let

F' =FU{z € 0F : Re(z) <0}

be a genuine fundamental domain for the SLy(Z)-action on H, that is, every I'-orbit
has one and only one point in F'. We now state the zero-pole theorem.

Theorem 4.3. For a weight k modular function f : H — C not identically zero we

have
4 d Lord Lord d.(f) = =
(4.5) ordso (f) + 5 ord(f) + 5 ord, (f) + Zf ord=(f) = 33,
zE
TH#pP,i

where p = —3 + @2

Lemma 4.4. Let A,(z20,7) be the counter-clockwise arc boundary of the sector,
centered at zo € C with angle o € (0,27) and radius r; see Figure 2. Then for any
meromorphic function f, we have

1 f! a

— dz = < ord,, (f).
o o) f(z) 2= g_or o(f)

L/ Auz))
D

FIGURE 2. The arc A, (z0,7).

Proof. Write f(z) = (z — 20)™g(z) with m = ord,,(f) and g(z) holomorphic and
nonzero around zg. Then
f m

) /.,
@)= T+ L0,

Since g is holomorphic and nonzero around zg, we have

1
im — g—(z) dz = 0.
r=0% 270 J A (z0r)

This lemma then follows by a simple integration. [
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FiGURE 3. The integration path.

Proof of Theorem 4.3. Let L be the red path shown in Figure 3. Here we make
small circular detours on the boundary of the standard fundamental domain F
whenever f has a pole or zero there. The horizontal line segment HA is taken
sufficiently high so that all the non-infinity poles or zeros of f in F are below HA.
Around the three points w = p, i, p’ with p' = 1 + @i, the path is the intersection
between the small r-circle around w and F. We can choose r > 0 sufficiently small
so that f has neither poles nor zeros in the sectors enclosed by 0F and this arc

(except possibly at w). We integrate f’/f along this path to get

1 1
i /. 7(z) dz = Z/ ord,(f).
2€EF
Z#p,i
On the horizontal path HA, write f(2) = Y oo a,(f)e(nz) with m = ords(f).
Then f/(z) = >0~ a,(f)(2min)e(nz) and we have

o0

/
f7(z) = Zbge(fz),
£=0
with by = 2wim. Hence

1 A f/
o /H 7(2) dz = —m = —ord(f).

To compute the remaining integrals, for any v = (294) € SLy(Z), let F,(z2) :=
f(y2). By the chain rule we have
dvyz

Fi(2) = ) T = 1(32)7,()
On the other hand, F,(z) = f(vz) = j,(2)* f(2), thus
Fi(2) = kjy (2)"ef(2) + 44 (2)" ' (2)-
This implies that
F'(v2) = Gy ()" ek £ (2) + Gy (2) ' (2)).
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Thus

f 1 ()T (ck f(2) + 5y (2) ' (2)) ( ck f )
4.6 z) dyz = , dz= | - + —=(2) ) d=.
(46) T (rz) dy R e ()
Now we compute the remaining integrals. Note that GH = —T AB. Hence by (4.6)
we get

1 H f/ f’ f/
. I — (T2) dTz = ——
2m'/G I (2) d 2m/ 2) d 2m/

implying

([ ) oo

We can apply Lemma 4.4 and (4.6) to get

Mmoo (/ / ) S OE Jm o </ / > ) dz = —%Ordp(f%

and

1By 1
lim —/ f—(z) dz = ——ord;(f).
r—0t 2w Jp f 2
It remains to evaluate the integral along the arcs CD and EF. Note that EF =
—SCD. Then by (4.6) we have

1y 1 (PR
i f, =g [, (F70) e

This implies that

f 1 Yk m/6,  k
2mi </ /) 27m D zd2_> 27Tk_12

as 7 — 0F. We then conclude the proof by collecting all the terms. O
4.2. Proof of the dimension formula. We can now give the

Proof of Theorem 4.1. We prove by induction. For a non-negative even integer k,
let f be a weight & modular form which is not identically zero. In particular, when
applying (4.5) to f, the terms in the left hand side of (4.5) are all non-negative.
Case I: k£ = 0. In this case f is a holomorphic function on T'\H which is also holo-
morphic at co. This forces that f to be entire and bounded, and thus is a constant,
i.e. My = C, consisting of constant functions.

Case II: k = 2. In this case My = {0} since it is not possible for the left side of
(4.5) to equal to 5 = &.
Case III: £ =4,6,8,10. We claim for these k, M = CGj. The containment “D”
is clear. For the other containment by (4.2) it suffices to show S, = {0} in view of
Lemma 4.2. This is true since if there exists a nonzero f € Sk, applying (4.5) for
f the left hand side is at least one while the right hand side is 1—’“2, strictly smaller
than 1, giving a contradiction.
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Case IV: k= 12. In this case we claim S = CA and M, = S;, ® CG12. The
containment “D” is clear. For the other containment, again in view of Lemma 4.2
it suffices to show S12 = CA. Let f € S15 so that f vanishes at co. Since A has a
simple zero at 0o (see (2.16)) and it does not vanish on H (see Lemma 1.7) we have

I
A
implying that there exists some ¢ € C such that f = cA, finishing the proof of this

case.
Case IV: k > 12. In general, the map

Mp—12 = Sk, = fA

GM():(C,

is a bijection since its inverse map f +— f/A is well-defined. This implies that
dimc M, = dimeSy, + 1 = dimeMp_10 + 1.

Applying this formula, together with our previous dimension formulas for & < 12
we can conclude the proof by induction. O

Remark 4.7. When k = 4, applying (4.3) to G4 we see that the left hand side
equals that right hand side, i.e. %, only if ord,(f) = 1 and ord.(f) = 0 for any
other z € F'. Thus G4 has a unique simple zero at p. Similarly, we can conclude
G has a unique simple zero at .

Corollary 4.5. The function G4 and Gg are algebraically independent, and

P M. = C[Gy, Gel.

k=0

Proof. We first show that G4, Gg generate modular forms of all weights. This can
be easily checked for k < 12. For k > 12 even, take f € M. We want to show f
can be expressed as a polynomial in G4 and Gg. First we can find (i,) € (Z>0)?
such that 47 + 65 = k. Then GZG% is a weight k£ modular form which is nonzero at
0. Hence we can find some ¢ € C such that f — ¢G4G) € Sy.. Then the function
h(G4,Gg) = JLCT% € My_12, which by induction, is a polynomial in G4, Gg.
Thus f = cGZGé + Ah(Gy, Gg) is a polynomial in Gy, Gg.

Next, we show G4 and Gg are algebraically independent. Suppose not, then
there is some nonzero complex polynomial P(x,y) such that P(G4,Gg) = 0. Since
modular forms of different weights are C-linearly independent (Remark 2.8), we
may assume the monomials in P(Gy4, Gg) are of the same weight. We can also
assume this weight is minimal. If a pure power of G4 occurs in P(Gy,Gs), i.e.
there exists some positive integer m and some lower degree polynomial P’(z,y)
such that

0= P(G4,Ge) = GT' + G P' (G, Gy).

Taking z = i and noting that Gg(i) = 0 we get G7'(i) = 0 which is impossible
since G4(i) # 0; see Remark 4.7. Hence there is no pure power of G4 appearing in
P(G4,Gg). This shows that P = GgP' (G4, Gg) for some lower degree polynomial
P’. But since Gg only vanishes at one point, we have P'(G4, Gg) = 0, contradicting
the assumption that monomials of P are of minimal weight. ([l



22 SHUCHENG YU

5. RELATIONS WITH ELLIPTIC CURVES

Recall that (p, ') satisfies the relation (1.18). This gives a realization of the
complex torus C/A as an elliptic curve.

Definition 5.1. A complex elliptic curve E is a smooth projective algebraic curve
of genus 1. Up to isomorphism it is given by the Weierstrass form

E={(z,y) € C?:y? =42® — ag —ag} U {oc}
with a3 — 27a2 # 0.

In view of (1.18) and Lemma 1.7 every lattice A C C gives rise to an elliptic
curve E with as = g2(A) and az = g3(A).

Lemma 5.1. For any lattice A C C, the map sending u+A € C/A to (p(u), ' (u)) €
E\ is bijective’.

Proof. We only need to show the inverse map exists. We define amap ¢ : Ex — C/A
as following: Set t(co) = A. For a non infinity point (z,y) € E,, if y # 0 (so that
x # e; for j =1,2,3), then there exists v which is not a 2-torsion point such that
p(u) = . Then set ¢(z,y) = u+ A and ¢(z, —y) = —u+ A. If y = 0 then x = ¢,
for some 1 < j < 3 and we set ¢(z,y) = 5 + A. O

This map transfers the group law from the complex torus to the elliptic curve.
More precisely, if Py, P, € Ey is the image of u; + A and us + A under the above
map. Then P, + P, € E} is defined to be the image of u; +us + A under the above
map. We have the following geometric description of this group law. We denote
by O the oo point of Ex which is the image of A € C/A under the above map, and
thus is the identity element in Ej.

Proposition 5.2. For any P, P, P3 € En, P + Po + P35 = O if and only if
Py, Py, P3 are colinear, i.e. they are the intersection points of a line with E,.

Proof. For i = 1,2,3, assume P; = (p(u;), o (u;)) for some u; € C. Let L :
ax + by + ¢ = 0 be the line passing through P, and P, that is, the function
f(u) == ap(u) + bp'(u) + ¢

vanishes at v = wy,us. If b # 0, then f has a triple pole at 0 (mod A) (cf.
Remark 1.17). Then by (1.8) f must have another zero. We thus have the following
equivalent statements:

P; € Fp is on the line PP, <——= w3 is a zero of f

<(1—;9)> up +up+uz3—3-0€ A

—— P +P+P;=0.

The case when b = 0 follows from similar analysis which implies that in this case
P+ P,=0=P;. [l

4More precisely, E C PC? is cut out the projective homogeneous cubic polynomial zy? =
423 — aoxz? — a42z3 which consists of the affine curve y? = 423 — asx — a3 by setting z = 1
together with the point [0, 1, 0] viewed as the co point.

SHere (’(0), p(0)) is understood as the oo point of Ej.
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A

B=ire

FIGURE 4. Group law on the elliptic curve y? = 423 — 4x.

We have seen that every lattice A gives rise to an elliptic curve Ej. Indeed
the converse is also true. For this we need the following simple application of the
zero-pole theorem to the j-invariant function.

Lemma 5.3. The j-invariant function j : H — C is a bijection.

Proof. For any value ¢ € C, consider the function f(z) = j(z) — ¢. Since j has a
simple pole at co and is holomorphic everywhere else, we can apply (4.5) to f to
get

%ordi(f) + %Ordp(f) + Z ord.(f) = 1.
zeF’
T#p,L

For this equality to hold the left side must have exactly one positive term, implying
that j is a bijection. O

The following theorem shows that indeed up to isomorphism every complex el-
liptic curve can be realized as Ej for some lattice A.

Theorem 5.4. For any complex elliptic curve y? = z3—asr—az with a3 —27a3 # 0.
There exists some lattice A such that go(A) = as and g3(A) = as.

Proof. Note that

178g3 1728
TN T i-uglg
By Lemma 5.3 there exists some z € H such that j(z) = %{%. In terms of
lattices, this means that the lattice A = 2Z + Z satisfies
(5.2) 9§<A) _ 4
g3(A) a3

Note that ga(AA) = A"%ga(A) and g3(AA) = A~6g3(A) for any nonzero A € C.
We can find A\ such that go(AA) = as. This, together with (5.2) implies that
g3(AA) = a3. Thus up to changing X to —\, this lattice AA satisfies the desired
property that go(AA) = as and g3(AA) = a3. This concludes the proof. a
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6. MODULAR FORMS FOR CONGRUENCE SUBGROUPS

6.1. A quick review of hyperbolic geometry. Let
H={z=z+iyecC:y >0}
be the usual upper half plane. It is equipped with the hyperbolic metric
|dz*  dx? + dy?
y: oy
This is to say, for each z = x 4+ iy € H the tangent space T,H = C of H at
(vy’;”), where (v, w) = vw is the
usual inner product on C with w the complex conjugation. Or equivalently, T H is
equipped with the norm || - ||, := y~!| - |, where | - | is the usual Euclidean norm on
C. The hyperbolic distance is defined such that for any z,w € H,

1
dizyw) = inf [ 6/(0) ot
0

where ¢(t) : [0,1] — H runs through all smooth curves in H connecting z and w.

z is equipped with the inner product (v,w), :=

Lemma 6.1. Let zy = iT1,20 = i1y for some Ty > To > 0. Then dy(z1,22) =

log (%) with the geodesic given by the line segment connecting z1 and zs.

Proof. Let ¢(t) = x(t) + iy(t) : [0,1] — H be any smooth curve connecting z1, z2.

Then we have
. o Ly (o)
S 1@l = [z [
Ly ' loe (T
Z/o y(t) dt_logy(t)o_log(%)

Since ¢ is an arbitrary smooth curve connecting z; and z5, we conclude that

du(z1,22) > log (%) Moreover, we see from the computation that the equal-
ity holds when 2/(t) = 0 and y/(¢) > 0 for all ¢ € [0,1], implying that the geodesic
from z; to 29 is the line segment connecting z; and zo. O

6.2. The isometry group. The group M3(R) of 2 x 2 real matrices is a vector
space with a norm given by

lgll = a® + 0%+ +d*,  g=(2}) € Ma(R).
This norm gives a metric topology to the subgroup
SL2(R) = {g € M2(R) : det(g) = 1}

through the natural embedding. This subgroup SLy(R) acts on H via linear frac-
tional transformation:
az+b b
= —— == a H.
gz CZ—I—d’ Vg (cd)’ze
Let OH = R U {oo} be the boundary of H. Then SLs(R) also acts on OH with the

same formulaS.

Lemma 6.2. Consider the SLa(R)-action on H.

a

6Precisely, goo = ¢, and for any x € R, gz = aztb

cxt+d € R unless cx + d = 0 for which gz is

understood as co.
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(1) This action is transitive.
(2) This action is isometric, that is,
du(gz1,922) = du(z1,22), YV 21,22 € H, g € SLa(R).
Proof. For (1), take any z = z + iy € H, we want to show there exists some
g € SLa(R) such that gi = z. Note that the matrix g = ({ ¢) <yj y?% ) € SL2(R)

suffices.
For (2), let ¢ : [0,1] — H be any smooth curve connecting z; and z. Then g¢
is a smooth curve connecting gz; and gzo. Thus

1
du(gz1, gz2) S/ |dgdll gty dt-
0

Note that for any z € H, dgz = jj(zz) and Jm(gz) = 5;22;)2, where jg(2) = cz +d

is the automorphy factor as before. This implies that for any 0 <t <1,

1dgd(®) g0ty = ﬁm<g¢<t>>—lm = Fm((6)) " d()] = 146(0) (o)

Thus

1
dex(g21,g2) < / lddllogey dt.
0

Since ¢ is arbitrary we deduce that dg(gz1,922) < du(z1,22). On the other hand,
since g € SLa(R) is arbitrary, we also have

dsz(21, 22) = dm(9™ 921,97 gz2) < dm(g21, 922),
implying that dg(gz1, gz2) = du(21, 22). This finishes the proof. O

Remark 6.1. In fact, the group PSLy(R) := SLy(R)/(%12) is the orientation pre-
serving isometry group of H.

As a corollary we have the following description of geodesics on H.

Corollary 6.3. The geodesics on H are semi-circles connecting two points in OH.
Here we regard the vertical line connecting x € R and oo as the semi-circle con-
necting these two points.

Proof. Given z1, zo € H, we want to show the geodesic from z; to z; is the arc from
z1 to 29 on the semi-circle determined by z; and z. First we show that there exists
g € SLa(R) satisfying g~ 12; = i and g~ '25 € iR~q. The first condition is equivalent
1
to gi = 2. Forz € Ry > 0,0 € [0,27) let n, = ({%), ay = <y2 0 ) and
0y~
kg = (%% sin®) respectively. We take g = ng, ay, ko, € SLo(R) with z1 = Re(21),
y1 = JIm(z1) and 0; € [0,27) to be determined. One easily checks that kg, fixes ¢
and thus gi = ng,ay,% = x1 +%y1 = 2z1. Hence the first condition is satisfied. The

second condition is equivalent to finding 67 such that k,glay_lln; 1122 € iR<¢ (note

Nl

that k, L' — k_p. Then by Exercise 5 below we can always find such #; and hence
this condition can be satisfied. Now let ¢ be such that g~ 'z; =i and g~ '2z5 € iR+o.
Let G be the geodesic from g~ 'z, to g '25. Then by Lemma 6.1 it is the vertical
line segment from g~'z; to g~ 1z5. Since g acts on H as isometries, it sends geodesics
to geodesics. Thus ¢G is the geodesic from z; to z5. By Exercise 6 below wee see
that ¢gG is the desired arc on the semi-circle determined by z; and zs. [



26 SHUCHENG YU

Exercise 5. For any 0 € [0,27) let kg be as above. Show that for any z € H there
exists some 0 such that kgz has real part equaling 0.

Exercise 6. Let g = (‘é Z) € SLo(R). Show that g sends the vertical line iR to the
semi-circle connecting ¢ and g.

The group SL2(R) has an Iwasawa decomposition that any g € SLa(R) can be
written uniquely of the form

g = ngaykg, for some xz € R,y >0,0 € [0,2m),

1
where Ny, = ((1) 51”)7 Qy = (y2 01 and k‘g = (—Cosisnea Slor;z) The matrix n, acts as
0 y 2
translations nyz = 2z +  and has exactly one fixed point oo, a, acts as dilations
ayz = yz and has two fixed points 0, co, while kg fixes ¢ and acts as rotation around
i.

The action of SLy(R) can be classified by the fixed points of its action on HUOH.

Proposition 6.4. Let g # +1s € SLa(R) and consider its action on HU OH.

(1) g has exactly one fized point on OH if |tr(g)| = 2,
(2) g has two fized points both on OH if | tr(g)| > 2,
(3) g has exactly one fized point in H if | tr(g)| < 2.

Definition 6.2. The transformations in these three cases are called parabolic, hy-
perbolic and elliptic respectively.

Proof of Proposition 6.4. Take g = (¢4). If ¢ = 0 (so that d = a™'), then oo is
clearly has a fixed point. To see if it has any other fixed point, assume z € HUR
such that gz = z. This is equivalent to (1 — a?)z = b. Note that in this case
|tr(g)| = |a +a 1| > 2. If [tr(g)] = 1, i.e. |a| = 1, then this equation has no
solution unless b = 0, but this is the case when g = +15, violating our assumption.
If [tr(g)] > 2 (i.e. |a| # 1), then z = ;2 is another fixed point and its on JH.
This proves the case when ¢ = 0.
If ¢ # 0 and suppose z € H is a fixed point of g, that is,

az+b
z= =z
7 cz+d
Note that in this case the denominator can not be zero since otherwise z = f% #*
00 = vz. Hence the above equation is equivalent to the quadratic equation cz? +
(d —a)z — b= 0. Computing the discriminant we get
A = (d —a)* +4bc = a® — 2ad + d* + 4bc = (a + d)? — 4 = tr(g)* — 4.
When |tr(g)] = 2, this quadratic equation has only one real solution, lying on

OH. Hence |tr(g)| > 2, it has two real solutions, thus both lying on 0H. When
tr(g)| < 2, it has two complex solutions, one lies in H and the other lies in the lower
half plane. This finishes the proof. ([

6.3. Discrete subgroups.

Definition 6.3. A subgroup I' < SLy(R) is discrete if the induced topology in T’
is discrete, i.e. if the sets {y € ' : ||7|| < r} are finite for any r > 0.
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Definition 6.4. A discrete subgroup I' < SLy(R) is called a lattice if its funda-
mental domain has finite area with respect to the hyperbolic measure

dxdy
du(z) = .
Y2
It is called wniform (resp. non-uniform) if the closure of its fundamental domain
is compact (resp. non-compact).

Exercise 7. Show that p is SLy(R)-invariant, i.e. du(gz) = du(z) for any g €
SLs(R).

Example 6.5. The subgroup

(s e

is discrete, but it’s not a lattice since it has a fundamental domain

F={z=az+iycH:0<z<1}

_/l/oodxdy_
o Jo y?

Example 6.6. The modular group SLs(Z) is an example of a non-uniform lattice.
It is clearly discrete. Recall the set F defined in (3.3) is a fundamental domain for
SLo(Z). It is clearly non-compact, but its hyperbolic area is finite:

R L A
1 Svise v 1 V1 —2a?

Let T' < SLa(Z) be a finite-index subgroup of SLa(Z). Let {v;} C SL2(Z) be
such that SLy(Z) = | |, Ty; if -Io e T and I' = | |;(Ty; UT — ;) if -1, ¢ T'. We
have the following description of the fundamental domain of I" which implies that
I is also a non-uniform lattice.

with hyperbolic area

Proposition 6.5. Let F C H be a fundamental domain of SLa(Z), we claim without

proof that the set
Fri=|JwF

is a disjoint union and is a fundamental domain for T.

Remark 6.7. The set Fr clearly depends on the choice of coset representatives. For
some choices Fr may not be a domain, and thus here we do not require condition
(1) of Definition 3.2. This proposition easily implies that all finite-index subgroups
of SLy(Z) are also non-uniform lattices.

Proof of Proposition 6.5. We assume —I5 € T" and note that the case when —I5 ¢ T
follows from similar arguments. We first show that this union is disjoint. Suppose
not, then there exists i # j and 21,22 € F such that v;21 = v;22, or equivalently,
7517121 = z5. Since F is a fundamental domain of SLy(Z), 21, 29 € F and 'yglvl S
SLo(Z), we have 72_171 = +1, € I'" which is a contradiction since 7; and «; lie in
different I' cosets. Next, we show any two points in JFr are in distinct ' orbits.

"We didn’t state this fact, but it follows from our proof of Theorem 3.2.
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Suppose 7;21, V22 € Fr lie in the same I' orbit, i.e. there exists some v € I' such
that y7y;21 = vj22. Again this implies that ’y;lW%' = 415 and 23 = z5. The first
condition implies that ; and v; are in the same I' coset and hence i = j, implying
that ;21 = v;22.

Finally, we show that for any point z € H, there exists v € I" such that vz € Fp.
Taking the inverse from the right coset decomposition we have SLy(Z) = | ], ~; 'T.
Now since F is a fundamental domain for SLy(Z), there exists some 7' € SLa(Z)
such that 7'z € F. From the above left coset decomposition, we have 7/ = ~; 'y
for some i and v € I'. That is, vz € . F C Fp. This finishes the proof. O

Example 6.8. This shows that any finite-index subgroup of SLa(Z) is also a non-
uniform lattice. For instance, consider I' = (T? S) generated by T? and S. Note
that —I; = S% € T. One easily sees that [SLa(Z) : T] = 3 and we can choose
{I;, T, TS} as a set of right T-coset representatives. Let F be the fundamental
domain as in (3.3). Then the resulting fundamental domain of I is as in the
following first figure. The second fundamental domain is obtained by cutting the
first one along the line Re(z) = 1 and moving the part to the right of the line to
the left by the transformation T2,

FIGURE 5. Fundamental domains for I' = (T2, S)

Let I" be a non-uniform lattice. For any = € 0H, let us denote by
Iy ={yel:yzx=ux}
the stabilizer of x in I'. We say I',, is trivial if I, does not contain any parabolic
motion, or equivalently, ', is nontrivial if I, contains some parabolic motion.
Lemma 6.6. Let I' be a finite-index subgroup of SLa(Z).

(1) SLa(Z) acts on QU {oco} and this action is transitive.

(2) SLa(Z), is nontrivial if and only if x € Q U {oo}.

(3) For any x € QU {00}, T', is cyclic and generated by a parabolic motion®.
(4) T-action on QU {0} has finitely many orbits.

Proof. For (1), the first part is clear. For (2), for any r € Q U {oo} we need to
show there exists g € SLo(Z) such that goo = r. If r = 0o, we simply take g = I5.
If 7 = 2 is rational written in lowest terms, i.e. gcd(a,c) = 1. Then there exist

8More precisely, when —I3 € I', it is generated by a parabolic motion together with —1I5.
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b,d € Z such that ad —bc = 1. Then g = (2}) € SLy(Z) and goo = & = r
satisfying the desired property.

For (2) we only prove the easy direction “<”. The other direction is left as an
exercise. When x = oo this is clear since

SLo(Z)oo = {£(37) :n € T}

For general z € QU {oo}, we can find 7 € SLy(Z) such that 7oo = z. We claim
that SLa(Z), = 7 SLa(Z) 7! from which it is clear that SLy(Z), is nontrivial. To
prove this claim, we prove a slightly more general statement that for any finite-index
subgroup I" and o € SLy(R) such that ooo = x, we have

(6.9) 0 M0 = (67'T0) .

Applying this statement for I' = SLy(Z) and 7 = o we easily get the above claim.
Take any element v = 0 'v'0c € 0~ 'I',o for some 7/ € I',. Clearly v € 0~ 'T'o.
We also have yoo = 07 1v'000 = 07192z = 07z = oo, implying that 0 'T',0 C
(67 T'0)s. The other containment follows by applying the same argument to the
lattice I/ = ¢~ 'T'o and the translating matrix o~ ! sending = to co. This proves
the statement.

For (3), by (2) for any € Q U {oo} there exists some parabolic motion 7, €
SLo(Z) such that SLa(Z), = (£7,). In particular, this implies that ', (a subgroup
of SL2(Z),.) can only consist of the trivial motion and parabolic motions. Suppose
I, is trivial, then 7% ¢ T for any nonzero integer i. In particular, this implies that
I'7!, i € Z are distinct T-cosets, contradicting the finite index assumption.

For (4), write SLy(Z) = | ];T'y; in coset decompositions. Then Q U {c0} =
SLy(Z)oo = |J, Tyioco. This finishes the proof. O

Exercise 8. Show that if SLy(Z),, is non-trivial then x € QU {oo}.

Definition 6.10. A cusp of I" is a T'-orbit under the I-action on Q U {oco}. We
also use elements in each I'-orbit to represent this cusp. Two elements in the same
T-orbit are called I'-equivalent.

Example 6.11.

(1) In view of (1) of Lemma 6.6, SLa(Z) has only one cusp. We can say oo
(or any other point in QU {oo}) is a cusp of SLa(Z).

(2) The lattice T = (T?,S) is of index 3 with coset representatives given by
{I, T, TS}, but it has only two cusps: T'Is00 = Too =T'Too and I'T'Sco =
T'l. We can say oo and 1 are the two inequivalent cusps of T.

Remark 6.12.

(1) In view of (4) of Lemma 6.6, a finite-index subgroup of I" has finitely many
cusps. However, in general the number of cusps is smaller than the index
of T" in SLy(Z) as seen from the above example.

(2) Geometrically, cusps of a non-uniform lattice correspond to “cusps” of the
quotient space I'\H (endowed with the quotient topology from the natural
projection map H — I'\H and visualized by its fundamental domain with
sides identified).

Let a € QU {oo} be a cusp of I and let 74 € SL2(Z) be such that 7500 = a.
Then

To TaTa = (77 'TTa) oo = (“£7 (5™=)),
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for some positive integer m,. This integer m, is called the width of the cusp a.
Similarly, there exists o, € SLy(R) satisfying

0,00 = a, TCTII‘GTQ = (TCTlFTa)oo =(“x” ((1) %)>

For instance, we may take o4 = 7, (vg”u 1/\277“). The matrix o, is called a scaling

matriz of the cusp a.

Remark 6.13.

(1) The width of a cusp measures the size of a cusp, e.g. for I' = (T2, 5),
one sees that I'no = (£ (} %)) and thus the cusp oo has width 2. For
the cusp 1 one can take 71 = (19). It is easy to see 'y = (+£72S) and
T = (77T ee = (£ (3 1)). This implies that the cusp 1 has width
1.

(2) A scaling matrix is essentially used as a “change of variable” to transfer
cusp a (of T') to the cusp oo (of o, 1Toy); see Remark 6.15 below.

Definition 6.14. Let T' < SLy(Z) be a finite-index subgroup. A function f : H —
C is a modular form of weight k with respect to I' if
(1) f is holomorphic,
(2) f is weakly modular of weight k with respect to I, i.e. f[y]x =f,Vy€eT,
(3) f is holomorphic at each cusp of T.
If in addition f vanishes at each cusp, then f is called a cusp form of weight k with
respect to I'.

Remark 6.15.

(1) For any o € SLy(R), one easily sees that f is weakly modular of weight &
with respect to I' if and only if f[o]x is weakly modular of weight & with
respect to 0 'T'o. Let a € QU {oc} be a cusp of I' with a scaling matrix
0q. Then f is holomorphic at a means that f[o,]; is holomorphic at oo,
which as before means that it has the following Fourier expansion at oo

floale(2) = Y fa(n)e(nz).
n=0
Similarly, f vanishes at a means we further have fa(O) =0.

(2) We denote by My (T") (resp. Si(T")) the set of weight & modular (resp. cusp)
forms with respect to I'. If T'; < I'y, then we have the relations My (T'2) C
M(T'1) and Sg(T'2) C Sk(I'1). (Smaller group means less restrictions from
the weak modularity assumption (condition (2) of Definition 6.14).)

(3) If —I € T', then My (T') is empty for odd weights. If —I5 ¢ T, My (T") may
not be empty.

6.4. Congruence groups. In this course we mainly work with modular forms
with respect to certain family of subgroups of SLy(Z) called congruence subgroups.

Definition 6.16. For any N € N, the principle congruence group of level N is
defined by

I'(N):={y€SLy(Z): vy =1 (mod N)}.

Remark 6.17. For v = (%), this notation v = I, (mod N) is a shorthand for
a=d=1(mod N) and b =c¢=0 (mod N).
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Definition 6.18. A discrete subgroup of SLo(R) is called a congruence subgroup
if I(N) < T < SL2(Z) for some N € N.

The following two families of groups are common examples of congruence sub-
groups: For any N € N, define

Py(N) = {7 € SLa(Z) 7 = (§1) (mod N)},
and

To(N):={y€SLy(Z) :vy=(§%) (mod N)}.
Proposition 6.7. For any N € N, we have

(6.19) L) : TN =N [ -p7?),
p|N

(6.20) (1) :T(N)] = N [T =p72),
p|N

and

(6.21) [T(1) : To(N)] = N [[(1+p7h),
p|N

where the product leN runs over all prime divisors of N.
Lemma 6.8. The natural reduction map from SLa(Z) to SLy(Z/NZ) is surjective.

Proof. Let 7 be this projection. The case when N = 1 is trivial since in this case
SLy(Z/NZ) is trivial. Assume N > 2. Take any (2%) € M(Z) such that its
reduction modulo N lies in SLo(Z/NZ), that is, ad — bc = 1 (mod N). We need
to show that there exists (‘Z,, Zi) € SL2(Z) whose reduction modulo N is the same
as that of (¢5%). We first note that the condition ad — be = 1 (mod N) implies
that ged(c,d, N) = 1. Changing ¢ to ¢+ N we may assume ¢ # 0. First we show
that we can take (¢, d’) € Z* with ged(c/,d’) =1 and (¢, d') = (¢, d) (mod N). We
take ¢’ = c and d' = d + kN with k € Z to be determined. Let Py = [],.p and
d
Py = []pjcp. Clearly ged(P1, P2) = 1. By the Chinese Remainder theorerg‘ we can
d

pf
find k satisfying
k=1 (mod P;) and k=0 (mod P).

Let p | ¢ be a prime divisor of ¢. If p | d, then ged(p, N) =1 (since ged(c,d, N) = 1)
and p | P;. Hence ged(e,d 4+ kN) = ged(e, kN) = 1. If p {1 d, then p | P, and thus
p | k. Hence (p,d+ kN) = ged(p,d) = 1. This shows that any prime divisor of
¢ = cis coprime to d’ = d + kN and thus ged(¢/,d’) = 1. Since ged(c,d') = 1,
there exist u,v € Z such that ud’ — v¢’ = 1. Then we have

-1
a b U v ad — bc * 1 x
(c’ d’) (c' d'> - ( 0 ud' — vc’) = (O 1) (mod N).

Thus there exists some ¢ € Z such that

a b a b 1 7 u v w40 v+0d
(c d>E<c’ d’)E(O 1) (c’ d/):( c d )(modN).

Then @’ = u + ¢c¢’ and V' = v + £d’ satisfy the desired properties. O
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Proof of Proposition 6.7. Consider the reduction map SLy(Z) — SLo(Z/NZ). By
Lemma 6.8 it is surjective and clearly with kernel I'(/V). Hence

[0(1) : T(N)] = #SLa(Z/NZ).

Now (6.19) follows from the counting formula for SLy(Z/NZ) (see Exercise 9). For
(6.21) consider the map I'y(N) — Z/NZ sending (2Y) to b (mod N). We easily
check that it is a group homomorphism and is surjective with kernel I'(N). Hence
[['1(N) : T'(N)] = g. This, together with (6.19) implies (6.20). Finally, for (6.21),
note that the map I'o(N) — (Z/NZ)* sending (¢ Y) to d (mod N) is a surjective
group homomorphism with kernel given by I'1(¢). Hence [['g(1) : T'1 (V)] = ¢(N),
implying that

[C(1) : To(N)] = [P(1) : T1(N)]¢(N) ! =

NI, v (1=
p|N 1
— fN (I+p ),

as desired. 0
Exercise 9. Show that # SLy(Z/NZ) = N*[], x(1 —p~?).

6.5. Cusps of principle congruence subgroups. In this subsection we give an
explicit description of the cusps of the principle congruence subgroup I'(N). That
is, we classify the orbits of the I'(IV)-action on Q U {co}. Since we already know
I'(1) = SLy(Z) has one cusp, we assume n > 2 in the below.

The starting point is the following lemma giving necessary and sufficient condi-
tions on when two elements in Q U {oo} represent the same I'(N)-orbit.

Lemma 6.9. Let s = 2 and s’ = ’;—,/ be elements of Q U {oo} with ged(a,c) =
ged(a’, ') = 1. Then

[(N)s=L(N)s' <= (9)==(%) (mod N).

Proof. For this direction “=”, suppose there exists some v = (£ %) € I'(N) such
that s’ = vs = ’T’Zi‘ff First note that ged(pa + ge,ra + tc) = 1 (see Exercise 10).
This then implies that

a\ pa+qc\ _ a
(4) = () w2 (%)
+ (%) (mod N). we want to find v € T'(N)
such that vs = s’. Up to changing (‘i ) ( ,) we may assume (‘Z,/)
(¢) (mod N). We first assume (%) = ({) so that s = § = oo and (‘C’,) =
(§) (mod N). Since ged(a/,¢’) = 1 and o/ = 1 (mod N), there exists 3,6 € Z
such that a’d — /8 = 17\]“,, or equivalently, a’(N§ + 1) — ¢/ SN = 1. Then the

matrix v = (Z,, 1%\[1\[) lies in T'(N) and satisfies that yoo = ‘j—: = s'. In general,

there exists b,d € Z such that o = (2Y) € SLy(Z). Note that a (§) = (%). Hence
the vector (‘Cl,,f) =a! (‘;:) satisfies (‘é,’,’) =a (%) =(}) (mo/(/i N). Then by
the previous argument, there exists 7' € I'(N) satisfying 7'o0 = 47 = *1 o Let
v = ay’a”! Then we have

For the other direction, assume (‘C‘f ) =

_ /—1‘17 / _ 71a7 /
YVS=ayoa T =ayoo=aa T — =S.
C
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Moreover, since I'(N) < SLy(Z) is normal, we also have v € I'(N). This finishes
the proof. ([

Exercise 10. Let (¢), (‘c’,/) € Z? be two nonzero integer vectors. Suppose (%) =

v (%) for some v € SLa(Z). Show that ged(a, c) = ged(a’, ).

Lemma 6.10. Let a,c € Z? and let a,¢ € Z/NZ be their reductions in Z/NZ. The
following are equivalent.

(1) There exists a lift (‘Z,/) € Z? of (2) with ged(a',c') =1,

(2) ged(a,e, N) =1,

(3) (2) has order N in (Z/NZ)>.
Proof. If condition (1) holds, then there exists k,l, s,t such that k(a + sN) +(c+
tN) =1, i.e. ka+lc+ (ks+ )N = 1. This implies that ged(a,c, N) = 1, giving
condition (2).

If condition (2) holds, then there exist b,d, k € Z such that ad — bc + kN = 1,
implying that (¢ %) = I (mod N). Then by Lemma 6.8 there exists a lift (z,/ Zl,) €
SLy(Z). In particular, (%) € Z? satisfies ged(a/,¢/) =1 and (%) = (¢) (mod N),
giving condition (1).

Finally, we show (2) < (3). Note that k(%) = (%) (mod N) is equivalent to N |
k ged(a, ¢). Thus condition (3) is equivalent to the statement that N | kged(a, ¢) if
and only if N | k, which is equivalent to ged(a,c, N) = 1, i.e. condition (2). O

Proposition 6.11. Let hy be the number of cusps of T'(N). We have
= { VN =p7%) N >2,
3 N =2.

Proof. In view of Lemma 6.9 and Lemma 6.10 and the fact that N > 1, 1 =
—1 (mod N) if and only if N = 2 we know that

hy = dn# {(a,c) € (Z/NZ)? : ged(a,c, N) = 1},

where 0y = 1 if N = 2 and 6y = 1 if N > 2. Let ¢(N) be the above counting
function. We have

pN)=> > Yo 1= ¢(N/d)(N/d)d(d)

dIN a€Z/NZ c€L/NZ dIN
ged(a,N)=d gecd(c,d)=1

with ¢ the Euler’s totient function. With a standard computation one gets that
p(N)=N*[J(1-»p7%)
pIN

implying the desired formula for h . O
Exercise 11. Fill in the details of the above computation.

Example 6.22.

(1) For T'(3) as (%) runs through {0,1,2}? and after ruling out the ones with
ged(a,e,3) > 1 we get 4 pairs of integral vectors (9) ~ (3), (§) ~ (3),
(1)~ (3) and (3) ~ (3) which gives 4 inequivalent cusps 0,00, 1, 3.

(2) ForT'(4) one can similarly get that T'(4) has 6 cusps with a complete list of

cusp representatives given by 0,00, 1, %, %, 2.
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7. EISENSTEIN SERIES AND POINCARE SERIES

7.1. Poincaré series for the modular group. Let I' = SLo(Z) and let k > 4 is
be an even integer. Recall that the normalized weight k Eisenstein series is defined
by

1 1 1
() = 5oy e =5 (; T ar
c,d)e

ged(e,d)=1

There is a more intrinsic way of defining this series which can be generalized to
produce more modular forms. Let I' = SLy(Z) and let

I'o ={y €Tl :y00 =00} =(£(51))
be the stabilizer of the cusp oo in I' as before. We have the following simple lemma.
Lemma 7.1. Let I, ) = ((} 1)) be the index two subgroup of T'sy and let

72, = {(c,d) € Z* : ged(c,d) = 1}

be the set of primitive integer points in R?. The map from T _\I' to Zgr sending
I v to (0,1)y is well-defined and a bijection.
Remark 7.1. Similarly, T'oo\I' is in bijection with Zgr /= which can be further iden-
tified with the set {(0,1)} U {(¢,d) € Z2, : ¢ > 0}.

Proof. First note that (0, 1)y is exactly the bottom row of v and left multiplying
elements of I does not change the bottom row of . This implies that this map
is well-defined. It is also surjective since for any (¢, d) € Z2, we can find (a,b) € Z>
such that ad — bc = 1, i.e. v = (2Y) € I' and satisfies (0,1)y = (c,d). It is
also injective: Suppose (0,1)y; = (0,1)7y2 for some 71,72 € I'. Then we have
(0,1)7175 ' = (0,1), implying that y175 ' € T, i.e. Ty =" 2. O

Recall that for any v = (Z g), Jv(2) = cz + d is the factor of automorphy. Thus
the normalized Eisenstein series can be rewritten as

1 . —k . —k
Ep(2) = 9 Z Jy(2)7F = Z Jy(2) 7"
YEL 6 \T YELo\T
We can construct more general modular forms via this averaging technique.

Definition 7.2. Let p : H — C be holomorphic and periodic with period 1.
(1) The corresponding weight k Poincaré series is defined by

P(z)= Y ju(x)*p(y2)
YEL o\

whenever this series is absolutely convergent.
(2) When p(z) = e(mz) for some integer m > 0, the corresponding Poincaré
series, denoted by P, is called the m-th Poincaré series of weight k.

Remark 7.3. The 0-th Poincaré series Py is simply the normalized Eisensetien
series E},.

Lemma 7.2. The Poincaré series is well-defined.
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Proof. We need to show the definition is independent of the choice of coset represen-
tatives. First note that p is periodic with period 1 means that p(vz) = p(2) for any
v € Poo. Let {v:}, {7}} be two complete sets of coset representatives of I';x\I'. Up
to reordering we may assume I'y; = I'oy) for each i. Then there exists n; € '
such that ’71/' = n;y;. Then we have .7"/1’ (Z) = an’n (Z) = Jn; (’YZZ)J% (Z) = j"/i (Z) and
p(viz) = p(niviz) = p(yiz). Hence

Z Jy(2) Fp(riz) = Z Gy (2) " Fp(ri2)

is independent of the choice of coset representatives. This finishes the proof. (Il
Lemma 7.3. P, € S; for any m > 1.

Proof. Since e(mz) is uniformly bounded by 1 and is holomorphic and k > 4, the
defining series converges absolutely and uniformly on compact sets, it defines a
holomorphic function on H. Moreover, one can show

thIEO P, k(iy) = yhﬂrrolO e(mz) =0,
vanishing at co. Here the last equality holds since m > 1 and z € H. It thus

remains to show Py, j is weakly modular with respect to T, i.e. P, o] = Pk
for any a € I'. Take any o € I' we have

P ilali(2) = ja(2) " Paplaz) = jal2)F Y jy(az) Fe(myaz)

YET o \I
= Y dra(2) Fe(myaz) = D jy(2) Fe(myz) = Poi(2).
YEL\I YEL \T

Here for the third equation we used the chain rule of j,(z) (see Lemma 2.2) and
for the second last equality we used the fact that if {7;} is a set of representatives
for Too\I, so is {y;a} for any « € T'. This concludes the proof. |

Remark 7.4. When k = 12, for any m > 1, Pp, 12 = ¢, A for some ¢, € C.

7.2. Poincaré series for congruence subgroups. The same construction also
works for a general congruence subgroup. Let I' < SLy(Z) be a congruence subgroup
and let Cr C QU {oo} be a complete set of inequivalent cusps of T, e.g. Csr,,z) =
{oo} and Cr(sy = {0, 00,1, %}

Definition 7.5. Let a € Cr be a cusp of I' and let p : H — C be holomorphic and
periodic with period 1.

(1) The corresponding weight k Poincaré series of T' at the cusp a is defined by

Po(z)= > Gy=1,(2) (o v2)

YEDN\T

whenever this series is absolutely convergent. Here o, is a scaling matrix
at the cusp a.

(2) When p(z) = e(mz) for some m > 0, the corresponding Poincaré series,
denoted by P, ., (2), is called the m-th Poincaré series of I' at the cusp a.
The 0-th Poincaré series is called the Eisenstein series of I' at the cusp a
and we denote it by Eq(z).

Remark 7.6. Each cusp defines a Poincaré series.
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Lemma 7.4. For each a € Cr, Py(2) is well-defined.

Proof. The proof is similar to that of Lemma 7.2. Let {7;} and {7/} be two sets of
coset representatives for I';\I'. Up to reordering we may assume v, = 7;-y; for some
7; € I'q. Recall that o 'Tqoq = (“+7 (§1)). Thus 7; is of the form 7; = oqn;oy
for some n; € (“£7” (1 1)) We then have

Z]a p(og 1viz) ijn L (2)Fp(niog viz)
= Zj% % (U Yiz),

implying this definition is independent of the choice of coset representatives. [l

Lemma 7.5. For k > 3 and m > 0, Pa’m(z) is holomorphic and weakly modular
of weight k with respect to T.

Proof. Since k > 3, by Proposition 2.3 the defining series converges absolutely and
uniformly on compact sets of H, thus defines a holomorphic function. Next we show
Pq  is weakly modular of weight k with respect to I'. Take any a € I', we have

Pamlali(2) = a2 3 Gpon(a2) Fe(moy 'yaz)

YET\T
= Y Jyra(2) Fe(moy yaz)
yEL A\
= Z jagly(z)ike(m‘j';l'yz) = Pam(2).
YL\
This finishes the proof. O

In order to show that P, ,, is a modular form with respect to I', we need to show
that it is holomorphic at all cusps of I'. For this we prove explicitly the Fourier
expansion of Py ,,,. We first carry out the computation for the modular group.

7.3. Fourier expansion of Poincaré series for the modular group. Let k > 4
be even and m > 1. Since Py, € Sk, it has a Fourier expansion

z) = Zﬁk(m,n)e(nz)
n=1
with )
Pr(m,n) :/o Dk (2)e(—nz) dzx.

Here as usual z = = + iy. Before presenting the theorem, we first introduce some
notation.

Definition 7.7. For any m,n € Z and ¢ > 1, the classical Kloosterman sum is

defined by
d
Stmme)= S e (man”) _
ad=1 (mod c) ¢

Exercise 12. Let ¢ > 1 be a positive integer and m,n € Z. Show that
(1) S(m,n;c) = S(n,m;c).
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(2) S(am,n;c) = S(m,an;c) if ged(a,c) = 1.
(3) (multiplicativity in c)
S(m,ns¢) = S(am, qnsr)S(Fm, s q)
if ¢ = qr with (¢,7) =1 and gg =1 (mod r) and 7r = 1 (mod q).
Definition 7.8. Let v € Z, the J-Bessel function of type v is defined by the
following formal power series expression

(o)
=2/ = Z Jo(z)z

V=—00

Exercise 13. Use the power series expression for the exponential function to show

that
Ma)= Y e (5

m=max{0,—v}
We have the following explicit formula for px(m, n), generalizing Proposition 2.5.

Theorem 7.6. For anym >1 andn > 1,

k—1 00
Pr(m,n) = G + 2mi " (%) S e S e) i <47r\€m)

c=1
Remark 7.9. We can alternatively write

(7.10) pr(m,n) = <ﬁ> = < mn + 2707 ’“Zc (m,n;c)Jk—1 (W)) .

m

By (1) of Exercise 12 we see that p(m,n) has a symmetry in (m,n) in the sense
that

m\ 5 ny\ 7
(ﬁ) pr(m,n) = (E> pr(n,m).

Here pi(m,n) in the left hand side is the n-th Fourier coefficient of the m-th
Poincaré series while px(n,m) in the right hand side is the m-th Fourier coeffi-
cient of the n-th Poincaré series. This is why we write this Fourier coefficient as
Dr(m,n) rather than the more conventional ﬁmyk(n).

Proof of Theorem 7.6. For any v € T', we denote by (. q) to indicate that (c,d) is
the bottom row of . Then by definition and the bijection in Remark 7.1 we have
1

By = [ (e Fe(myz)e(—nz) da
O yere\r
! m’y (e, d
_/O e((m—n)z) de+ ZQ/ ot dF (—nz)dx
(c,d)€Z,
c>0
m’Y(c d)z
= mn+z Z / e(—nz) dz
= = (cz + d)*
ged(e,d)=1

= dmn +Z Z Z / ZWJ(:;;)Z e(—nz) dz,

c=1de(Z/cZ)* d’=d (mod c)
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where in the last equality we split the sum over d into congruence classes modulo
c. This theorem then follows from the following calculation of the innermost sum
in the above equation; see also Remark 7.11 below. (]

Proposition 7.7. For any v = (‘z Z) € SLy(R) with ¢ > 0 and 0 < d < ¢ and for
any m >0, n € Z define

(m,n) Z/ mfyngz e(—nz) dx,

(€Z Jyme (2
where and ng = (} ). Then we have Z,(m,n) =0 if n <0 and for n > 0

T\k k-
e (%) (35)" gy m =0,
2T

()5 o () g, (S iz,

c

Remark 7.11. When v = 7(cq) is some element in SLy(Z) with the bottom row
given by (¢, d), one easily sees that as £ runs through Z, the bottom right entry of
Y(e,ayne, being d’ = d + cf, runs through all integers in the same congruence class
as d (mod c). Hence in this case I, , (m,n) agrees with the above innermost sum
in the proof of Theorem 7.6, namely,

1
/ Amye.n?) )Z)e(—nz) dx.

1\ k
d’=d (mod c) 0 (CZ td )

Proof of Proposition 7.7. Note that

az+b alz+%)+b-% ¢ be—ad a 1
z = = = — B e —
T d c(z+4) ¢ Az+9%) ¢ A+ 9
Hence
a 1
ez =y(z +4) =~ — 5 ——r.

Hence we have

2 -1
- Z/l e c( Cz(z+e+%)>> e(—nz) dz

LEZ

a 1
e - (m (2 - )
R

k(2 + L)k

i Lk, (ma—l—n >/6( cgk nz) "
C R z"
e (o) el ),

k
C —oo+iy z

e(—nz) dx

By Cauchy’s theorem the above integral is independent of the choice of y > 0.

Note that since m > 0 and z € H we have |e (fﬂ - nz) | = e*™¥_ In particular,
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if n < 0 we have

[,
— aZ

k
—ootiy z

ot e (=2 — n2)
lim / e T g,
Y —oo —co+tiY z

< i —_—
=y e —otiy (B2 HY2)R/2
e dx
=2 lim Y'"" [ =
anoo /0 (372 + 1)k/2 0
whenever k£ > 1. For n > 0 and m = 0, we can show again by Cauchy’s theorem

Z,(0,n) = c*e <”d) /owy 6(_2‘2) dz

C —ocotiy 4
nd o\ " nk-l
= e _— _— — .
c ic ) (k—=1)!

For n > 0 and m > 0, making a change of z — /7> % we get

n

Z,(m,n) = ¢! (£>% . (W) /00+i§ e (_@(Z—Fz_l)) N

k
m C —oco+if z

where y = %y. Again by Cauchy’s theorem, this above integral is independent

of § > 0 and equals 27i~*J,_;(4m\/mn/c) (Exercise 14). Plugging this into the
above equation we get

o /s nN\ ma + nd 47/mn
Zeq(m,n) = — (*) T (c> Jr—1 <c) )

finishing the proof. O
Exercise 14. Show that for any A >0, y >0 and k € N,

ocotiy —2i(z+2"1
% Lk) dz = 7’L'17k(]k_1()\).
T ) sotiy z
7.4. Fourier expansion of Poincaré series for congruence subgroups. Let
I’ < SL2(Z) be a congruence subgroup. For simplicity of presentation we assume
—1I5 € T' so that
o, Teoa=(£(41)) =B, VYacClr.

In this subsection we compute the Fourier expansion of the Poincaré series of I'.
More precisely, let a,b € Cr be two (not necessarily distinct) cusps of I'. We
compute the Fourier expansion of the Poincaré series P, ,, at the cusp b, that is,
the Fourier expansion of Pq ,[0s]r at co. We denote by

1
Da,6(m, n) :/ Py mop]i(2)e(—nz) dx
0
the n-Fourier coefficient of P, ,,[0s]) so that
Pamlow]e(2) =Y _ Pap(m,n)e(nz).
nez

In order to compute these Fourier coefficients, we first prove the following prelimi-
nary expression for Py [0 ]k.
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Lemma 7.8. For any z € H we have

Pomloole(z) = D dy(2) Fe(my2),
vE€B\og 'Toy

Proof. By definition we have

Pamloo]i(2) = oy (2)7F Y Gpo1,(002) Fe(mog ' you2)
VEFO\F

= > oty () Fe(mog yoez)
'Y€Fa\F

= Z joglwb(z)_ke(mau_l'yabz).
'YEFu\F

Now note that if {7;} is a set of coset representatives for I'(\I', i.e. T' = ||, a3,
then
aglrab = |_| Uglfaaglaa%-ob = |_| Bogvios.-
i i

This implies that {o, 1,06} is a set of coset representatives for B\o, !T'o,. Hence

Pamloeli(z) = > jy(2) Fe(my2),
vyE€B\og 'Toy

as desired. O

To further proceed the computation, we need the following double coset decom-
position of o, 1Top.

Proposition 7.9. The set o7 'Toy is bi-B-invariant and

_ % *
(7.12) o Toy = 6abB|_| |_| B (C d> B,

(c,d)eC(a,b)
where Sqp 15 the Kronecker symbol and
Cla,b) ={(c,d) eR*:¢>0, 0<d<e, (;})€0c;'Toy}.

Proof. We first show the right hand side of (7.12) is well-defined, that is the double

cosets there are independent of the choice of representatives. For some (c,d) €
C(a,b), suppose w = (2%) and w’ = (¢ ) both lie in o5 'Top, we want to
show they represent the same double B-coset, i.e. BwB = Bw'B. For this write
w= oy wo, and W' = 0,100y with @,&" € T. Note that

1 1 1 1

-1 _ - 1
O =040,

v = oqw'w” W opoy ' oot =0'o7 €T

Moreover, since w and w’ have the same bottom row, w'w™! = (} 1) fixes co. This
implies that

1

ya = o.ww o a = 0400 = a.

In other words v € I'y. Hence w'w™ = o71v0, € 07 T40q = B, giving Bw'B =
BwB as desired. Next we show the right hand side is a disjoint union. This is clear

from the following matrix computation:

(7.13) (é nf) (Z Z) ((1) Tf) - (a gl cn>'
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Indeed, if (¢, d), (¢/,d") € C(a,b) satisty B () B = B( ;) B, then (7.13) implies
that ¢ = ¢’ and d = d’ (mod ¢)°. But since 0 < d,d’ < ¢, we must have d = d'.

Now we proceed to prove the statements in this proposition. First we show
0. Toy is bi-B-invariant. Note that B = 0,40, = Ub_lFbab. Thus

Bo'TowB = 0, ' Ty Tyo, = 0, 'Toy.

Next, we prove the equality (7.12). From the bi-B-invariance of o, T'o and the
definition of C(a, b) it is clear that the right hand side of (7.12) is contained in the
left hand side. It thus remains to prove the other containment. Let v = (‘;/l gi) €
o7 Top. We can write v = o, 1y 0y for some 4/ € T'. We first show that if ¢/ =0
then a = b and v € B. Suppose ¢’ = 0, then yoo = oo. This implies that

v opo0 = 0q00 <= 'b=a.

Hence a and b are I'-equivalent, implying that a = b and thus v € o, 'T'o, = B.
Next, we assume ¢’ # 0, we want to show that « lie in one of the double coset
B (; ) B for some (¢,d) € C(a,b). Since —I; € B, up to change v to —y we
may assume ¢’ > 0. By right multiplication by (%) for some n € Z we can

have v (3 7) = (i,, Ziiﬁ:ﬁ) € o,'Top with 0 < d' + ¢'n < ¢. Thus by definition

(c,d) := (¢',d" + cn) € C(a,b) and B (‘;,, Ziiijﬁ) B is one of the double cosets in
the right hand side of (7.12). It is then clear that + lies in this double coset. [
Remark 7.14. If —I5 ¢ T. Then by almost identical arguments one can prove the
same double coset decomposition as in (7.12) but with B and C(a, b) modified to
be ((§1)) and {(c,d) e R?:c#0, 0<d <|c|, (}4) € 05 'Top} respectively. The
Fourier expansion formula obtained later should also be modified accordingly.

Before stating the Fourier expansion we need to introduce some more notation.
Let C'(a,b) = pry(C(a,b)), where pr; : R? — R is the projection to the first
coordinate. For any ¢ € C(a, b) let

C(a,b;¢) ={d €[0,¢) : (¢,d) € C(a,b)}.

Theorem 7.10. We have

Ea[oo]k(2) = Paoloe]k(2) = 6ao + > Pan(0,n)e(nz2)

n=1

with

~ 2r\* nk-l K
Pan(0,n) = ( = > ¢ Sa(0,m50).

—_ 1)
! (k 1)'cecl(a,b)

For m > 1 we have

Pa,m[Ub]k(Z) = Zﬁab <m> n)e(nz>

with

Pay (11 1) = (ﬁ) 7| Gapmn + 2w F CGCIZ(G ; ¢ 1Sap(m,n; ) Iy (M\ém)

9Here d,d’,c may not be integers. This notation just means d’ — d is an integral multiple of c.
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Here for any m,n € Z and ¢ € C(a,b),

d
Sap(m,m;c) = e (maJrn) .
deC(a,b;c) ¢

Remark 7.15. Here a € R in the above definition is such that there exists some
w = (ch 3) such that w € o, T'op. We have seen from the proof of Proposition 7.9
that if w’ = (¢ ¥ ) is another element in oy 'T'oy with bottom row (c,d). Then

W = (§7)w for some m € Z. Thus a = @’ (mod ¢) and the above definition is
well-defined.

Example 7.16. Consider I' = I'o(N) and a = b = oco. Then we can choose o4 =
I and C(o0,00) = {(¢,d) € Z2,:¢>0, 0<d<¢, N|c} and for c = NC with
£>1, C(a,b;e) ={0<d<c:gedle,d) =1} 2 (Z/cZ)*. Hence Sooco(m,n;c) =
S(m,n;c) and

m k nkFl &
ﬁoooo(ovn) = (2) W;(N@)*S(O,n,]\w)

7

One can obtain similar formula for Doooo(m,n) for m > 1.
Combining this Fourier expansion and Lemma 7.5 we have the following corollary.

Corollary 7.11. For any k > 3 and any a € Cr, E, € Mi(T) \ Sp(I"), while
Py € Si(T) form > 1.

Proof of Theorem 7.10. By the double coset decomposition Proposition 7.9 we have
B\o,'To, =6B\B| | || B\BveaB.
(¢,d)eC(a,b)

where v(c,q) is some element in oy 'T'oy with bottom row given by (c,d). We
can choose a set of coset representatives for B\B~y.a)B to be {y(,ayne}ecz with
ne = (44) as in Proposition 7.7. Then by Lemma 7.8 we have for any n € Z

Dap(m, n) / Z j,y(z)*ke(m’yz)e(fnz) dx

~EB\o; 'Toy

= 5ab(5mn Z Z/ mf}/(c d)TLzZ) 6(*712) dx

(c,d)EC(a,b) LEL Trce.yme (

= OatOmn + > Iy, (mn).

ceC1(a,b) deC(a,b;c)

The desired formulas for pyp(m,n) cna then be obtained by applying the formulas

of Z, ., (m,n) obtained in Proposition 7.7. O

8. PETERSSON INNER PRODUCT ON THE SPACE OF CUSP FORMS

8.1. Ptersson inner product on S;. Let I' = SLy(Z) and k > 4 be even. In this

subsection we define an inner product on Sy = Si(T") to make it a Hilbert space.

Recall that the hyperbolic measure du(z) = dz;iy is SLo(R)-invariant.

Lemma 8.1. For any f,g € My, the function F(z) = Jm(z)*f(2)g(z) is T-
muariant.
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Proof. Given v €T,

F(yz) = Im(y2)" (v )

154(2) "2 Im(=) M5 (2)F F(2) 75 () 9(2)
= Jm(2)¥9(2) = F(2),

2)g
(2

as desired. O

Definition 8.1. The Petersson inner product on S, is defined by

(f.9) = /f v F(2)9(2) dulz), ¥ f.g € S

where F C H is a fundamental domain of I'"\H.

Remark 8.2.

(1) The T-invariance of Jm(2)*f(2)g(z) and g imply that the above definition
is independent of the choice of fundamental domains. Hence we may replace
F by the notation I'\H.

(2) The assumption f,g € S is to ensure integrability. Indeed,

Z ((n—=1)2)

satisfies | f(2)] = e 2™ O¢(1). Similarly, |g(z)] = e 2™ O,4(1). Thus if we
pick the standard fundamental domain for SLy(Z) as given in (3.3), then
for any T > 2,

[e%s) 1
(f,9) <fg1 / / P2V dady + 1 < oo.
T Jo

In fact the same analysis shows that we only need to require one of f, g to
be in Sy to ensure integrability.

(3) (Sk,(,)) becomes a (finite dimensional) Hilbert space. This is important for
later discussions on Hecke theory (in order to apply certain linear algebra
results).

The following computation shows that integrate against P,, ; picks up the m-th
Fourier coefficient of f.

Proposition 8.2. Let f € S with a Fourier expansion f(z) = Y ., f(n)e(nz)
Then we have for any m € N,
'k—-1) -~

(fs Pmk) = Wf(m)-

Proof. By definition

FPus) = [5G X TG ) du),

YEL\T
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where F is a fundamental domain for T\H. Now making a change of variable
vz — z and using the ['-invariance of u we get

Pui)= 3 [ Ime 9 6 RGT em) ducz)
YEL o\ vF

[yt ()24 1 (2)* ()1 (2) elm) dp(2)

| |
—
“ ~
<
-
~
&
pri
3
&
QU
=
Ny

where for the second equality we used that 1 = jz,(2) = j,y-1(2) = j5 (v 12)jy-1(2).
Now recall that the union yer.\r VF is disjoint and forms a fundamental domain
for I'oo which can be chosen to be the region Foo := {z € H:0 < z < 1}. Hence
(and recall that du(z) = dz#)

00 1
(8.3) (fy Pk :/0 /0 f(2)e(mz)y*=2 dady.

Note that

~

' z)e(mz :EZOOAnef%("ﬁn)y 16 n—m)z) de = f(m)e 4™V,
| reima a > Jo) | ettn = mya) dz = Fm

Thus

(P = Flm) [~ eyt gy s SO

as desired. O

Remark 8.4. The process of changing the integrating region from F (a fundamental
domain of ') to F (a fundamental domain of the subgroup I's) is called the un-
folding argument or unfolding trick. This is a very useful argument when computing
certain integrals involving modular forms constructed via the averaging technique.
We note that while the integral (f, P, ) is absolutely convergent for f € My
and m > 1, we do need the extra assumption that f € S; to ensure absolute
convergence in the integral in (8.3) which validates the unfolding argument.

We now discuss some consequences of this inner product formula.
Corollary 8.3. The set {Py, i }m>1 spans Sk.

Proof. If f € Sk is orthogonal to the subspace spanned by the above set. Then by

~

Proposition 8.2 we have f(m) =0 for all m > 1, implying that f = 0. d

Remark 8.5. Indeed let di, = dimc Si. Then one can show that {P, }1<m<d,
spans Sg.

Next, we discuss some consequences of Proposition 8.2 on the Ramanujan 7-
function. Recall that

A(z) = (2m)' Y r(n)e(n2)

n=1
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and for each m > 1 there exists ¢,,, € C such that P, 12 = ¢, A. Using this relation
and Proposition 8.2 we can compute the inner product (A, P, ;) in two different
ways to get

r(11)

Cml|A[]* = (A, Pry12) = mm) 1T

(2m) 21 (m).

Note that 7(m) € R since A = g3 — 27¢% and both g, and g3 has real Fourier
coefficients. Thus

(8.6) Cm = Cm = 20T (11)(2m) " r(m) || A 2.
Further computing (P, 12, P, 12) we can get
rany .
cmCnl|Al* = (P2, Poi2) = me(”%”)-

Applying the formulas (7.10) and (8.6) for p1a(m,n) and ¢, respectively we get

(8.7) 7(m)r(n) = v(mn)* <mn+2wzc mnan(W)),

where v = Mlllfilﬂ”(il) is some fixed absolute constant. Taking m = 1 in (8.7) and

recall that 7(1) = 1 we get the following explicit formula for 7(n):

(8.8) 7(n) = 2mvn> Zc (1,n;¢)J11 (Mf) , Vn>2.

Proposition 8.4. The Ramanujan T-function satisfies the following recursive re-
lation

(8.9) T(m)T(n) = Z d" 7 (mnd™?)

d|(m,n)
and the and growth condition

I7(n)| < n e,

Remark 8.10. Recall that the Ramanujan’s conjecture asserts that |7(n)| < n'zte
Here we get slightly worse exponent (noting that 23 Q + )

Proof of Proposition 8.4. In order to prove the recursive relation we apply the Sel-
berg’s identity'® on the classical Kloosterman sum which states that

S(m,n;c) = Z dS(mnd=2 1;cd™ ).
d|(m,n,c)
We also have the following simple identity involving the d-symbol:

Omn = Z 51,mnd_2'

d|(m,n)

10T his identity was stated by Selberg in 1938 without proof. The first rigorous proof was
given by Kuznetsov [Kuz81] using trace formula. See also [Mat90] for an elementary proof of this
identity.
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Applying the above two formulas to (8.7) and changing summation order we get

7(m)7(n) = v(mn) % > S1mna- +27TZC_1 > dS(mnd™2, 1;ed ")y (@)

d|(m,n) d|(m,n,c)
= Z dllu(mnd_Q)% <5l,mnd2 + 27 Z cLS(mnd ™2, 1;¢d™ 1) T (47r7 \/Wgnd2>>
d|(m,n) c=1
= Z d" 7 (mnd™?).
d|(m,n)

For the growth condition, we apply Weil’s bound on Kloosterman sum [Wei48] that

(8.11) |S(m, nic)| < (myn,c)zcte
and bounds on J-Bessel function that
(8.12) |J,(z)] < min{z”, 272}, V>0
to get
e 11 -1
r(n)| < n® Y it min{(cn) : (J) }
c=1
L7 -1 s 11
<n? Z ¢t (@) F Z ¢t (@) <nfte O
= [+

Next, we discuss another application of Proposition 8.2 which is useful to gen-
eralize the above Fourier coefficient bounds to general cusp forms.

Proposition 8.5 (Petersson trace formula). Let {f;} C Si be an orthonormal
basis with respect to the Petersson inner product. Then for any positive integers
m,n we have

~ - T/ Mmn k—1 4mw/mn
;fj(n)fj(m)m<7nn+2wz ch S(m,n;c)Jx_1 (T))

Proof. Expand P,, j, with respect to {f;} and apply Proposition 8.2 to get

P = Z< ks I3 =D (fis Pmi) £

J

Z 47rm’c 1 m)fj'

J

Hence
k-1
(P Pos) =3 e F ).

On the other hand, again applying Proposition 8.2 we get

<Pm,k7pn,k> = Wﬁk(mvn)

Equating both equations and applying the formula for py(m,n) (see (7.10)) we get
the desired identity. [
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As a corollary of this trace formula, we get the following bound on Fourier
coefficients of a general weight k£ cusp form which generalizes the above bound on

7(n).

Corollary 8.6. For any f € S with a Fourier expansion f(z) = -, f(n)e(nz),
we have

)| <pen' = Tite,

Proof. Choose an orthonormal basis {f;} which includes f/||f||. Applying Propo-
sition 8.5 for {fj} and m = n we get

|f||2 Z'fﬂ )P < 0 4t Y TS (nms e[ k- (F22) 1.

c=1

This bound then follovvs from the following bound

o0
(8.13) Zc_1|S(n,n;c)HJk_1 (472) | <. n3te, O
c=1
Exercise 15. Use Weil’s bound on Kloosterman sum (8.11) and the bound (8.12)
on J-Bessel function to prove (8.13).

8.2. Petersson inner product for congruence subgroups. Let I' < SLoy(Z)
be a congruence subgroup and k£ > 3. In this subsection we define the Petersson
inner product on S;(T"). The definition is similar to the modular group case.

Definition 8.14. The Petersson inner product on Si(T") is defined by
o= [ W IEIE) due), ¥ f9 € SulD)

Remark 8.15. Similar to the modular group case, for f,g € Sk(T'), the above in-
tegrand is left I'-invariant and thus the integral is independent of the choice of
fundamental domains of I'. Moreover, this integral is absolutely convergent as long
as one of f, g is a cusp form.

Proposition 8.7. Let f € Sg(T'). Then for any a € Cr and any m > 1,
L(k—1)
PU m a
(F, Paomdr = o Folm).

Proof (Sketch). Let Fr C H be a fundamental domain for I'\H. Doing similar
computations as in the proof of Proposition 8.2 we have

(f, Pa,m)T =/ Z Jozty( e(maa Tvz) du(z)

'yel‘ \I"

= / V1 (i (7272) elmos =) du(2)
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Now note that Uyerﬂ\r oy 1y Fr is disjoint and forms a fundamental domain for
07T 404 \I' which as before can be chosen to be {z € H:0 <z < 1}. Hence

{fs Pam)r = /00"/0 f[Ua]k(Z>e(Tz) dayt=2 dy = (k-1 »

Wfa@”%
as desired. O

As a consequence of this inner product formula, we also have the following Pe-
tersson trace formula on Si(I'). We omit the proof which is similar to that of
Corollary 8.5.

Corollary 8.8. Let B C Sy be an orthonormal basis on Si(I') with respect to the
Petersson inner product. For any a,b € Cr and for any m,n > 1 we have

Z E(m)ﬁ(n) = @ 6mn5ab + 27”.7]6 Z Cilsub(my n; C)Jk—l (4ﬂ-\é%>

; I'(k—1)
feB c€C1(a,b)

Remark 8.16. When I' = T'g(NN), the corresponding Kloosterman sum Sgp(m,n; ¢)
can be related to the classical Kloosterman sum. For example, when a = b = oo,
the above formula becomes

= ~ m/mn)k! = 4m/mn
§jf;xwoﬁmww“ﬂqk_jg<6mn+%mk§jodv>1sunnucN»h-1( xﬁ))-
fenB

c=1

From this trace formula we can similarly get
~ k—1
[Foo(m)] e g n T FATE

More generally, one can get
" k=11

(8.17) |fa(n)\ L, f,N 2 +4+6, Vace CFO(N)-
8.3. General bounds on Fourier coefficients of cusp forms. In this subsec-
tion we give very soft arguments bounding Fourier coefficients of cusp forms for a
general congruence subgroup. The estimate we get is not as good as (8.17), but it
holds in a much greater generality.

Let T' < SLo(Z) be a congruence subgroup. The argument is based on the
following simple observation.

Lemma 8.9. For any f € Si(T), the function F(z) = y2|f(2)| is left T-invariant
and bounded on H.

Proof. The assertion that I is left-I'-invariant is easy: Take any v € I" we have
k ~ ko k- k
F(yz) = Jm(y2) 3| f(v2)] = Im(2)2 |15 (2)| 7" 135 ()" F ()| = w2 | (2)| = F(2).

Hence F is determined by its values on a fixed fundamental domain of T'\H. Let
Fr C H be a fundamental domain of I'\H with cusps Cr C QU {oo}. We need to
show F' is bounded on Fr, which suffices to show F' is bounded around every cusp
in Cr. For any a € Cr, since 0,00 = a, to show F is bounded around a, it suffices
to show the function g(z) = F(0q42) is bounded around oo, that is, it is bounded as
Jm(z) — oo (with Re(z) uniformly bounded). We have

[F(0a2)] = y* [floali(2)]

E
2

9(z) = F(o42) = Jm(042)
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Since f € Si(T'), we have

Floale(@)] = le(=) 3 Falme((n - 1)2)] <5 e

Hence
lg(2)| < y2e 2™ 50 asy — oo.
This proves the lemma. O

As a corollary, we have the following bounds on Fourier coefficients which is due
to Hecke.

Proposition 8.10 (Hecke). Let f € Sg(T'). For any N > 1 and a € Cr, we have

fam)* <5 N*.

] =

n=1

Proof. Consider the function g(z) = f[oa]x € Sk(0, ' T'oy). By the same arguments
5|g(2)| is bounded. In other words,

as above, we have the function g2
_k
l9(2)] <5y~ 2.

Hence

1
/ 92 da < yF.
0

On the other hand, by the Fourier expansion
9(z) = > fa(n)e(nz)
n=1

we have
oo

JAZCIRED NG

n=1

Thus for any N > 1,

N N 1
NSO )P < 3 | aln) et < / 92 do < 5",
n=1 n=1 0

Taking y = N~ gives the desired inequality. [
We have the following two immediate corollaries.

Corollary 8.11. Keep the notation and assumptions as in Proposition 8.10. We
have

(8.18) fa(n)] <5 n%, V¥neN,

and

(8.19) ST faln) < NF, ¥ NeN
n<N

The next result shows that if we remove the absolute value sign in the left hand
side of (8.19), we can get an extra square root cancelation.
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Proposition 8.12. We have for any N > 2,
N
-~ k
| Z fa(n)] <5 N2 log N.
n=1

Proof. Let g(z) = floa]x(2). Using the relation

~

fa(n) :/0 g(z)e(—nz) dx

we have

N 1 N 1

> Jutr) = / 0(2) 3 () do = [ o 25

Note that

e(—Nz)—1
1—e(2)

‘ < ™Y1 —e(2)| L.

This, together with the bound [g(z)| < y~% implies that

N 1
1" Faln)] <y~ 2 / 11— e(2)| ! dr <y~ Fe> ™V log(2 + 47,
n=1 0
where for the last estimate we use Exercise 16 below. The desired bound then

follows by taking y = N~ O

Exercise 16. Show that for any z = x + iy € H,

1
/ 11— e(2)]7! de < log(2+yh).
0

9. DOUBLE COSET OPERATOR
Let 'y, 'y be two congruence subgroups. Let
GL3 (Q) = {(2}) € M2(Q) : ad — bc > 0}

be the group of 2 by 2 matrices with rational entries and positive determinants.
Each o € GLJ (Q) defines a double coset

I'aly = {’}/10/}/2 Y1 € Fl,’YQ S FQ} .

Clearly, I'yal's is left T'y- and right I's-invariant. In particular, there is a right
I"1-coset decomposition

Flafg = |_|Flﬁj
J

The starting point of our discussion is that this coset decomposition is finite which
will be proved by the following two lemmas.

Lemma 9.1. Let T' < SLy(Z) be a congruence subgroup and let o € GL3 (Q). Then
a Ta N SLy(Z) is still a congruence subgroup.
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Proof. By definition it suffices to show a~!T'a contains some principle congruence
subgroup. Since T' is congruence and « € GL$(Q), there exists some N € N
such that T(N) € T and No, Na=! € My(Z). Let N = N3. We claim that
['(N) C a™'Ta, or equivalently, al'(N)a~! C T. To see this, note that

ol (N)a™t ¢ a(Iy + NMy(Z))a™t € I, + NaNMy(Z)Na™t C Iy + NMsy(Z).
Moreover, since al'(N)a~! C SLy(R), we have
ol (N)a~t € (I + NMy(Z)) N SLy(R) =T(N) C T,
finishing the proof. O

Remark 9.1. Let I'1,I's be any two congruence subgroups and « € GL;”((@)7 we
note that o~ 'T'ya N Ty is also a congruence subgroup. This is true since by the
above lemma there is some N; € N such that T'(N;) C o~ 'T'ya. Moreover, by
definition I'(Ny) C I'y for some Ny € N. Then I'(N;Ny) C a~'T'ya N Ty, proving
this claim.

Lemma 9.2. Let I'1,Ty < SLo(Z) be two congruence subgroups and let o €
GL3 (Q). SetT3 = a~'TyanTy. Then there is a bijection between the two quotient
sets Tg\I'y and T'1\I"1als. In particular,

#(I‘l\FlaFg) = #Fg\rl < 00.
Proof. Consider the map sending I's — T';\I'1al's given by v — Tiavye. It is
clearly surjective. We just need to figure out when two elements in I's; give the
same I'i-coset. Let v1,7v5 € T's. Suppose I'yays = T'yays. This means that there
exists some y; € Ty such that 40y, = ay}, or equivalently, = 'y = 74y, 1. This
implies that 747, € a™'T1aNTy = T, i.e. T3y, = I'375. We thus have shown
two elements in I'y give the same I'i-coset if and only if they represent the same
I'3-coset. This finishes the proof. O

Definition 9.2. The [I'yals]i-operator is an operator on My (') defined by
fMalals == > fBilk
Bieri\T'1al’y

where for any € GL5 (R) and f : H — C,

B

FIBlk(2) = (det(B))2 js(2) " f(B2).
Remark 9.3. The weight k-operator [(]; coincides with the previous weight-k oper-
ator when 8 € SLy(R). Similar as before, one can check that f[8182]kx = f[51]k[B2]k
for any f1, B2 € GL3 (R). The factor (det(f3))? is such that [8] is invariant under
scaling, i.e.

fIABlk = fIBlk, Y A>0.

Proposition 9.3. The double coset operator is well-defined and sends My (T'1) and
Sk(T1) to My(Ts) and Si(T'2) respectively.

Proof. We first show that it is well-defined. Let {B;} be another set of representa-
tives for the quotient I';\I'yaI's. Up to reordering, we may assume I';§; = Flﬁ]‘.
Thus there exists some y; € I'y such that 8; = 7jﬁ;. Then we have

Zf[ﬂj]k = Zf[w;]k = wa;]m



52 SHUCHENG YU

proving the definition of [I'yal's]; is independent of the choice of coset representa-
tives. Next, we show [['yals]x maps Mg (1) to Mg(Ty). Take f € Mg([1). In
particular, f is holomorphic on H. Tt is then clear that for any 3 € GL (Q), f[B]x(2)
is also holomorphic on H. Hence each summand in the definition of f[I'yals]y is
holomorphic, implying that f[I';al's]; is holomorphic. Next we show f[I'1al's]y is
weakly modular of weight k& with respect to I's. For this, take any ~o € I's, we have

fTialalilyale(z) = > flBjvale = fT1aTalk(2)

Bi€T1\T'1al's

as desired, where for the last equality we used the fact that if {5;} is a set of coset
representatives for I'1\I'yal's, then so is {72} for any v2 € I's. This is true since

I'al'y =Tallsyy, = |_|F1ﬂj72.
J

Finally, we need to show f[[';al's]x is holomorphic at every cusp of I's. For this,
we note that since I's is a congruence subgroup, it suffices to show f[['yals]y is
holomorphic at every z € QU{oo}, or equivalently, f[['yal's]x[7]x is holomorphic at
oo for every T € SLy(Z). Since f € My (T'1) and T'y is also a congruence subgroup,
we have f[7]; is holomorphic at every @ € QU {oco}. By Exercise 17, f[8]x is
holomorphic at every z € Q U {oo}, implying every summand in the definition
of f[['1al's], is holomorphic at every z € Q U {oo}. In particular, f[I'1al's]; is
holomorphic at every z € QU {oo}. Hence f[I1als]y € Mg(I'2). The statement
that [T'1al'2]g : Sk(T1) = Sk (T'2) follows similarly from Exercise 17. ]

Exercise 17. Let I' < SLa(Z) be a congruence subgroup and f € My(T).

(1) Show that f[B]y is holomorphic at co for any B € GL3 (Q).
(2) Show that if f € S(T), then f[B]x vanishes at co for any B € GL3 (Q).

10. HECKE OPERATORS FOR THE MODULAR GROUP

In this section we define Hecke operators for the modular group I' = SLy(Z).
For any n € N, let

G, = {9 € Mx(Z) : det(g) = n}

be the set of 2 by 2 integral matrices with determinant n. Clearly, G,, is bi-I'-
invariant.

Definition 10.1. For any n € N, the n-th Hecke operator T,, is an operator on
My, defined by

Tof =031 3" [[Bl, ¥ fEMy
BET\Gr

Remark 10.2. The Hecke operator 7T;, also implicitly depends on the weight param-
eter k. Since this parameter is fixed throughout our discussion, we omit it in our
notation.

The following proposition decomposes G,, as a double I'-coset which implies that
T, is indeed a sum of double coset operators.
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Proposition 10.1. For any n € N,

(10.3) Gn=[]T <d Z) r,

d?|n
where the union is over all positive d such that d? | n.

Corollary 10.2. For any n € N we have

Tnf:n%*zf[r(d%)mk.

d?|n
In particular, T,, maps My, and Sk to My, and Sy respectively.

Proof of Proposition 10.1. First note that since G,, is bi-I'-invariant, the right hand
side of (10.3) is clearly contained in G,,. Next, we show the right hand side is a
disjoint union. Indeed, for any g € G,,, we denote by ged(g) the GCD of all four
entries of g. Then for any d®> | n and g € T (d %) I, ged(g) = ged(d, §) = d,
implying that each coset in the right hand side of (10.3) can be distinguished by
the GCD of its elements. Hence it is a disjoint union. Finally, we show G,, is
contained in the right hand side of (10.3). Take g € G,, and let d = ged(g). Then
g = d tg € My(Z) and thus det(g') = d~2det(g) = d~2n € Z. Thus d? | n and the

double coset I’ (d n ) I" appears in the right hand side of (10.3). We would to show
gel (d n ) T, or equivalently, ¢’ € T (1 = ) I". This follows from the following
lemma. ]

Lemma 10.3. For any n € N, we have
GP':={g € Mx(Z) : det(g) =n, ged(g) =1} =T (1 n) T.

Proof. The double coset is clearly contained in GE'. Take g € GP*, we want to show
g€ (t,)T, or equivalently, there exists some 71,72 € I' such that y1972 = (1 ).
This amounts to perform row and column operations to g to reduce it to (! ,)).
By applying the Euclidean algorithm to the first column'! and switching the first
and second rows if necessary we can reduce g to the upper triangular matrix (8 Z).
Next, by adding multiples of the first column and row to the second column and

a b+lged(a,d)
0 d

row we can further reduce it to ( ) We claim (see Exercise 18 below)

that there exists £ € Z such that ged(a,b + ¢ged(a,d)) = 1. Taking such a £ we
reduce g to (8 ’g) with ged(a,d’) = 1. Applying the Euclidean algorithm to the
first row and switching the columns if necessary we can reduce it to (C1/ 5/ ) for some

c,d" € 7. Finally, subtracting the ¢’-multiple of the first row from the second row

we get (é g, ) Since these operations does not change the determinant, we must
have d’ = det(g) = n, finishing the claim, and hence also this lemma. ([

Exercise 18. Let (a,b) be a pair of co-prime integers. Show that for any positive
integer ¢, there exists ¢ € Z such that ged(a+£€b,c) = 1. Use this to prove the above
claim.

U This amount to multiplying g from the left by ((1) ’11) and (711 (1)) consecutively. (Noting that
(61 (28) = (i) and (19) (£8) = (cian as'vn))
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The following lemma gives an explicit coset representatives for the quotient I'\G,,
from which we get a more explicit formula of the Hecke operators.

Proposition 10.4. The set
A,={(2Y):ad=n, a,d>0, 0<b<d}

forms a complete set of right coset representatives of T\Gy,, that is,

(10.4) G.= || || F(S Z)

ad=n 0<b<d

In particular, we have

1
(10.5) Tof()=— > d" Y f(*5F), VFeM
ad=n 0<b<d
Remark 10.6. Since f € M, is periodic of period 1, the sum over 0 < b < d can be
rewritten as the sum over congruence classes modulo d. We formally write T,, as
following:

1 k a b
(10.7) Tn:ﬁZa > [0 d}.
ad=n b (mod d)
Proof of Proposition 10.4. The containment “O” is clear. We thus only need to
prove the other containment and that the right side of (10.5) is a disjoint union.
For the first statement, take any g € G,,, as above by applying Euclidean algorithm
to the first column of g we may assume g = (8 Z). Next, by left multiplying
(§m) for suitable n we can make that 0 < b < d. This proves the containment
“C”. Next, we show the union is disjoint. Take (“ b) , (“O/ Zl,) € A, suppose
r(gb)=T( 0 d,), we would like to show (44) = (¢ ¥). By assumption there
CL

0 d
exists 7 = (‘;‘B> €T such that 7 (¢ 4) = ( v . ). Note that

0 d

969G )

Hence we have v = 0, implying that 7 = £ (§ 7). The case 7 = —
since a,a’ > 0. Hence 7 = (}7) and the relation 7 (2 5) = (2' %) implies that
a=d,d=4d and b =V (mod d). But the condition 0 < b,b’ < d forces b = ¥'.
This finishes the proof.

For the in particular part use the above coset representatives we have

Tnf 7n2 —1 Z Z ’flzd kf aerb)

ad=n 0<b<d

P IIC S

ad=n 0<b<d
as desired. O

(¢ ) isimpossible
’

10.1. Properties of Hecke operators. In this subsection we prove various prop-
erties of Hecke operators. First we study relations between different Hecke opera-
tors.

Proposition 10.5. We have
(1) T,,T,, = Tynn whenever (m,n) =1.
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(2) Tyrir = TpTpr —pkilTpr—l for any prime p and r > 1.
Remark 10.8. The two relations can be combined into one that

TnTp= Y d* T

d|(m,n)
In particular, this implies that Hecke operators commute with each other, i.e.
T,.1T, =T, T, ¥Ym,n>1.

Proof of Proposition 10.5. We use the formal sum expression (10.7) for T,,. For (1)
we have

, b b
mnlnln= ) (ma)' ) ﬁ)l dj {%2 dﬂ
)

ajdi=m b1 (mod dy
azd2=n be (mod ds)
_ (CL a )k a1am (11b2 +b1d2
D (@ma 2 0 didy |
aidi=m b1 (mod d1)
azdz=n bs (mod dz)

We claim that the map
T Z/dlz X Z/dQZ — Z/dldQZ, (bl,bg) — albg + bldg (HlOd dldg)

is bijective. Assuming this claim and making changing of variables a = ajaq,d =
dids and b = a1by + bida we have

mnT,,T, = Z a® Z [8 Z} =mnT,

ad=mn b (mod d)

as desired. We now prove the claim. It suffices to show 7 is injective. Assume
(b1, b2) = w(bl,by) for some by,b] € Z/d1Z and by, by, € Z/d1Z. We would like
to show b; = b} (mod d;) and by = b, (mod dg). By assumption, we have a;by +
bids = a1b) +bids (mod dyds). Reducing to congruence classes modulo dy we have
a1by = apbly (mod ds). But since a; | m,ds | n and (m,n) = 1, we have (ay,d2) = 1.
Thus the above congruence equation implies that by = b, (mod ds). Plugging this
relation into the original congruence equation, we get b1ds = b} dy (mod dyds) which
is equivalent to b; = b} (mod d;). This proves the claim.
For (2) we note that

1 1 b _1(p O
-1 v [ bt [ } .
0 0 1

p b (mod p) P
More generally, we have

T, = zT:pki—r Z I())Z prbi] , Vr>1
i=0

b (mod pr—7t) -

Thus
r i ip +b r—1i r ; e i1 b
S S D (AU D ST Sl LA )
i=0 bi(p) i=0 ba(pm—1)
ba(p" ")
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By similar arguments as above, we can replace the sum ) 4 (,) by the sum
b2(p" ")
Zb(pT+1_t) after making a change of variable b = by + b1p"~*. We also split the

B —1 .
above second sum into >;_ and i = to get

T .

iT—r— ! b T —r— i 0

TPTPT = Zpk ! Z |:% p’r+1i:| +pk( +1) ! |:p0 1:|
=0

b(prT1=H)
r—1 i+1
i —r— p pb2
+ Zpk( I ' Z |: 0 p7’—z‘:|
i=0 by (pr—t)
r—1 pi’ b
=Tpr1 + Zpk(ﬁ_l)_T_l Z {0 ’I“21'L:|
‘ ) p
1=0 ba(pm—*)
r—1 :
_ E(i+1)—r P’ ba
=Tpr+1 + Zp Z ‘ [O prli]
i=0 ba (pr—1-%)

= Tpr+1 +pk_1Tpr71

i+1 k3
as desired. Here for the second equality we used that (p J ;bei ) z = (% prfﬁ,i ) z
for any z € H.
Next, we study effects of Hecke operators on Fourier coefficients.

o~

Proposition 10.6. Let f € M, with a Fourier expansion f(z) = > ~_, f(m)e(mz).
Then

with

Proof. By definition

)= S fom) S ab Y e(mezt)

m=0 ad=n b (mod d)
J N
== > fm) Y afe(22) Y e(%)
m=0 ad=n b (mod d)
_! Z f(m) Z afe (™9z) dI(d | m)
n m=0 ad=n
m=dt Z akt A(dﬁ)e(aéz)
ad=n £=0
atzm Z ak_lf(mna 3 | e(mz2),
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finishing the proof. Here for the third equality we used the identity that

S e(mb) =di(d|m)

b (mod d)

with (I(d | m) the indicator function of the condition d | m, i.e. I(d | m) equals 1
if d | m and equals 0 otherwise. O

Proposition 10.6 has the following immediate consequences whose proof we omit.

Corollary 10.7. For anyn > 1 and f € My we have
(1) Tpf(m) = T f(n) for anym > 1,
(2) TJ(0) = 7er () (0),
(3) Tnf(1) = f(n).

Let us now apply Hecke operators to the modular discriminant function A to
see what we can get from them. First since S;2 = CA is one dimensional, for any
n > 1 there exists A(n) € C such that T,,A = A(n)A. This implies that

T.A(1) = A(n)A(1) = (27)'2A(n).
On the other hand, by (3) of Corollary 10.7 we have
T,A(1) = A(n) = (27)27(n).
Equating both equations we get A(n) = 7(n). This, together with Proposition 10.6

implies that

(2m) 27 (n)7(m) = A(n)A(m) = T, A(m) = (2r)"2 Z d*tr(mnd=?).
d|(m,n)

Note that this recovers the recursive relation (8.9) for the Ramanujan’s tau function.

10.2. Self-adjointness of Hecke operators. We wish to generalize the above
discussion on Ramanujan’s 7-function to Fourier coefficients of a general weight k
cusp form. The main ingredient of the above discussion is the existence of joint
eigenfunctions for all Hecke operators. While this property is immediate for Sio
(since it is of one dimensional), it is no longer the case for larger k. The first
guess for this joint eigenfunction basis is the basis given by Poincaré series. How-
ever, the following proposition shows that they are in general not the desired joint
eigenfunctions. Below we abbreviate the Poincaré series Py, 1 by Pp,.

Proposition 10.8. For k > 4 even, m > 0 and n > 1 we have
k—1

In particular, when m = 0 the Fisenstein series Ey is a joint eigenfunction for all
Hecek operators with

TnEk = 0‘]6,1(77,>Ek, Vn Z 1.
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Proof. The in particular part follows easily from (10.9); we thus only prove (10.9).
By definition

T.Pn(2) = ni1 Z P [Bl(2)

BET\Gnr
=n"0 N s F D y(B2) Fe(myBz)
ﬂEF\G,L weroo\r

YT > s Fe(maBa).

BET\Gp YET o \I'

Now we take A,, as before to be the fixed set of coset representatives of I'\G,,. Let
H be a set of coset representatives of I'.o\I'. Then clearly HA,, is a set of coset
representatives of I'o,\G,. But by Exercise 19 the set A, H is also a set of coset
representatives of FOO\G . Thus we have

T Pp(2) = nf~! Z Z 3y (2) Fe(mpByz).
BEA, yET\T

Note that for g = (8 Z) ISYA

Jon(2) = 38 (v2) 5+ (2) = djiy (2)-

TP ()=t Y 3 Y dti (o) re (met)

ad=nb (mod d) vyl \I'

> 2 dFRE () > e ()

YEL\I' ad=n b (mod d)

D D /() e ()

YET o \I' ad=n
dlm

Z (n/d)kilpmnd*r‘“ [l

d|(m,n)

Thus

Exercise 19. Let A, and H be as above. Show that the set A, H is a set of coset
representatives of T'oo\G

In order to produce a joint eigenfunction basis for Hecke operators we apply the
spectral theorem of linear algebra.

Theorem 10.9. A commuting family of normal operators*? on a finite dimensional
Hilbert space can be simultaneously diagonalized, that is, there exists an orthogonal
basis of simultaneous eigenvectors for this family of operators.

To apply this theorem we show that Hecke operators are self-adjoint. Before
stating the main result we record a symmetric identity which follows immediately
from Proposition 10.8

(10.10) m* T, P,y = n* 1T, Py, Y m,n > 1.

12A continuous linear operator T': H — H on a complex Hilbert space H is called normal if
it commutes with its adjoint operator T* which is defined such that (Tv,w) = (v, T*w) for any
v,w € H.



INTRODUCTION TO MODULAR FORMS 59

We also need the following symmetric identity regarding the Petersson inner
product.

Proposition 10.10. For any f € My and for any m,n > 1,

(10.11) m* UL f, Pr) = 0N (T f, P).
Proof. By Proposition 8.2 and (1) of Corollary 10.7 we have
_ Tk—1)— I'k—1)-— _
k—1 _ _ _ k1

Theorem 10.11. For any n > 1, the Hecke operator T,, is self-adjoint, that is,

Proof. Since the Poincaré series {Pp, }m>1 spans Si (Corollary 8.3), it suffices to
prove the above identity for f = P,, and g = P, for some m,l > 1. We then have

(T Py ) = (2) (TP, P = (2)" 7 (TiPa, Pr) = (T Py, P,

m 1
where we applied (10.10) for the first and third identity and (10.11) for the second
identity. Finally we note that
Nk—-1) —
TrLPaPr = 7T7LP
< l l’L> (47Tm)k71 l(m)
is real since m(m) is a R-linear combination of Fourier coefficients of Poincaré
series and the latter is known to be real by its explicit formula derived in Theorem
7.6. Thus

as desired. O

Combining Theorem 10.9, Theorem 10.11 and the commutativity of Hecke op-
erators (see Remark 10.8) we can now produce a joint eigenfunction basis of Sy, for
all Hecke operators.

Corollary 10.12. The space Sk has an orthogonal basis (with respect to the Pe-
tersson inner product) of joint eigenfunctions for all Hecke operators {T},}n>1.

Definition 10.12. A joint eigenfunction f € Sy for all Hecke operators is called

o~

normalized if f(1) = 1.

Proposition 10.13. Let f € Sk be a normalized joint eigenfunction for all Hecke

~

operators, that is, T,,f = A(n)f for some A(n) € C and f(1) = 1. Then we have
(1) f(n) = A(n) for alln > 1.

(2) Fm)F() = gy 4 Flimnd ).
(3) (Multiplicity one theorem) If f and g are two normalized joint eigenfunc-
tions with same eigenvalues, then f = g.

Proof. For (1) by (3) of Corollary 10.7 and the relation T,, f = A(n)f we have
A(m) = AF(1) = T.f (1) = f(n).

The relation in (2) follows similarly since by (1), Proposition 10.6 and the relation

~

T.f = A(n)f. For (3) by (1) we have A(n) = f(n) = g(n) for all n > 1. Hence
=y O



60 SHUCHENG YU

Remark 10.13. If f € Sy is a joint eigenfunction (not necessarily normalized) with
T,.f = A(n)f, then using the same argument as above we get that f(n) = A(n)f(1),
implying that if f(1) = 0 we must have f = 0. Hence a nonzero joint eigenfunction

can always be normalized.

11. HECKE OPERATORS FOR CONGRUENCE GROUPS

In this section we define the Hecke operators for the congruence subgroup I'; (V).
We will do so by first decomposing the space My (I'1(N)) into subspaces consisting
of modular forms with respect to I'g(/V) and twisted with a Dirichlet character
(see Proposition 11.3 below) and then define the Hecke operators in each of these
subspaces.

We first give the definition of modular forms twisted with a character.

Definition 11.1. Let T' be a congruence subgroup and ¥ : I' — C* a unitary
character'®, the space of weight & modular forms twisted with 9 and with respect
to I' is defined by

M (T, 9) - {f H—C - ’ f is holomorphic on H and at cusps and satisfies }
k(L = : : .

fVe = 9(y)f for any v € T

Similarly, we denote by Sk (T, %) the subspace of My(I',d) by further requiring f
to be vanishing at all cusps. We will always assume that image of 1 is finite, that
is ker(¥) is also a congruence subgroup.

Since Dirichlet characters will appear naturally in our decomposition, in the next
subsection we give a quick review on these characters.

11.1. Dirichlet characters.

Definition 11.2. Let N be a positive integer. A Dirichlet character of modulus
N is a function y : Z — C satisfying

(1) x(n+ N) = x(n) for any n € Z,

(2) x(n) =0 if and only if (n, N) > 1,

(3) x(mn) = x(m)x(n) for all m,n € Z.

Remark 11.3. Indeed a Dirichlet character comes from a character x : (Z/NZ)* —
C* by first viewing it as a function on {n € Z : (n, N) = 1} and then extending it
trivially to Z to satisfy property (2) above.

—

We denote by (Z/N7Z)* the set of all Dirichlet characters of modulus N. Note

that (Z/NZ)* has a group structure with the group law given by multiplication and
identity given by the trivial character 1y defined such that 1x(n) =1if (n,N) =1

and 1x(n) = 0 otherwise. It is called the dual group of (Z/NZ)*.

—

Proposition 11.1. The dual group (Z/NZ)* is isomorphic to Z/NZ)*. In par-

o —

ticular, #(Z/NZ)* = ¢(N), where ¢ is the Euler’s totient function as before.

13A character is a group homomorphism from I'' to C* = GL;(C), and it is unitary if its image
lies in the unit disc {z € C: |z|] = 1} = U(C). In the terminology of representation, a (unitary)
character is just a one-dimensional complex (unitary) representation of I'.
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Proof (sketch). First note that if Hl, H, are two finite abelian groups. Then there
is a natural isomorphism from H1 X H2 to H1 x Hs given by

(x15x2) 7= x(h1, h2) = x1(h1)x2(h2)

with the inverse map given by
X = (X1, x2),
where y; € H; is defined such that x1(h1) := x(h1,1) and xa2(h2) = x(1,h2).

Moreover, if H = (h) is a finite cyclic group of order n, then there is an isomorphism
from Z/nZ(= H) to H given by
§ € L/nT s x;(hY) := &9,

where &, € C* is a primitive n-th root of unity, that is, £&* = 1 and &, # 1
for all 1 <4 < n. We now specify to the group (Z/NZ)*. Note that (Z/NZ)*
is isomorphic to a finite product of finite cyclic groups. Indeed, by the Chinese
Remainder theorem we have (Z/NZ)* =[], (Z/p;"Z)* with N = [[, p;"* written
in the prime decomposition form. Moreover, we know if p; is odd or a; = 1,2,
(Z/p;"Z)* is cyclic, otherwise it is isomorphic to a product of two cyclic groups
with one factor being of order 2. In both cases, (Z/p;"Z)* is a finite product of
cyclic groups. Hence so is (Z/NZ)*. Then we have (Z/NZ)* =[], H; with each
H; finite and cyclic. Thus

(Zﬁ\f%xglﬁgnH HH (Z/NZ)*
i i
as desired. O

Proposition 11.2 (Orthogonality relations). We have for any x € (Z/NZ)*

[ ¢(N) ifz=1 (mod N),
Z X(@) = { 0 otherwise,
x (mod N)
and for any Dirichlet character x of modulus N,

Z X(x):{gs(N) ifX:1N,

e otherwise.
xe

Proof. We only prove the first equation and the second follows by similar arguments.
The case when = 1 (mod N) is trivial; we thus assume x # 1 (mod N). Then
there exists a Dirichlet character xo of modulus N such that yo(x) # 1. Multiplying
the left hand side by xo(x) we get

xor) Y. x@= > xox@= >  x(),
x (mod N) X (mod N) x (mod N)

where for the second identity we used the fact that as x runs through all elements
in (Z/NZ)*, so does xox. Since xo(z) # 1, the above identity implies that

> xl@)=0
x (mod N)

as desired. O



62 SHUCHENG YU

Definition 11.4. For any Dirichlet character x of modulus N and any ¢ € Z/NZ,
the corresponding Gauss sum is defined by

N
G(z,x) ==Y x(n)e (%)
n=1

Exercise 20. Let x be a primitive Dirichlet character of modulus N. Show that

(1) G(x,t) =x(0)G(x) for any £ € Z/NZ.

(2) 1G(X)| = VN.

Given a Dirichlet character x : Z — C of modulus N, for later purpose, we

extend x to a function on Ms(Z) (which we still denote by x) as following
(11.5) X:My(Z) - C, g=(2%)— X(a).
One can check that x|ryn) @ To(IV) — C* sending (¢4) € T'o(N) to x(d) is a
unitary character of I'o(N).

11.2. Modular forms with character. As mentioned before, the main reason
we study modular forms with character is the following decomposition which we
leave as an exercise.

Proposition 11.3. For any positive integers k, N we have

M (T1(N)) = @ M (To(N), x)

and

Se(I'1(N)) = @Sk(FO(N)aX)v

where the direct sum is over all Dirichlet characters of modulus N (viewed as an
unitary character of To(N) defined as in previous subsection).

We now give the definition of Hecke operators with respect to a given Dirichlet
character x.

Definition 11.6. Let y be a Dirichlet character of modulus N. The n-th Hecke
operator with character x is an operator on My (I'g(V), x) defined by

E_ -
TXfi=n"" Y X(p)flolks Y f € Mi(To(N),x),
PEAL
where A, is the set of coset representatives of I'(1)\G,, given as in Proposition 10.4
and x : M2(Z) — C is the extension of x defined as in (11.5).

Remark 11.7. Using the explicit description of A,, we can write
1
Tif) = > x(@a" Y f(eErh).
ad=n 0<b<d
Moreover, since x(a) = 0 whenever (a, N) > 1, we have
k_ _
(11.8) TXf=n2"" > X(p)flplk,
pEAT
where

AN = {(¢%) eAn:(a,N)=1}.

n
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The first result regarding T)X is the assertion that T)X sends My (I'o(N), x) and
Sk(To(N), x) to themselves respectively.

Proposition 11.4. Keep the notation and assumptions as above. Then we have
T« Mi(To(N), x) = Mg (Lo(N), X),
and
T+ Se(Lo(N), x) = Sk(To(NV), x)-
We need the following technical lemma to prove this proposition.

Lemma 11.5. For any (p,7) € AN x Tg(N), there exists (p',7') € AN x Tx(N)
such that pr = 7'p’. Moreover, as p runs through AN, so does p'.

n

Proof. Given (p,7) € AN x T'4(N), note that pr € G,, = Uyea, F'(1)p". Hence
there exists (p’,7') € A, x (1) such that pr = 7/p’. We will show this relation and
the condition (p, 7) € AN xTy(N) force (p’,7’) to lie in the smaller set AN xTo(V).

Write p = (25) € AN, 7= (:?) €Tp(N) and p/ = (%/ Zi) eN,, T = (f:, g,) €
I'(1). We need to show (¢, N) =1 and N | 4'. By direct computation the relation
pT = 7'p' implies that

(11.9) aa+vb=ca'd" and ~d=+'d.

Note that 7 € To(N) implies that N | v and (a, N) = 1. Moreover, p € AY implies

that (a, N) = 1. Hence the first equality in (11.9) implies that o/a’ = aa (mod N)

which then implies that (a’, N) = 1. The second equality in (11.9) then implies that

v'a’ =~vd =0 (mod N). This together with the condition (a’, N) = 1 implies that

N | 4'. We have thus proved the existence of the desired pair (p/,7') € AN xTo(N).
For the moreover part, we note that for any 7 € T'g(N),

G, = |_| T'(1)p = |_| I'(1)pr.

PEA, PEA,

This shows that the set {p7},ca, is another set of coset representatives of I'(1)\G,,.
Hence there exists a bijection g : A,, — A,, such that

pT =T1,9(p) for some 7, € I'(1) and for all p € A,,.

The previous argument then shows that when p € AY, we must have 7, € I'o(N)

and g(p) € AY. Indeed, (7,,7(p)) is the pair (77, p’) above. We thus have g(AY) C
AN Since g itself is a bijection, so is g| an. This proves the moreover part. O

We can now give the

Proof of Proposition 11.4. As argued in the proof of Proposition 9.3, for any f €
M;(To(N), x) (resp. f € Sk(To(N))) and for any p € GL3 (Q), the function f[p]x
is holomorphic on H and holomorphic at cusps (resp. vanishes at cusps). Thus it
suffices to show T)X f satisfies the desired transformation rule. For this we use the
expression (11.8) for TX. Take any 7 € I'g(N) we have

Xl =050 3 X(o) flprlke

pEAN
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Now by Lemma 11.5 we have pr = 7/p/ for some 7/ € To(N) and p' € AN.
Moreover, from (11.9) we have

(11.10) X(p)x (") = x(a)x(a’) =X(

Hence

)x(a@') = x(T)x(p)-

Q2

= x(T)TX [,

as desired. Here for the second equality we applied (11.10) and the assumption that
f € Mg(To(N), x) and for the last equality we used the moreover part of Lemma
11.5. [l

We now state some of the properties of the Hecke operators TX. We note that
the proofs are almost identical to that of Proposition 10.5 and Proposition 10.6
with obvious modifications to accommodate the character x. We thus omit the
details here.

Proposition 11.6. We have
(1) TXTX =TX, whenever (m,n) = 1.
(2) Tpws = T)TH — x(0)p" ' T
To summarize,

TXTY = > x(d)d* T . Yomon > 1.
d|(m,n)

In particular, TXTX = TXTX for any m,n > 1.

We also have the following proposition describing effects of TX on Fourier coef-
ficients.

Proposition 11.7. Let f € My(To(N),x) with a Fourier ezpansion f(z) =

ZZO:O f(m)e(mz). Then we have for any n > 1, TXf(z) = Z::() TxX f(m)e(mz)
with

TXfm)= 3 x(d)d*' f(mnd~?).
d|(m,n)
Similar to the modular group case, there are some direct consequences of this

proposition.
Corollary 11.8. Keep the notation and assumptions as above. We have

(1) TXf(m) = Tk f(n) for any m,n > 1.

(2) TXF(0) = o}, (0)F(0) with 5_, (n) = Ty, X(d)d" .

(3) Tu'f(1) = f(n).
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11.3. Normalized Petersson inner product. Our next goal is to show that
the Hecke operators are normal in order to apply the spectral theorem Theorem
10.9. However, in the case the previous strategy of studying the action of Hecke
operators on Poincaré series is no longer enough. Indeed using similar arguments
one can obtain

(TXf:9) = x(n)(f, TXg), ¥ (n,N) =1,

but for f, g from the subspace spanned by { Py, } (m, N):114. However, it is not clear
whethter this subspace is the whole Si(T'o(IV), x). To overcome this difficulty we
will use the Petersson inner product in a more essential way. We first define the
following normalized Petersson inner product which allows us to compare the “size”
of modular forms of different levels.

Definition 11.11. Let I" be a congruence subgroup with a unitary character 9.
The normalized Petersson inner product is defined on the cusp form space S (T, )
by

(. g)r = Vir /F VI dua), ¥ g € Sur0)

where Vi := [SLy(Z) : T] with T := (£15,T).

One can easily check that for f,g € Si(I',9) the function z + y*f(2)g(z) is
left I'-invariant. Hence the above definition is well-defined. The benefit of adding
the normalizing factor Vr_l is that we can now compare norm of cusp forms of
different levels: Let I'y < I'y be two congruence subgroups with ¥ : 'y — C* a
unitary character of I's. Then f € Si(I'2,?) can also be viewed as an element of
Sk(T1,9|r,). Viewing f as elements of these two different vector spaces assigns two
norms to f. We claim that these two norms are indeed the same. Let Fr, be a
fundamental domain of I';. Then the disjoint union Fr, := |_|0€1:1\1:2 oFr, forms
a fundamental domain of I';. Taking this fundamental domain we have for any

fvg € Sk(rvﬁ)v
1

oo = o [ 6 )90 duz)
1—‘1 ]:1"1
:% > / _ 9 dute)
o€l \I's 2

Since the above integrand is left I'p-invariant'®, making a change of variable oz — 2z
we have

1 __

o == X [ v dute)
Iy O'Ef‘l\f‘z Fry
[y:T —
- %/ y" f(2)g(2) du(z) = (f.g)r,
F1 .7'-1"

2

Here the Poincare series is slightly different from the one defined before since we
need to accommodate the character Y. More precisely, for any m > 0, Pn(z) =
> erar X(Miy (2) " Fe(myz) with T = To(N).

The assumption that f € Sg(I'2,9) implies that it is left I's-invariant. It is clearly also left
— I>-invariant.
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as claimed. More generally, for any f € S(I',9) and ¢ € GL§ (Q), the function
flolk € Sk(T”) for some sufficiently small congruence subgroup I contained in the
intersection o~ 1 ker(9)oNT (cf. Lemma 9.1 and Remark 9.1). The next proposition
shows that the normalized norm of f[o]; (with respect to I'') is the same as that
of f (with respect to I').

Proposition 11.9. Let Si(T',9) and o € GLI (Q) be as above. Let T' be a con-
gruence subgroup contained in o~ tker(9)o NT. Then for any f,g € Si(T',9) we
have

(flolk, glolk)r = {f, g)r-
Proof. By definition we have
1

(flolk, glolk)r = o /f y* flolk(2)glol(2) dp(z)

= Vi/ /fr, det(g)kykua(z)|—2kf(gz)m du(2).

Now making a change of variable 0z + z and noting that j,(z) = j,-1(cz)~! we
have

1
=7
1
=7

(flolk, glole)r

/ _ det(0)am(r2) o2 ()N )

/ VS dul) = (. harros = (F

where for the second equality we used that Jm(c~1z) = W and for the

last equality we used that oI'o~1 < T (since I" < o~ T'o NT). O

Remark 11.12. We note that the above computation shows that
<f[a]k7 g>F/ = <f7 g[a_l]k>af"a_17 v fvg S Sk(ra 19)

In fact by passing to sufficiently small subgroups, we can omit the subscripts.
Moreover, recall that f[Ao]x = f[o]x for any A > 0. We have glo™1]; = g[o’]x with
o’ satisfying o’'c = det(o)lz. Thus we have

(11.13) (1) = (910"

with ¢’ as above.

Theorem 11.10. We have for any (n, N) =1 and for any f,g € Sk(To(N), X),
(11.14) (TXf:9) = x(n)(f, T5g)-

In particular, TX is normal on Si(To(N), x) with respect to the normalized Peters-
son inner product.

Proof. First note that in view of the relations in Proposition 11.6 it suffices to prove
(11.14) for n = p a prime number. We thus assume n is a prime. By definition and
applying (11.13) we have

(TXf.9) =021 D" X)) flolkrg) =n2 7" 3 x(m)x(p){f 9lo k),

pPEA, PEA,
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where for p = (84) € Ay, p/ = (¢70) satisfying that p'p = nls. Since f €

Sk(Lo(N), x), we have f(z) = X(7)f[r], for any T € I'o[N]. We thus have
(XS, 9) = x(mns ™" 3 x() ROl Xl o)

PEA,

= x()n® 1Y (FXER() (gl P T k).
PEA,

Setting p” = 7/p/77! one can show, using the explicit expression of p,p’ that

X(7)X(p")x(7) = X(p"). Hence
(TXf,g) = x(mn>~1 > (£,%(0")glo Ik,
PEA,

where p” = 7/p/7=! with 7,7/ € ['o(IN) to be determined. Now by Exercise 21 we
can choose 7,7" € T'g(N) such that p” = p. With the choice of these 7, 7" we get

(TXF.g) = x5~ 3" (£ x(p)glolk) = x(n)(f. TXg)

pPEA,
as desired.
The in particular part follows easily from (11.14) since it implies that (T)X)* =
X(n)TX for any (n, N) =1 which clearly commutes with TX. O

Exercise 21. Show that if n is squarefree and co-prime to N. Then there exist
7,7 € To(N) such that T/p/'77r = pwithp = (8 4) € An and p’ = (¢ 0) as above.

As a direct corollary we have the following

Corollary 11.11. The space Sk(To(N), x) has a basis of joint eigenfunctions of
{TX:(n,N)=1}.

Let f € Sk(T'0(INV), x) be a joint eigenfunction as above, that is, for any (n, N) =
1, TXf = A(n)f for some A(n) € C. Then by (3) of Corollary 11.8 we can conclude
that

fn) =T f(1) = An)f(1), V (n,N)=1

The next natural question is whether there exists a multiplicity one theorem,
i.e. whether the Hecke eigenvalues determine the eigenfunctions uniquely (up to
scalars)? The following simple lemma gives equivalent characterizations of the
multiplicity one theorem.

Lemma 11.12. Let A : N — C be such that
is nonzero. The following are equivalent.
(1) dimVy = 1.
(2) Any f € Vy is a joint eigenfunction for all Hecke operators.
(3) If f € V) with f(n) =0 for all (n,N) =1, then f =0.
Proof. We first show (3) = (1). Let f, g be two nonzero elements in V. By (3) we
have f(1) # 0 and g(1) # 0. Then the function h = f(1)~1f — g(1)~1g € V) with

h(1) = 0 which again by (3) implies that h = 0. Hence f = A\g for some A # 0,
implying that dim V) = 1.
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Next, we show (1) = (2). Let f € V) be nonzero. For any m > 1 with
(m, N) > 1, consider the function g = TX f. For any (n, N) = 1, since TX commutes
with TX we have

Tyg=TyThf = TRTXf =T (An)f) = AMn)g.

This shows that g € V). Hence g = A(m)f for some A\(m) € C, that is TX f =
A(m)f.

Finally, we show that (2) = (3). Since T)X = A(n)f for any n > 1, we have by
(3) of Corollary 11.8 that f(n) = A(n)f(1) for all n > 1. Hence f(1) = 0 implies
that f = 0, proving (3). O

The answer is negative in view of the following proposition.

Proposition 11.13. Let N,Ni;,No € N be such that NyNy | N and let x be
a Dirichlet character of modulus N induced from some Dirichlet character x1 of
modulus Ny. Then for any f € Sk(To(N1),x1), the function g = flan,|r lies in
Sk(To(N), x) and satisfies g(n) =0 for all (n, N) =1. Here an, = (V2 ).
Remark 11.15. Since X1|r,(n) = Xlrgvys f € Sk(To(N1), x1) C Se(To(N), x). If f
is a joint eigenfunction for {TX : (n, N) = 1}. Then one can show f is also a joint
eigenfunction for {TX : (n, N) = 1} with the same eigenvalues.

Proof of Proposition 11.13. By definition, for f(z) =>"", f(n)e(nz),
g(z) = N2 (Naz) = N2 Zf e(nNyz)

= sz Z f(n/NQ)e(nz),

n>1

NQ‘TL
implying that g(n) = 0 whenever (n, N) = 1. Next, we show g € Sk(I'o(N), x).
Since f € Sk(T'o(IN), x) is holomorphic on H and vanishes at Q U {oc}, so is g =
flan,]k- Hence it suffices to prove the desired transformation rule for g. Take any
v = (2%) € I'o(N), note that an,y = Yoy, with v/ = (C/'Jl\,2 ij) € To(Ny).
Thus

9k = flavAk = fIY anle = xa(Y) flans ]k = x(7)g-

Here for the last equality we used the assumption that y is induced from y so that
x1 and x agree on the set {n € N: (n, N) = 1} which in particular, implies that
x1(7) = x1(d) = x(d) = x(7) (since for y = (¢ }) € To(N), (d,N) =1). O

Definition 11.16. Let SP'4(I'o(N),x) be the linear subspace of Si(I'o(N),x)
spanned by all forms of type flan,|r with f € Sk(To(N1),x1), N1 N2 | N and x1
a Dirichlet character of modulus Ny such that x (mod N) is induced from x;. Let
Siev(Io(N), x) be the orthogonal complement of S¢4(T'o(N),x) in Sk(To(N), x)
with respect to the normalized Petersson inner product.

Proposition 11.14. For any (n,N) = 1, the Hecke operator T)X preserves the
subspaces SPM(To(N),x) and Spe¥(To(N), x) respectively.
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Proof. Fix n € N such that (n, N) = 1. First we note that it suffices to prove that
T preserves SP14(Io(N), x). This is true since if T)X preserves S24(I'o(N), x), then
for any f € SEV(To(N),x) and g € SP'4(T'o(N), x) we can apply Theorem 11.10
(and noting that by assumption T)Xg € S¢'4(T'y(N), x)) to get

(Txf,9) =x(n)(f,TxXg) =

Since ¢ is arbitrary, this shows that TX f € SpeV(To(N), x).

Now we show T)Xg € S'4(I'o(N), ) for any g € S24(I'o(N), x). Since T)X is lin-
ear, without loss of generality we may assume g = f[ozNz]k with f € Sk(To(N1), x1)
such that N3Ny | N and x; (mod Np) induces x (mod N). Then one easily sees
that the conditions (n,N) = 1 and x; inducing x imply that TX = TX*. Hence
TXg = TX flan,)e = (TX* f)[an,]k. Since TX' f € Sp(T'o(N1),x1), this implies
that T)Xg € SP4(To(N), x)- O

Theorem 11.15 (Multiplicity one theorem). The eigenfunction space
VW ={f e SV (To(N),x) : TXf =A(n)f, ¥V (n,N) =1}
has dimension at most one.

Proof. We only give the proof for two special cases.

Case I: y is primitive and N is squarefree. Since x is assumed to be
primitive, SOld(I‘O(N) x) = {0} and SpV(To(N), x) = Sk(To(N),x). In view of
Lemma 11.12 take for any f € Sp(T'o(N), x), it suffices to show that f(n) = 0 for
all (n, N) = 1 implies f = 0. We now assume f(n) =0 for all (n,N) =1 and we
would like to show f = 0. For any d € Z with (d, N) =1, let 74 = (&) € To(N)
with a,b € Z so that ad — bN = 1. Then we have

XD (2) = fhals() = (N2 +d) 7 f ()
- (Nz—&—d)_kf(% —m), VzeH.
Making a change of variable Nz + d — z the above equation is equivalent to
X@F (59 = 4F (- ). Vzel
f(z

)=>00 f(n)e(nz) in Fourier expan-

Summing over a € (Z/NZ)* and writing

sion we get
Yo @Y Fme ) = Y Y fme(n(f - 72))-
de(Z/NZ)* n=1 de(Z/NZ)* n=1

Further computing the left hand side we get
LHS—Zf e(¥) 2. xd =2 e () G —n).
de(zZ/Nz)* n=1

with G(x, —n) the Gauss sum defined as before. Since x is primitive, by Exercise
20 we have

Z e (%) x(—n)G(x) =0,
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where for the last equality we used the assumption that f(n) = 0 for (n,N) = 1
and the fact that x(—n) = 0 if (n, N) > 1. For the right hand side we have

RHS:z_ka(n)e(—ﬁ) Z e (%) = _ka (—75) S(0,n; N).

n=1 a€(Z/NZ)*

By the multiplicity of the Kloosterman sum (cf. (3) of Exercise 12) and the as-
sumption that N is square-free we have

S(0,n,N) =[] S(0,n,,p)
p|N

with n, some integer depending on p and n. Now note that

S(O,npp) = > e(”;“)Z{]ifl %ﬁf

a€(z/pz)*

In paritcular, S(0,n; N) never vanishes. Equating left and right hand side we get
f(n) =0 for all n € N, proving that f = 0.
Case Il: y = 1y is trivial and N = p is a prime. We assume f € Sp°¥(Iy(p))

with f( ) =0 for all (n,p) = 1. We would like to show f = 0. To prove this we
show f € S¢4(Ty(p)). Since p is a prime by assumption we have

Define

so that f(z) = g(pz), or equivalently, f = pfgg[ap] To show f € SOld( o(p)), it
suffices to show g € Sp(Io(1)). First since f € Sp(To(p)) we have g = p? fla ke
Si(aplo(p)ay, ). By direct computation we have

apTo(p)a, ' =T%p) := {7 € SLy(Z) : v = (£ 2) (mod p)}.

Moreover, in view of the expression g(z) = we have g(z + 1) = g(z) for any z € H,
or equivalently, g[(§1)]x = g. Hence g € Si(T") where I' = (I'°(p), (§1)). Hence

we can conclude the proof by claiming that I' = SLy(Z). In view of Theorem 3.1 it

suffices to show ((1) _01) € I'. This is true since

0 -1\ [1-p —p\ (1 -1 1 0 .
1 0/ 1 1 0 1 1—-p 0/°
Remark 11.17. For the general case, define the operators on Si(T'o(N), x)
1
Axf=~ 2 (L) and Knf=Y p(d)Asf

beZ/NT d|N

Then one can check that

Anf(z) =" f(n)

N|n
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and
Kxf(z)= 3 Fne(nz)
(n,N)=1

so that
ker Ky = {f € Sp(To(N),x) : f(n) =0V (n,N) = 1} .

Then one show ker Ky C SP4(Io(N),x). See also [DS05, Section 5.7] for an
algebraic proof which is due to D. Carlton [Car01]

Definition 11.18. A nonzero joint eigenfunction f € Sp°V(Io(N),x) for {TX :
(n,N) = 1} is called a Hecke new form.

We have the following immediate corollary of Theorem 11.15 and Lemma 11.12.

Corollary 11.16. (1) Any Hecke new form can be normalized.
(2) A normalized Hecke new form f € Sp®(Lo(N), x) is a joint eigenfunction
for all Hecke operators with the n-th Hecke eigenvalue being the n-th Fourier

coefficient of f, i.e. TXf = A(n) with \(n) = f(n) for any n > 1. In
particular, N satisfies

(11.19) Fm)fn) = > x(d)d*'f(mnd™2), ¥ m.n>1.
d|(m,n)

12. REVIEW ON RIEMANN ZETA FUNCTION

In the next section we will study Hecke L-functions. Namely we attach an L-
function to each cusp form via its Fourier coefficients and then study its analytic
properties. Before doing so, we first give a brief review on the classical theory
of Riemann zeta function which our later proof on Hecke L-functions resembles.
Recall that the Riemann zeta function is defined by

=1
= —, R 1.
) =2 o Relo) >
It has an Euler’s product formula
(12.1) ) =Ja-p)"" Re(s) > 1

p

which follows from the fundamental theorem of arithmetic. We note that based on
this infinite product formula, Euler gave an alternative proof of Euclid’s theorem
on infinitude of primes.

We now sketch a proof of the analytic continuation and functional equation of
¢(s); see [SS03] for more details. Recall that the Gamma function is defined by the
following integral

I(s) = / e~ =dt, Re(s) > 0
0

with an analytic continuation to the whole s-plane. Consider also the theta function

o) = e ™, t>0.

ne”Z
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‘We also define
ad 2
)= e >0
n=1

so that 6(t) = 1 + 2¢(t). Note that 1(t) < e~ ™ has exponential decay in ¢. Then
for Re(s) > 1 we can cmopute

> s o0 X2 2 s
Yttt dt :/ e ™ s gt
/ >

n=1

o0 2
= Z/ e ™ sl gt
0

Here £(s) is called the completed Riemann zeta function. We split the above integral
into integration over (0,1) and (1, c0) respectively to get

g(s)z/o Y(t)z 1 dt+/100 Yttt dt.

Now by the Poisson summation formula one can show 6 satisfies the following
inversion formula

o(t) =t"26(1), >0,
which in terms of 1 is equivalent to
b =t (3 + st — 5, 150
= t 90l/2 o’ :

Applying this formula to the above first integral and then making a change of
variable 1/t — t we get

(12.2) £(s) = ——1 i+/100¢(t) (t* +t%) %

T 1-s

Since 1 decays exponentially as ¢ — oo, the above integral is absolutely convergent
for any s € C and defines an entire function. We thus get an analytic continuation
of £(s) (hence also ((s)) to the whole s-plane with two simple poles at s = 0,1

(while ((s) = 71:?55/(25)) has only one simple pole at s = 1 with the simple pole coming

from £(s) at s = 0 cancelled out by the simple zero of 1/T'(s/2) at s = 0). Moreover,
inspecting the above expression one sees that it is invariant after changing s to 1—s.
We thus get the following functional equation

§(1—5) = €(s).

13. HECKE L-FUNCTIONS

For each cusp form we can associate an L-function via its Fourier coeflicients.
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Definition 13.1. For any f € Sip(T'o(IV),x) the associated Hecke L-function is
given by

)

~

Li(s)=> SZ)

for s € C as long as the defining series is absolutely convergent. Here f(n) is the
n-th Fourier coefficient of f. We also denote by

Ap(s) == (T@) T(s)Ls(s), seC
the completed L-function associated to f.

Remark 13.2. We have shown in Corollary 8.11 that |f(n)| < n’%, hence the above
defining series for L¢(s) is absolutely convergent for fe(s) > g + 1.

Below we establish some general analytic properties of Hecke L-functions.

13.1. Analytic continutation. Using similar arguments as for {(s) we can prove
the analytic continuation of L(s) via an integral representation of it.

Proposition 13.1. For any f € S, (To(N), x), L#(s) has an analytic continuation
to an entire function.

Proof. Consider the integral

If(s) :/0 fly)y* " dy, seC.

Note that since f is a cusp form, it decays exponentially at cusps. More precisely,
the exponential decay at oo and 0 means respectively that |f(iy)] < e asy — o0
and |f(iy)] < e~°/Y as y — 0% for some positive constant c. In particular, this
implies that the defining integral for I¢(s) is absolutely convergent for any s € C,
thus I;(s) is an entire function. Next, we relate this integral with L;(s). Writing
f(iy) in Fourier expansion we have

Iy(s) = / S Flmpe 2yt dy
n=1

27rng'—>y Zf(n)(%rn)_s/ e—yys—l dy
n=1 0

— (2m) T (s) Ly (s).
Thus

Recall that 1/T'(s) is entire, see e.g. [SS03, p. 165, Theorem 1.6], thus the above
right hand side is also entire, giving the analytic continuation of L¢(s) to an entire
function. 0
Remark 13.3. We can also attach an L-function to a modular form f € My (To(N), x).

~

It can be shown that its Fourier coefficients also satisfy a bound |f(n)| < n® for
some « > 0. Thus L;(s) is absolutely convergents for Re(s) > a+ 1. Using similar
argument one can show Ly(s) also has an analytic continuation but potentially
with simple poles (due to the lack of exponential decay of f at cusps).
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Remark 13.4. Tt is also clear from the above proof that Ay(s) = N21;(s) has
an analytic continuation to an entire function. Moreover, using the exponential
decay of f(iy) as y — 07, 00, we see that Ay(s) is bounded on every vertical strip
o1 < Re(s) < o with the bounding constant depending on o7 and os.

13.2. Functional equation. In this section we prove the functional equation sat-
isfied by Af(s). We first prove it for the case when N = 1.

Theorem 13.2. For f € S;(Ty(1)) the completed L-function Ay(s) satisfies
(13.5) As(s) = i"As(k — s).
Proof. As before we have for Re(s) > & 41,

Ag(s) = (2m)T(s)Ly(s) = / " iy dy

1 o0
= [ sty [ sy
0 1
= (93"). Since f € Sk(I'g(1)) we have f[S]y = f which is equivalent to
f(z) = (=2)"Ff(~1/z) for any » € H. Taking z = iy we get
Fliy) = (—iy) ™" f (=1/iy) = "y =" f(i/y).

1 [e%e)
Ag(s) :/O Fy G y)yt T dy+/1 fliy)y*™' dy
= [ fliy) (y°+i"* ) dy
1 Yy

from which the functional equation (13.5) follows easily. Here in the second line we
made a change of variable % — y in the first integral of the first line. (I

The case for general N is slightly more involved since the transformation S =

(9 5') does not lie in To(N) when N > 1. Instead, we use the transformation

wy = (5 ') Note that wy also does not lie in Io(N), but it normalizes

To(N), ie. wy'To(N)wy = To(N). We will see later (Lemma 15.1) that for
f€S8SkTo(N),x), g:= flwun]k € Sk(To(N), X) is also a cusp form. Hence we can
also associate to it an L-function L, (s) and its completion Ag4(s) which both can be
analytically continued to the whole s-plane. We now state the functional equation
for cusp forms of a general level.

Theorem 13.3. Let f € Sp(To(N),x) and g = flun]r € Sk(To(N),X) be as
above. Then we have

(13.6) As(s) = i"Ay(k — s).
Proof. Similar as the N = 1 case we have

As(s) = N3 /O<> fly)y =t dy, seC,
and 0

Ay(s) = N%/ gliy)y* " dy, seC.
0
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Moreover, note that wy = —NIy, thus the relation g = flwn]r is equivalent to
(=D f = flwk]k = glwn]k, or equivalently, f = (—1)*g[wn]x. For z = iy € H we
have

. k N — 4 . _k _ i
fliy) = (=1)*N=(Niy) g (m) =i*N"2y "y (m) :
Plugging in this relation into the above expression of Af(s) we have

. s—k o i s—k—
Af(s):ZkN2/0 g<m)y Ml dy

VNYZY ik g / g (iy)y" 1 dy = i"Ay(k — s).
0

This finishes the proof. U

13.3. Euler’s product. In this section we prove the Euler product formula of
L¢(s). For this we need to further assume f to be a normalized Hecke new form.
We first give a general criterion on when an L-function has an Euler product.

Proposition 13.4. Let L(s) = 5°°, %% pe gbsolute convergent for Re(s) > o

n=1 s
for some o > 0 and satisfying a(mn) :na(m)a(n) for any (m,n) = 1. Then we
have

L(s) = H i alr’) . V Re(s) >o.

> = P
Proof. For any integer M > 2 define
Py :={p€N:pisaprimeand p < M}
and
Ay ={p" - pp* €N:p, € Py, 0< oy < M}.

Then by the fundamental theorem of arithmetic and the multiplicity of {a(n)},en
we have

(X2 -x

Js
pePy \j=0 p neAn

By Exercise 22 we have {1,2,..., M} C Aps. Hence for Re(s) > o

. ) || - s~ a(n) o
OENIEDD )< Do e 0 as Moo
pEPN 7=0 n=M+1
Similarly, one can show
M : 0 P
. alp’) | _ a(p’)
J\/}l_r)noo Z pis - H Z pis ;¥ Re(s) >0
pEPM \J=0 P \Jj=0
Combining these two limiting equations we get the desired identity. O

Exercise 22. Let Py and Ay be as above. Show that {1,2,..., M} C Ay

With this proposition we can now prove the Euler’s product formula for L(s)
when f is a normalized Hecke new form.
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Theorem 13.5. Suppose f € Sp®(T'o(N),x) is a normalized Hecke new form.
Then for any Re(s) > & +1

(13.7) Lis) =] (1 — flo)p~ + x(p)p’“‘l‘%)f1 :

P

Proof. Note that since f is a normalized Hecke new form, its Fourier coefficients,
being the Hecke eigenvalues, satisfy the relation (11.19) which is equivalent to the
following two relations

~ ~

Flmn) = f(m)f(n), ¥ (m,n)=1

and

FO ™ = f)Fe") — x@)p* 1 F('™1), paprime, r > 1.

In view of Remark 13.2, Proposition 13.4 and the above first relation we have for
Re(s) > & 41,

Ly(s) = H¢p(fa s),

where ¢,(f,s) == > 72, fz()f':). It thus remains to compute ¢,(f,s). For this we
apply the above second relation. We have

Sp(f.s) =1+ Fp)p~"+ > F@ ™"

r=2

=1+ F)p + Y fr e

=14 F o=+ 3 (F)F ")~ x@pt = Fr ) p=

~

=14 f()p =" + F)p Y F " = x(p)p* Y e
r=1

r=1
=1+ F()p~"bp(f,5) = X ()" "2y (£, 9)-
Solving this equation for ¢, (f, s) one easily gets the desired formula for ¢,(f,s). O

14. HECKE’S CONVERSE THEOREM

The functional equation (13.6) satisfied by Hecke L-functions is a consequence

of the modularity of the corresponding cusp form. The following theorem of Hecke
shows that when N = 1 the converse is also true, that is the functional equation
(13.5) actually also encodes the modularity.
Theorem 14.1 (Hecke). Let L(s) = >_,"; %2 with |a,| < n® for some o > 0 (so
that L(s) converges absolutely for Re(s) > a +1). Assume L(s) has an analytic
continuation to an entire function and A(s) := (2m)7*T'(s)L(s) is bounded on every
vertical strip and satisfies A(s) = i*A(k — s). Then f(z) == Y oo ane(nz) €
Si(To(1)).
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To prove this theorem we need some preliminary results. We first recall the
Stirling’s approximation formula for gamma functions (see e.g. Corollary 16 of this
online note) that for any fixed o € R,

(14.1) IT(0 4 it)| ~ V2r|t|7 2e ™ H0/2 a5 |t] = .

In particular, this implies that |['(s)| decays exponentially on any vertical line with
|Im(s)| — oo. Next, we recall the Phragmén-Lindel6f principle; see e.g. [Lan70, p.
262).

Proposition 14.2. Let f(s) be a function that is holomorphic in a strip o1 <
Re(s) < o9 and satisfying |f(s)] < el for all oy < Re(s) < o9 and for some
A > 0. Suppose that |f(s)| < |s|™ for Re(s) = 01,02 and for some M € R, then
|f(5)] < [s|M uniformly for all o1 < Re(s) < 0.

Remark 14.2. Let f be satisfying above conditions. When M = 0 Phragmén-
Lindelof principle asserts that if f is bounded on the two edges of a vertical strip
then it is also bounded on this strip. This is a generalization of the maximum
modulus principle (see e.g. [SS03, p. 92]) except here the region is no longer assumed
to be bounded. As a compensation of this relax of condition, the growth condition
1£(s)| < el*I" is necessary. For example, consider the function f(s) = e¢"" which
is holomorphic on the strip 3 < Re(s) < 2F with absolute value bounded by 1 for

Re(s) = Z,2F but | f(2m +it)| = e 5 o0 ast — —o0.

Finally, we introduce the Mellin transform of a function defined on the set of

positive real numbers. Given a continuous function ¢ : (0,00) — C, its Mellin
transform is defined by

M(6)(s) = / oy o

whenever this integral is absolutely convergent. One can show that there exist
constants —oo < 07 < 09 < oo such that the above integral is absolutely convergent
for any o1 < fRe(s) < oy and is divergent for Re(s) < o1 or Re(s) > g2. We have
the Mellin inversion formula which states that for any o € (01, 02)

(14.3) b(y) = —

=55 ( M(9)(s)y * ds, y>0.

o)
We note that M(¢)(s) can be interpreted as a Fourier transform of the function

P(r) = ¢(e") : R — C and Mellin inversion formula follows from the more classical
Fourier inversion formula; see e.g. [Bum97, p. 55-56]. We can now give the

Proof of Theorem 1j.1. First we show that f is holomorphic and vanishes at co.
For any z = « + iy € H using the bound |a,| < n® we have

00 0 n+1
|f(z+iy)| < Z n%e A < Z/ t%e ™Y dt
n=1 n=1v"

oo o0
:/ e~ ¢ ty:Ht yf(a+1)/ (e dt<<y7(oc+1).
1 Y
In particular, this shows that the defining series of f converges absolutely and
uniformly on compact sets, hence f is holomorphic on H. Moreover, f(iy) — 0 as
Yy — 00.
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Next, we establish the modularity of f. The relation f(z 4+ 1) = f(z) is clear.
We thus only need to show f[S], = f with S = ({ '), i.e. f(2) = (—2)"Ff(~1/z)
for any z € H. In view of analytic continuation, it suffices to prove this identity for
z =4y for all y > 0, that is,

(14.4) fliy) = (—iy) " fli/y) = iy~ f(i/y), YVy>o.

For this note that for fRe(s) > a + k, using the arguments as in Proposition 13.1
we have

As) = / " iy dy.

Note that A(s) is the Mellin transform of the function y — f(iy). Moreover, using
the Stirling’s approximation formula for the gamma function (14.1) and the fact
that L(s) is uniformly bounded for Re(s) > a + k, we have

(14.5) IA(s)] < || 72, ¥ Re(s) > a+k.

Hence we can apply the Mellin inversion formula (14.3) to get for any o > o + k,

fliy) = / Als)y~* ds, y> 0.
(o)

2mi

Next, we want to shift the contour from Re(s) = o to Re(s) = & for which we
need to control the growth of A(s) on vertical strips. To achieve this we apply the
Phragmén-Lindelof principle. By the functional equation and the bound (14.5) we
have

IA(s)| = |A(k — s)| < |k — 5|72 = |s| 72, V Re(s) < —a.

Thus by the Phragmén-Lindel6f principle we can conclude that for any —a < o <
k+ a,

IA(s)| < |s]72, V¥ Re(s) =o.

Thus we can shift the contour and apply the functional equation to get that for
any y > 0,

fly) = L / A(s)y=% ds = 1 ikA(k: —8)y~° ds
(%)

T 2w 2mi Jx)
k—sss 1 k k iky’k
=7 — PFA(s)y~ ) ds = : A(s)(1/y)~° ds
211 (%) 21 (%)
_ ok, —k o
=iy " f(i/y).
This proves the identity (14.4) and hence also the theorem. O

Remark 14.6. If in Theorem 14.1 we replace the assumption that A(s) has an
analytic continuation to an entire function with the weaker assumption that A(s)
has a meromorphic continuation with two potential simple poles at s = 0,1 and
ag € C is such that

A(s) +ag(s™! + ik(k —s5)7h

entire, then one can similarly show f(z) := >~ jape(nz) € My(Io(1)), cf. Theo-
rem 17.1 below.
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15. FRICKE INVOLUTION

In Theorem 13.3 in order to state the functional equation of the L-function of a

cusp form f € Sp(T'o(N), x), we need to define a new function g := flwn]x with

wN = ( J(\), Bl ) In this section we study this map more closely which in turn would

give us a more refined functional equation than (13.6) when f is a normalized Hecke
new form.

Definition 15.1. The Fricke involution Wy is an operator on S, (T'o(IN), x) defined
by
Wi f = flwun]e, ¥V f€SkTo(N),x),
where wy = (J% _01) is as above.
Lemma 15.1. For any f € S,(To(N),x), Wnf € Sp(To(N),X)-

Proof. The proof uses the fact that wxy normalizes T'g(N). Indeed, by direction
computation for any v = (‘; 3) € I'o(N), we have

wnywyt = (g ) =4/ € To(N),
or equivalently, wyvy = v'wy. Now take f € Sk(To(N), x), let g = Wi f. Then

9l = flwnlk = fYwnlk = x(a) flwn]e = X(7)g-
The fact that ¢ is holomorphic and vanishes at cusps follows from the same argu-
ments as in Proposition 9.3. (]

Next, we explore the relations between Wy and Hecke operators. Below when
there is no ambiguity we abbreviate Wy and wy by W and w respectively.

Proposition 15.2. For (n, N) = 1 we have
VV]\/T%< = X(n)TZEWN.
Proof. Note that by definition for f € Sk(To(N), x),
E_ _
WTXf=n2""Y" x(p)flpwlk
pPEAL
and
o E_
TXWf=n>"">" x(p)flwplk-
pPEA,
Note that for p = (&%) € Ay, wpw™ = (_%,2) ¢ A,. To transform it into A,
we left multiply an element in I'g(N) and use the modularity of f with respect to
Lo(N). More precisely, let 7 = (f: ?) € I'y(V) to be determined, we have by direct
computation
_ _ 0d+ BON  —pPa
| 1_
po=T wpw <—fyd—osz aa |’
To make p' € A, we need —yd—abN =0and 0 < —fa < aa,ie. —a < B <0. For
this we take a = ﬁ and v = —%. One easily sees that N | v and (a,y) = 1
(since ad = n and (n,N) = 1). Next, we choose 8 to make 7 € To(N), i.e.
ad — By = 1. One necessary condition is that 8y = —1 (mod «). We choose 8 to
be the unique integer —a < # < 0 satisfying this congruence condition. Once S is
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chosen we can find the unique § € Z such that 7 € T'g(N). With the choice of this

7 we have p/ = ((b[,)d) /*({22)) € A, with —a < 8 < 0 the unique integer such that
B(g% =1 (mod o d)). This map from pA,, to p’ € A, is a bijection as one can

easily write down the inverse map. Thus we have

flwplr = flrp'wle = x(1) flp'w]i

and
x(p)x(7) = X(a)x(a) = X(n)x((b,d)) = X(n)x(p')
Hence
TXWF=n"13" x(p)x(7) flo'wl
pEA,
=X()n= ™ Y X0 flowlk = X(n)WTXf
pEA,
as desired. [l

We also need another operator which brings Wi f back to Sg(T'o(N), x). Let K
be such that K f(z) = f(—%z). We list some simple properties of K.

Proposition 15.3. Let K be as above. We have
(1) K2 =1 and K\f = AKf.
(2) WK = (-1)*KW.
(3) K : Sk(L'o(N),x) = S(To(N), X).-
(4) Kf(2) =3 f(n)e(nz2).
(5) KTX =TXK for alln > 1.
)

Proof. (1) is clear. For (2) note that by definition W f(z) = N5(Nz)~*f(—~1/Nz).

Hence

KWf(z) = N¥(=Nz) "K(f(~1/N2)) = (~1)* N (N2)"*F(—1/N3).

Similarly,
WK f(z) = N*(Nz) *Kf(~1/Nz) = N*(Nz)"*f(-1/Nz).

Then (2) follows by comparing these equations.
For (3), take any f € Si(To(N),x) and v = (2%) € I'o(IN), we have

(KM = 32 (2) * K f(v2) = 4y (2) " F(=2).
Note that
az+b a(-2z)—b

VT T Erd —c(-2)+d =3(=2)

where 7 = ( * 7)) € I'o(N). Moreover, one sees that

Jy(=2) = —c(=2) + d = cz + d = j,(2).
Hence
(KNP =j7(-2)  TG2) = TAI(-2) = X3 F(-2) = XK (),
finishing the proof of (3). Here for the last equality we used the simple identity
x(¥) = x(v) = x(d).
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Property (4) follows easily by noting that K (e(nz)) = e(nz) which can be checked
easily using the identity e(w) = €2 = ¢=2™% = ¢(—w) for any w € C.
For (5), note that for any f € Sp(I'o(N),x) and n > 1,
E_
KTXf(z)=nz"" Y X(0)K floli(2)

PEAL

N X(0)K flplk(z) = TYK f(2). m

PEA,

E
:nQ

Let W = KW. We have the following properties of W which are direct conse-
quences of above properties of W and K.
Corollary 15.4. We have
(1) VI/2 =1 and WAf = AW f.
(2) W:SL(To(N),x) = Sk(To(N), X)-
(3) TXW = x(n)WTX for any (n,N) = 1.

With these properties we can show that Hecke new forms are eigenfunctions of
w.

Proposition 15.5. Let f € SV (T'o(N), x) be a normalized Hecke new form. Then
W f=mnf for somen e C with |n| = 1.

Proof. Since f is a Hecke new form, we have TXf = A(n)f for any n > 1 with
A(n) = f(n). By Corollary 15.4 we have for any (n, N) =1,

LYW [ =x(mWTYXf = x(n)WA(n)f = x(n)A(n)W .

We claim that x(n)A(n) = A(n) for (n, N) = 1. This is true since by Theorem 11.10
we have

M), ) = (TXf, ) = x() (£, TXf) = x(n)A(R)(f, f).
Hence we have
TXWf=AXn)Wf, V(nN)=1,

ie. W lies in the same eigenspace (for {T}X : (n,N) = 1}) as f. Thus by the
multiplicity one theorem we have W f = nf for some n € C. Moreover, f = W2f =
Wnf =W f = || f, implying that |y = 1. O

We now state the functional equation satisfied by eigenfunctions of W which in
particular includes Hecke new forms in view of Proposition 15.5.

Theorem 15.6. If f € S, (T'o(N), x) satisfies W f =nf for somen € C. Then
(152) As(s) = Tk O 5).

In particular, (15.2) holds for normalized Hecke new forms.

Proof. Let g = W f so that A(s) = i*A,(k — s) in view of Theorem 13.3. For this

g we also have

nf=Wf=KWf=Kg=>_ gne(nz).

n=1
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_ ~ =

This shows that g(n) = nf(n), or equivalently, g(n) = 7f(n). Hence

Ly(9) = 3 2 5T,

n=1

which a priori holds for Re(s) > & + 1 and can be extended to the whole s-plane
by analytic continuation. Thus we have

Ap(s) = iFAy(k — s) =" (ﬂ)k_s [(k — s)7L;(k — 5)

2

— i~k (@)Hr(k — 5)Ly(k - 3)

2m

= iiknAf(k —5).

Here for the last equality we used that I'(s) = I'(3) which can be easily seen from
its integral representation. O

Remark 15.3. If we further assume x is real and f has real Fourier coefficients, then
g(n) = ﬁf(n), implying that
Aq(s) = TA4(s).
Moreover,
Wf=KWf=EKnf=nKf=nf,
implying that (—1)¥f = W2f = 752f. Hence fj = +i*. Thus

Ap(s) = i"Ay(k — s) = i*Ay(k — s) = £A;(k — s).

16. TWISTING AUTOMORPHIC FORMS AND L-FUNCTIONS

The main goal of this section is to study how modular forms behave under
twisting by characters. This operation produces more cusp forms from a fixed cusp
form and hence also more functional equations associated to this cusp form.

Given f € My (To(N), x) and a primitive Dirichlet character x; of modulus Ny,
we define

Fa(z) =" f)xi(n)e(nz), =z €H,

~

where f(n) is the n-th Fourier coefficient of f as usual.

Theorem 16.1. Let f € My(To(N),x) and x1 (mod Ny) be as above. We have
Fxi € Mi(To(NN2), xx3). If f is a cusp form, then so is fy,.

To prove this theorem we need the following lemma giving an alternative expres-
sion of f,,.

Lemma 16.2. Keep the notation and assumptions as in Theorem 16.1. We have

Ny
(16.1) Fa = G](\zl) 3% (O flalr,
=1

_
where oy = (1 Nl).
0 1
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Proof. Using the fact that x; is a periodic function of period N; we can rewrite

Ny
Fa@ =" Y fne(nz).
= n=r (nrr?ood N1)

Note that
1
2 : (r—=m)\ __ _
Fl e(T) —I(TL:T’ (Inod Nl)),

where I(n = r (mod Ny)) is the indicator function of the condition n = r (mod Ny).
Hence we have

Ny oo 1 Ny N
() =200 Y 5 > e (U5) Fme(nz)
r=1 n=0 =1
N, N oo
= Nil ZZXl(r)e <M1> Z A(n)e (n(z — NLI))
=1 r=1 n=0
1O
=3 26000 (- )
/=1
= S0 S RO fladi ),

finishing the proof, where for the second equality we used the identity G(x1,¥) =
X1(£)G(x1) which is where we need the primitivity assumption on xi. O

We can now give the

Proof of Theorem 16.1. Givenany vy = (%) € To(NN) we need to show fy, [7]x =
XX3(7) fx:- By Lemma 16.2 we have

Fra ke = X1 () fleee ]

with ap = ((1) 1%) as in Lemma 16.2. Let ¢’ € Z/N1Z to be determined. Then
by direct computation we have

14 al' —de cd?0?

_ (o N METRT R L

Yoy, = p 20 =:T.
C + T1

We wish to choose ¢’ so that 7 € To(NNZ). Since NN? | ¢ one easily sees that for
at' —dt
N1

this we only need the term in the top right entry of 7 to be an integer. We

choose ¢ = d?¢ so that
all —dl  ad*(—dl  (ad—1)dl  bedl
N NN N
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is indeed an integer. With this choice we have 7 € To(NNZ) and 7 = (&%) (mod N).
Thus

fX1 = Nl ZX] Tadzf

- Gz(v)il) ZE (0)x3(d)x(d) f el

= xxX1(N S

as desired. Here in the second line we made a change of variable d?¢ + ¢ which can
be done since (d, N1) = 1. O

Let f and x; be as above. Define the L-function and completed L-function
associated to fy, by for Re(s) > £ +1

o
£(s,x1) Z

and

JaNz\’
A¢(s,x1) = ( o 1) I(s)Ly¢(s,x1)-
We have the following functional equation satisfied A (s, x1).

Theorem 16.3. Assume further f € S (T'o(N), x) and (N, N1) =1. Then As(s, x1)
has an analytic continuation to an entire function, is bounded in vertical strips and
satisfies the functional equation

(16.2) Ap(s,xr) = Fwlxa)Ag(k — s,x1),
where g = flwn]i € Sp(To(N), X) and w(x1) := x(N1)x1(N)G(x1)*Ny .
Proof. Let N = NN2. Since fy, € Sk(To(N),xx}) and As(s,x1) = Ay, (s), by

Proposition 13.1 and Remark 13.4 it has the analytic continuation and is bounded
on vertical strips and satisfies the functional equation

Af(57X1) = ikAle[w]\_]]k(k‘ — 8).

This theorem then follows by the following proposition which asserts f,,[wyg]r =
w(x1)9x%, - Indeed assuming this identity, we have

Ag(s,x1) = i*w(x1)Agy, (k — s) = i*w(x1)Ag(s, x1)
as desired. O

Proposition 16.4. Keep the assumptions and notation as in Theorem 16.3. Then
we have

(163) le [wNle]k = w(Xl)g)Zl'
Proof. Let N = NN? be as above. By Lemma 16.2 and noting that y;(¢) = 0

whenever (¢, N1) > 1 we have

G
falwgle = ](\21) > O flamwgls,
0€(Z/N1Z) ¥
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where oy = ((1) _fil> is above. By direct computation we have for any v € Z

- N1 v
awy = Niwy (N LteN | Qo
Ny

Let 7 be the second matrix in the right hand side of the above equation. Take v € Z
so that fvN = —1 (mod N;). With this choice of v we have 7 € T'o(NN). More-
over, since (N, N1) = 1, this congruence relation gives a one-to-one correspondence
between £ € (Z/N1Z)* and v € (Z/N1Z)*. Hence we have

G
Falwgle = S S s syl
b ve@/nizy>

SGa) e CoWyglrans

Ny
ve(Z/N1Z) %

:G](\fl) > xa(=oN)x(N)glowlk

vE(Z/NLZ) %

—a-N ) G

= x1(N)x(N1)G(x1)* Ny gy,

Here in the last line we used that x1(—1)G(x1) = G(x1), |G(x1)|*> = N1 and applied
Lemma 16.2 for g € Si(I'o(N), X)- O

~—

S e

vE(Z/N1Z)*

~—

17. WEIL’'S CONVERSE THEOREM

With the new functional equations proved in the previous section via twisting,

we can now state the converse theorem for general levels, generalizing Theorem
14.1.

Theorem 17.1 (Weil). Let {a,}n>0 and {b, }n>0 be two sequence of complex num-

bers satisfying max{|ay|, |bn|} <€ n® for all n > 1 and for some oo > 0. Let

f(z) =30 gane(nz) and g(z) = Yo" o bne(nz). Let k be a positive integer and let

X be a Dirichlet character of modulus N € N. Let L¢(s), Ly(s), A¢(s) and Agy(s)

be defined as before. Similarly, for any primitive Dirichlet character x1 of modulus

Ny, let Ly(s,x1), Lg(s,x1), As(s,x1) and A(g(s,x1) be given as before. Suppose
(1) As(s) and Ay(s) both have meromorphic continuation to the whole s-plane

with

Af(s) +aps™ + boi(k —s)7!
and
Ag(8) +bos™ 4 agi F(k — )7t

both entire and bounded on vertical strips and satisfy the functional equation
(13.6).

(2) Let R be a finite set of primes co-prime to N and attaining every primitive
residue class modulo N. Suppose for any N1 € R and for any primitive
x1 modulo N1, As(s,x1) and Ag(s,Xx1) have analytic continuation to en-
tire functions and are bounded on vertical strips and satisfy the functional
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equation (16.2). Then we have f € Mp(To(N),x) and g = flun]r €
M (Lo(N), X)-

Below we give a sketch of this theorem. For more details see [Iwa97, Theorem
7.8] or [Bum97, Theorem 1.5.1].

Proof (Sketch). The general idea is to show that assumption (1) implies the relation
g = flwn]x while assumption (2) implies the modularity. We first show the above
first assertion. Similar as before we have for Re(s) > 1,

oo
Ag(s) = N3 (2m)"T(s)L;(s) = N / (i) — ao)y™" dy.
0
Then by the Mellin inversion formula we have for o > 1,

fliy) —ao = N72Ap(s)y™* ds.

2mi (o)
Now by the Phragmén-Lindeldf principle we can shift the contour from fRe(s) = o
to Re(s) = & and picking up the simple pole of A(s) at s = k to get

1 s
(17.1) fliy) —ag = 2t Jos) N™3As(s)y™* ds + boi* N~ 3y~
2

Similarly, we have

1 s
(17.2) g(iy) — by = 5t N72A¢(s)y ° ds+ agi FNTEy Tk,
TJ(%)

Starting from (17.1) and applying the functional equation (13.6) we have for any
y >0,

1 s
fliy) —ao==— [ N75*Ay(k — s)y™> ds + boi" N~ 5y~ *
271'7, (%)
—S S 1 _k=—s, _ _ . _k
k—s— - N k— ZkAq(S)y (k—s) dS—i—bosz ’;y k
271 (%) -
'kN—E —k . /
= [ NTEA(s)(1/Ny) " ds + byl Ny
211 (%)
(17.2)

FNTEyh (g(i/Ny) — by —agi N3 (I/Ny)’k) +bit N5y
AN S
=i"N~2y *g(i/Ny) — ao.
This identity, together with an analytic continuation implies the desired identity
9= flwn]k-

Now we sketch how assumption (2) implies modularity. First, the condition
max{|ay|, |b,|} < n® implies that f, g are holomorphic functions on H (via similar
estimates as in proof of Theorem 14.1). Now using similar arguments as above
one can use assumption (2) to show that relation (16.3) holds for any primitive

Dirichlet character x; of modulus N7 wtih N7 € R. Next, use relation (16.3) and
apply identity (16.1) for the pairs (f,x1) and (g,x1) (wtih x; to varying) ¢ to

16We proved (16.1) under the assumption that f € Si(T'o(V), x), however inspecting the proof
we see that the only assumption we used for f is the condition that f has a Fourier expansion of

the form f(z) = Y 7 f(n)e(nz) which is clearly satisfied by the two functions here.
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show g[y]x = x(7)g for any

(17.3) ~= <]]\\2) ]3 > with N1, No € R and u,v € Z such that v € To(NV).
2

Finally, for any v = (25) € T'o(IN), there exists Ny, No € R such that

=0 ) )60

for some m,n € Z and (! ) of the form as in (17.3). From this one can easily

show that g[y]x = x(7)g for any v € Tg(N). Hence g € M(T'o(N), x). This then
implies that f = (—1)¥glwn]x € Sk(To(N), x), finishing the proof O

17.1. An applications of the converse theorem. In this section we illustrate an
application of the converse theorem, namely we construct explicit modular forms
via L-functions. The general strategy is that if for a given L-function L(s) =
Yoo L apn~® one can verify that it satisfies all the assumptions in the converse
theorem, then one can conclude that the resulting function f(z) := Y > ane(nz)
is a modular form with ay € C determined by the assumption (1) in (17.1).

We first consider the most classical L-function, namely the Riemann zeta func-
tion ((s). In view of the Euler’s product formulas (12.1) and (13.7), in order to
construct a Hecke L-function from the Riemann zeta function, one needs two copies
of Riemann zeta functions. More precisely, for a given even integer k > 4, consider
the L-function

L(s) :=((s)C(s =k + 1),
and its completion
A(s) :== (2m)7°T'(s) L(s).
We note that both L(s) and A(s) have a moromorphic continuation in view of the

meromorphic continuation of ((s). The following proposition confirms that A(s)
satisfies the assumptions in Hecke’s converse theorem Theorem 14.1.

Proposition 17.2. The L-function A(s) has simple poles at s = 0,k and is holo-
morphic elsewhere. Moreover, it satisfies the functional equation

A(s) = i*A(k — s).
This proposition follows easily the following lemma which we leave as an exercise.

Exercise 23. Show that

k/2
(17.4) A(s) =275 3¢(s)E(s — k + 1) H s—2j+1),

where &(s) = 7721 (s/2)((s) is the completed Riemann zeta function.
We can now give the

Proof of Proposition 17.2. The meoromorphic continuation of A(s) follows easily
from the expression (17.4) and the meromorphic continuation of £(s). Moreover,
we see from (17.4) that A(s) has 4 potential simple poles at s = 0,1,k — 1, k.
However, the two potential poles s = 1,k — 1 are canceled out by the simple zeros
from the factors s — 1 and s — k + 1 respectively from the product in (17.4). Thus
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A(s) only has two simple poles at s = 0 and k as claimed. For the functional
equation we again use (17.4) to get
k/2
Ak —s)=2"5"1n5¢(k —s)é(1—s) [k —s—2j+ 1)

J

~

Il
-

k/2
=275 (s — k+ DE(s) (-1 F [[(s — 20 +1)
i=1
=i"A(s),
as desired. Here for the second equality we used the functional equation £(1 —s) =
¢(s) and made a change of variable k — 2j + 1 — 2¢ — 1. [

Applying Hecke’s converse theorem Theorem 14.1 (see also Remark 14.6) we
immediately get the following.

Corollary 17.3. Let k > 4 be even and let L(s) and A(s) be as above. Let {ap }nen
be such that L(s) = Y .o apn™* for Re(s) > 1. Then f(z) == >~ ane(nz) €
M. (SLo(Z)), where ag := — Resg=g A(s).

Remark 17.5. Indeed one can see that the modular form f from the above corollary
is an Eisenstein series: By direct computation we have ag = —((0){(—k + 1) and
apn, = oi—1(n) for any n € N. Using the functional equation &(s) = £(1 — s) and the

formula ((k) = —<2m)kBk with By, the k-th Bernoulli number (cf. Homework 1)

2k!
one sees that ((0) = —% and ((—k+1) = (—1)’“_1%. Hence ag = —%, implying
that f = f%Ek, where Fj is the normalized weight-k Eisenstein series given in
(2.23).

Next, we state (without proof) a theorem constructing modular forms of general
level via Dirichlet L-functions.

Theorem 17.4. Fori = 1,2, let x; be a primitive Dirichlet character of modulus
N; € N. Let x = x1x2 which is a Dirichlet character of modulus N := NyNs.
Assume N > 1 and let k € N be such that x(—1) = (=1)*. Consider the L-function

L(S) = L(val)L(Sik+17X2) = Zannisa 9‘{9(5) > 1a
n=1

where for anyn € N, ap, = an(X1,X2) = Y ugen X1(a)x2(d)d* 1. Let ag = 0 unless
k=1 and Ny =1 in which case we set ag = %L(O,X). Define

f(2) = frupe(2) = Z ane(nz).
n=0
Then f € Mg(To(N),x).

18. RANKIN-SELBERG L-FUNCTION

In the previous section we have constructed a Hecke L-function (degree two)
from two Riemann zeta functions or Dirichlet L-functions functions (degree one).
In this section, we discuss a construction where one forms a degree four L-function
from two Hecke L-functions and establish some of its analytic properties that one
would expect from an L-function. This construction is due to Rankin [Ran39] and
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Selberg [Sel40] independently, and we mainly follow the treatments in [Bum97,
Chapter 1.6].

18.1. Real analytic Eisenstein series. To describe this construction, we need to
introduce a new object, namely the real analytic Eisenstein series. For simplicity
of presentation throughout this section we assume I' = SLo(Z). Recall that the
stabilizer subgroup of the cusp oo is given by I'ng = (£(§1)). The real analytic

FEisenstein series is defined by
E(z,s) := Z Jm(yz)%, z € H, Re(s) > 1.
YET o \I'
Here the assumption PRe(s) > 1 is to ensure absolute convergence. Indeed, recall
that there is a bijection between I'so\I' and Z2, /= sending T's (¢ ) to +(c, d); see

Lemma 7.1 and Remark 7.1. This implies the following alternative expression of
E(z,s) that

(18.1) E(z,5) = % 3 i

2s?
(c,d)eZ2, |CZ + d|

S

from which one sees that the defining series of E(z,s) is absolutely convergent as
long as Me(s) > 1.

Since left multiplying an element in I, does change imaginary part of a complex
number, the above definition does not depend on the choice of the coset represen-
tatives of T'oo\I'. In particular, we get that E(z,s) is I'-invariant in the variable
z € H, that is E(yz,s) = E(z,s) for any v € " and z € H. Moreover, unlike the
holomorphic Eisenstein series defined in (2.13), E(z, s) is not holomorphic in z € H,
rather, it is only smooth in the two real variables z,y with z = x + iy.

The analytic properties of E(z, s) are better described in terms of its completion
which is defined by

E*(z,8) :=&(28)E(z,s) = m °T(s)((2s)E(z, s).
Theorem 18.1. The completed Eisenstein series E*(z,s) has a meromorphic con-

tinuation to all of s € C which is analytic except with two simple poles at s = 0, 1.
Moreover, it satisfies the functional equation

(18.2) E*(z,8) = E*(z,1 —5)
and the growth condition that for any s # 0,1,
(18.3) |E*(2,8)] s y° asy — oo with o = max{Re(s),1 — Re(s)}.

Proof (sketch). Using similar arguments as in the proof of Theorem 7.6 one can
prove the following Fourier expansion formula for E*(z, s) that

FE*(z,8) = £(28)y° +&(2 —28)y* % + 4\/332 Ns—1/2(n)Ks_1 /2(2mny) cos(2mnz),
n=1

a

where 175—1/2(”) = Zad:n(a)57% and
1 [~ - dt
K(y) = 5/ et/ 2y 0 S€ C,y>0
0

is the K-Bessel function of the second kind; see [Bum97, p. 66-69] for more details.
It is not difficult to see from the definition that both K(y) and ns(n) are invariant
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after chaning s to —s, and K;(y) has an exponential decay in y in the sense that
for any s € C,

|Ko(y)] <s e ¥? asy— oo

Using this exponential decay we can see that the right hand side of the above
Fourier expansion formula is absolutely convergent for any s # 0,1. When s = 0,1
it has a simple pole coming from the terms £(2s) and £(2 — 2s) respectively. This
proves the meromorphic continuation of E*(z, s).

Next, using the functional equations {(1 — s) = £(s), Ks(y) = K_s(y) and
ns(n) = n—s(n) we see that the right hand side is invariant changing s to 1 — s,
proving (18.2).

The growth condition follows by noting that the contribution of the non constant
terms is uniformly bounded due to the exponential decay of K;(y). Thus for any
s # 0,1 we have

B (2,8)] < [€(25)y°| + [6(2 = 28)y" *| + 1 <y as y — oo,
with o = max{fRe(s),1 — Re(s)} as in this theorem. This finishes the proof. O

Remark 18.4. From the above Fourier expansion formula and the integral expression
(12.2) for £(s) we see that

Ress—1 E*(z,5) = Resg—1 £(2 — 25) = =

Equivalently, we have
1 1 3 1
7E* Z2,8) = —F7x = — = .
29" O T T T AmE
We note that this identity (that Ress—1 F(z,s) equals the of the covolume of the
corresponding lattice) is not a coincidence and indeed holds for general lattices'”.

Ress—1 F(z,s) = Ress=1

18.2. Rankin-Selberg L-function. Assume ¢ : H — C is smooth, I'-invariant
and has super-polynomial decay at oo, that is

(18.5) lp(z +iy)| <y~ ™M forall M >0asy — oo.

Since ¢ is assumed to be I'-invariant, it has a Fourier expansion

bt i) = 3 buly)

newz
with

1
) :/0 o(x + iy)e(—nzx) dz.

The 0-th Fourier coefficient ¢o(y) is usually called the constant term of ¢. Given ¢
as above, define
Iy(s) := W_ST(S)C@S)M(%)(S -1,

where M()(s — 1) :== [~ do(y)y*~" dy—y is the Mellin transform of ¢ evaluated at
s — 1. Note that since ¢ has super -polynomial decay in y at oo, so is its constant

IFor a general non-uniform lattice I' < SLa(R), the (real-analytic) Eisenstein series of T' at a
cusp a is defined by Fq(z,s) := Zvern\r(ﬁmaa_lfyz)s, where I'y < T is the stabilizer group of a

in I and o4 is the corresponding scaling matrix defined as before.
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term ¢g. Thus M(¢pg)(s — 1) is absolutely convergent as long as Re(s) > 1. We
have the following proposition showing that I(s) has a meromorphic continuation.

Proposition 18.2. Let ¢ be as above. Then we have for any Re(s) > 1,

(18.6) Iy(s) = E*(z,5)8(2) du(z),
I\H

where du(z) = dzgy is the hyperbolic measure (restricted on a fundamental domain

for T\H). In particular, I;(s) has a meromorphic continuation to all of s € C with
at most simple poles at s = 0,1 with

Ress=1 I4(s) = % . d(2) du(z).

Moreover, 1,(s) satisfies the functional equation I,(1 —s) = I4(s).

Proof. The proof uses the unfolding argument which is the essence of the Rankin-
Selberg method. We first note that the in particular parts are easy consequences
of the identity (18.6) together with the properties of the Eisenstein series E*(z.s)
stated above. For example, assuming (18.6) and using the super-polynomial decay
of ¢ at oo and the growth condition (18.3) of E*(z,s) and taking the standard
fundamental domain (3.3) for T'\H we see that the integral in (18.6) is absolutely
convergent for any s # 0,1, proving the meromorphic continuation of I,(s). The
other assertions follow similarly. We thus only prove (18.6). For fRe(s) > 1, we can
compute the integral

/F RCOECRTOR / S Im(12)°6(2) du(2)

T yer \P

S [ et ) dutr ),
YFr

YET o \I'
Now using the I'-invariance of ¢ and the hyperbolic measure p we have

Bz 9)0(2) du(z) = 3 / y*é(2) du(z)

T\H YET o\ vFr

. dxdy
= yio(x + iy .
/ i)

vEl oo\ VFT

Here the first equality can be justified by the super-polynomial decay of ¢ in y and
the I'-invariance of ¢. The disjoint union Zverm\r ~vFr is a fundamental domain
for T'oo\H which we can take to be {z +iy € H:0 <z < 1}. Hence

[ B 8)00e) ) = A ( / ol + i) dx) ol dy

:/0 do(y)y*? dy.

Multiplying both sides by £(2s) we get (18.6), finishing the proof. O
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Let f,g € My with one of them cuspidal. For Re(s) > 1 sufficiently large, the
Rankin-Selberg L-function of f and g is defined by

L(s, f x g) = s—2k—|—22

and its completion is defined by
Als, f x g) = (2m)T(s)D(s — k+ 1)L(s, ] x g).

We now apply Proposition 18.2 to ¢(z) := y* f(2)g(z) to deduce the meromorphic
continuation and functional equation of A(s, f x g).

Theorem 18.3. Let f,g € My, with one of them cuspidal. The completed L-
function A(s, f x g) has a meromorphic continuation to all of s € C with at most
simple poles at s = k,k — 1. Moreover, it satisfies the functional equation

(18.7) Als,fxg)=A2k—1—s,f xg).

Proof. Take ¢(z) = y* f(2)g(2) and as before one can check that ¢ is T-invariant.
Since one of f and g is cuspidal, we have ¢ decays exponentially at oo. Moreover,
writing f and g in Fourier expansion we get

o0() = 3 3 [ oF Flnflme(nz)ems) d

n=0m=0

1

=0 3 et fuim) [ el(n - m)a) de

0

=3 F)amyyte ™,

where for the last equality we used that f( )g(0) = 0. Hence we have for Re(s) > 1,

/ ¢0(y s—2 dy—/ )yk+e 26—47rny d
0
dmnysy O Fvaros [0 (Y YT Ly dy
N nz_:lf(n)g(n)/o (47rn> 4

= (4n) " F (s + k- 1) i Fn)g(nyn=*+s=b,
n=1

Now from the last equation in the proof of Proposition 18.2 we have

=¢(2s) /OOO do(y)y® 2 dy

_ 4—s—k+1ﬂ_—23—k+11—\( ) (s—i—k _ 1)@( )

~

(g4,

HME%

where I, (s) is the meormorphic function defined in (1 8.6). This shows that
As, fxg)=7""FI,(s — k+ 1),

giving the desired meromorphic continuation of A(s, f X g). Moreover, the functional
equation (18.7) also follows from this relation and the functional equation I,(1 —
s) = I4(s) satistied by I(s). O
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Remark 18.8. If f and g are further assumed to be normalized Hecke eigen-cusp
forms, the corresponding Rankin-Selberg L-function also has an Euler product for-
mula

L(s, f xg) = [TTTTI = c:(p)B;()p™*) ", Re(s) > 1.

p i=1j=1
Here a;(p), 8;(p) € C are such that

Le(s) =[]0 = aa(p)p™*) " (1 = c2(p)p™) ",
p
and
Le(s) =[x = Bip)p~) " (1 = Ba(p)p~*) .
See [Bum97, Theorem 1.6.3] for more details.

19. QUADRATIC FORMS, LATTICES AND THETA SERIES

A real quadratic form in n variables is a function @) : R™ — R of the form

Qx) = Z bijriv;,
1<i<j<n
with b;; € R. Equivalently, one can use a real symmetric matrix A € M,(R) to
represent Q. Explicitly, let A = (a;5)1<i,j<n With
. T ifi =4y,
aﬂ_“”_{ lby if1<i<j<n.

Then we have Q(z) = ' Az. Here 2 denotes the transpose of the column vector
x € R™. We introduce the following definitions regarding a quadratic form.

Definition 19.1. A quadratic form @ is called
(1) positive definite if Q(x) > 0 for any = € R™ and Q(z) = 0 if and only if
z=0.
(2) integral if Q(Z™) C Z.
(3) even if Q(Z™) C 2Z.

Alternatively, these definitions can be rephrased in terms of the symmetric ma-
trix A. Indeed, a quadratic form Q(x) = z*Ax is

(1) positive definite if and only if all eigenvalues of A are positive.
(2) integral if and only if a;; € %Z for all 1 < i # j < n and a;; € Z for all
1<1<n.
(3) even if and only if a;; € Z for all 1 < i # j < n and a;; € 2Z for all
1 <1< n.
Given a positive definite, integral quadratic form () we are interested in under-
standing what integers that it can represent, that is, for what m € Z there exists
v € Z" such that Q(v) = m. Equivalent, define the counting function

re(m) = #{v e Z": Qv) =m},

then we would like to know when rg(m) is positive. If such a representation exists,
the next next natural question is to count the number of such representations, i.e.
to find a formula for rg(m). In the next two sections we study these two questions
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using modular forms. The bridge for this approach is the following theta function
associated to Q)

(19.2) Oq(2) = Y €™M =14 Y " ro(m)e™™, zeH.
veL™ m=1

Indeed we will show that ©, is a modular form of weight % and the main ingredient
is the Jacobi’s inversion formula (see Theorem 19.4 below). To state this formula,
it is more convenient to represent quadratic forms by lattices.

19.1. Backgrouds on lattices. Quadratic forms can also be defined in terms of
lattices in R™. A lattice L in R™ is a discrete subgroup with full rank, that is, there
exist wy,...,w, € L such that L = Zw; + - - - + Zw,, and Spang(L) = R™. The set
{wy,...,wy} is called a basis of L. Given a lattice L with a basis {w1,...,w,},
the Gram matriz of this basis is defined by A = (a;j)1<; j<n With a;; = wiw;, or
equivalently, A = g'g where g = (wy,--- ,w,) is the matrix with the i-th column
given by w;. It is clear that the Gram matrix A is real symmetric and thus defines
a quadratic form
Qr(z) = ' Az = 2'g'gz = ||gz|*.

where || - || is the usual Euclidean norm on R"™. We note that a priori @ also
depends on the choice of a basis of L, however, since we are interested in its values
at integer points and L = gZ", we have

(19.3) Qu(Z") = {|lw|®: we L}

is independent of the choice of basis, we thus only use the subscript L for this
quadratic form. Moreover, it is easy to see from the definition that @y, is positive
definite. On the other hand, the following lemma shows that every positive definite
quadratic form comes from some lattice.

Lemma 19.1. For every positive definite quadratic form @ in n variables, there
exists some lattice L C R™ such that QQ = Q.

Proof of Lemma 19.1. Let A be the real symmetric matrix representing @, i.e.
Q(z) = z* Ax. Since Q is positive definite, the bilinear form (-, )¢ sending (x,y) €
R™ x R™ to x! Ay defines an inner product in R™. Let {u,...,u,} be an orthonor-
mal basis of R™ with respect to this inner product, i.e. (u;,u;)g = 0;; for any
1 <i4,j <n. Let g € GL,(R) be such that gu; = e; for each 1 < ¢ < n, where
e; € R™ is the vector with the i-th coordinate 1 and 0 elsewhere. Now let L = gZ™;
it has a basis wy = geq, ..., w, = ge,. Then we have

quuj = (u;, uj)Q = 0i; = efej = (gui)tguj = ufgtguj, V1<i,j<n.

This implies that A = g'g, or equivalently, a;; = elg’ge; = wiw, for any 1 <
i,j7 < n. Hence A is the Gram matrix of the basis {w1,...,w,}, i.e. @ = Qr as
desired. 0

We introduce several notions regarding a lattice: We say a lattice L C R"™ is

(1) integral (resp. even) if Qr, is integral (resp. even) as a quadratic form.

(2) unimodular if the volume of its fundamental domain, denoted by vol(R™/L),
is 1.

(3) self dual if it equals its dual lattice which is defined by

L#::{ueR":uthZforanyweL}.
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Remark 19.4. In view of the relation (19.3), we see that L is even if and only if
|lw||? € 2Z for any w € L.

Lemma 19.2. Let L C R™ be a lattice with a basis {w1,...,wy}. Let {uy,...,up}
be the dual basis, i.e. ubw; = &;; for any 1 <i,j <n. Then L# = Zuy + -+ Ty,
In particular,

(19.5) vol(R™/L) vol(R™/L#) = 1.

Proof. Let L' = Zuy + - - - + Zu,, be the lattice generated by {uq,...,u,}. We need
to show L' = L#. The relation L' C L¥ is clear in view of the definition of L#.
For the other containment, take any v € L* and consider the vector

n
0= Z(utwl)uZ el
i=1
Then we have @#fw; = ufw; for any 1 < i < n, implying that u = @ € L’. This proves
that L' = L#. For the moreover part, let g = (w1, -- ,wy,) and § = (uy, - ,uy) S0
that L = gZ™ and L# = gZ". Then the relations ufw; = &;; (1 < i,j < n) imply
that gg = I,,, i.e. g = (¢*)~!. Thus we have

vol(R"/L) vol(R"/L*) = | det(g) det(g)| = | det(g) det((¢")~")| = 1,
finishing the proof. (]

In view of the relation (19.5) it is clear that a self dual lattice is also unimodular.
The converse in general is not true. However, when L is even, these two notions
are indeed equivalent.

Lemma 19.3. An even lattice is self dual if and only if it is unimodular.

Proof. One direction is trivial. We only need to show an even, unimodular lattice
is also self dual. Assume L C R” is an even, unimodular lattice. Then by (19.3)
we have ||w||? € 2Z for any w € L. In particular, for any u,w € L, we have
lull?, |w|)?, |u + w||?* = ||ul|®> + ||[w]|® + 2uw are all even, implying that u'w € Z.
Since wu,w are arbitrarily chosen, by definition of the dual lattice, this implies
L C L#. But then the assumption that L is unimodular forces L = L#. This
finishes the proof. O

19.2. Jacobi’s inversion formula. Let ) be a positive definite quadratic form
in n variables. In view of Lemma 19.1 we may assume Q = @ for some lattice
L C R™. The main goal of this section is to prove Jacobi’s inversion formula for
the theta series Og, defined in (19.2). Below we will use the slightly simplified
notation Oy, for B¢, .

Theorem 19.4 (Jacobi). Let L be a lattice in R™ with L# its dual lattice. Then
we have for any z € H,

(—iz)~%
19. =" —1/2).
Remark 19.7. Here when n is odd, i % is defined as following: For any nonzero z € C
we choose arg(z) € (—m, | and define log z := log |z| + i arg(z) and for any s € C,
define z* := e*1°8%, For instance, following this convention, we have i2 = e while
(—i)z = e~ %1,
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To prove this theorem, we need the following Poisson summation formula for
lattices.

Proposition 19.5. Let L and L¥ be as above and let S(R™) be the space of
Schwartz function on R™. Then for any f € S(R™) we have

(19.) > 1) = g 3 J0)
weL ueL#

where f(y) = Jan f(x)e_%”ty dx is the Fourier transform of f.

Proof. The case when L = Z™ follows from exact same arguments as in section 1.1
(which handle the one dimensional case); we omit the proof. For a general lattice

L = g7, we have
Do fw) =) flgv) =Y fulv),

weL vEL™ vEL™

where f,(z) := f(gx) for any x € R". By direct computation we have

(19.9) T = | Jo@em v de= | flga)e™ "V da
gz 1 (x)e—%i(g’lx)ty da
[det(g)] /e
1

_ ~2miat(g) 'y g
ORI Jen T v
— 1 ({01
Hence applying the Poisson summation formula for the integer lattice and noting
that L# = (g")"'Z" (see the proof of Lemma 19.2) we get

> 1) = Y 50 = e X @)

weL vEL™ vEL™
1 ~
~ vol(R"/L) Z f(w),
we L#
finishing the proof. O

Remark 19.10. We note that the arguments in section 1.1 indeed imply the following
more general formula that

(19.11) Z flx+v)= Z f(v)e%i”tx, Vo eR"Y,

veZn vezn
and (19.8) (for the case of L = Z™) follows by taking « = 0.

We can now give the

Proof of Theorem 19.4. First note that in view of the relation (19.3) we have
Or(z) = el
weL
Next, using analytic continuation we may prove (19.6) for z = iy € H. Let f(z) :=
e="l1* and for any A > 0 denote by fx(z) = f(Az). It is well known that the

Fourier transform of this function equals itself, i.e. f = f. Moreover, applying
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o~

(19.9) (for g = AI,,) we have ?;(5) =" (%) for any £ € R" and A > 0. Now by
definition

ou = B = g w > Tt

weL weL weL#
- Z f( ) TS el
vol( R” /L vol( R" /L
we L#
(=i xiy)” 2 Mol (—1/i) _ (Z1X )% :
— T || W 1 — _1
vol(R"/L) ;:#e vol®r /L) Or+ (=),
w

finishing the proof. Here for the fourth equality we used the identities that
Ftw) =y 57 (%) =y ir (%) 0

19.3. Even unimodular lattices. A direct consequence of Jacobi’s inversion for-
mula is that the theta series of an even, unimodular lattice is a modular form with
respect to the modular group.

Corollary 19.6. Suppose L is an even unimodular lattice in R™ and further assume

n =0 (mod 8), then O € M, /2(SLz(Z)).
Proof. Using the expression

Oz ti) =1+ Y erilvlzo vl
weL\{0}

it is easy to see that the above defining series is absolutely convergent for any
x + 1y € H and uniformly convergent on any compact sets in H. Hence it defines
a holomorphic function. Moreover, one can also show that ©p(co) = 1. It thus
remains to show that ©.[T], = O and OL[S]y = O, where T = (} 1) and
S = (974') are the two generators of SLy(Z) as before. The first equation is
equivalent to Or(z + 1) = Or(z) for any z € H which follows easily from the
assumption that L is even. The second equation is just Jacobi’s inversion formula

(19.6) after noting that (—i)% = 1 since n = 0 (mod 8). O

The next proposition shows that the assumption that n = 0 (mod 8) is in fact
redundant.

Proposition 19.7. Suppose L is an even unimodular lattice in R™, then n =
0 (mod 8).

Proof. Let U =TS = (§1)(93') = (1 ') with 7,5 as above. Note that U? =
(921) and U® = (' ). By Lemma 19.3 L is also self dual. Since L is even we
have ©p(z +1) = O (2) for any 2z € H. Thus

OL(Uz) =OL(TS2) =O1(Sz+1) = OL(S2) = (—iz)2 0L (2),

where the last equality is just Jacobi’s inversion formula (19.6). From this and
noting that U2 = —I, we have for any z € H,

Or(2) = OL(U32) = (—iU?2)20L(U?2) = (—iU%2)% (—iU2) 201 (U2)
= (- ZU2) (- zUz) ( )5@L(z).
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This implies that

(—iU?2)2 (—iUz2)2 (—iz)2 =1 V zeH.
By direct computation we have

(—iU?2)% (—iUz2)% (—iz)% = (—1)37w (U2 x Uz x 2)5

(—1 Z—l ) .3n
X X X z =172,
z—1 z

implying that i% = 1 which further implies that n = 0 (mod 8). O

m“;
w3

= (i)

The next proposition shows that n = 0 (mod 8) is not just a necessary condition
for the existence of even unimodular lattices, it is also sufficient.

Proposition 19.8. There exists an even unimodular lattice in R™ if and only if
n =0 (mod 8).

Proof. The direction “=" is just Proposition 19.7. For the other direction, we
assume n = 0 (mod 8) and we construct an even unimodular lattice as following:
Let

F, = {v ezZ": Zui =0 (mod 2)}
i=1

be the set consisting of integer vectors with sum of its entries even. Next, let
§=(3,---,3) €R" and let E, = (3, F,,) be the group generated by ¢ and F,,. We
claim that F, is an even unimodular lattice. First, note that F;, is kernel of the
group homomorphism form Z" to Z/2Z sending v to Y, v; (mod 2). Hence F,
is an index 2 subgroup of Z™. Next, using the fact that 2§ € F,, (since n is even)
we see that F), is also a lattice in R™ containing F;, as an index 2 subgroup. Hence
vol(R"/E,,) = vol(R"/Z"™) = 1, i.e. E, is unimodular. Next we show F,, is even. It
suffices to show ||w|? € 2Z for any w € E,,. By definition we can write w = v + k§
for some v € F,, and k € Z. Then we have (noting that 2> = z (mod 2) for any
x €Z)

k%n

l)l = Jlo]]® + ko' (20) + K2[16])% = (k+1) Y v + — =0 (mod 2),

where for the second congruence equation we used the assumptions that v € F,
and n = 0 (mod 8) (so that % is even). This finishes the proof. O

We have the following direct corollary regarding the counting function rg(m) for
quadratic forms coming from an even, unimodular lattice.

Corollary 19.9. Let L be an even unimodular lattice in R™ and let Q = Q, be the
quadratic form coming from L. Then we have for any m € N,

ro(2m) = — == g4_1(m) + O (m" = ),

where k = 3, By is the k-th Bernoulli number and o(m) = 3_,,, d° is the s-divisor
function. Moreover, for n =8 or 16 the above error term does not exist.
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Remark 19.12. For n = 8, one can check that {d,e; —eq,ea—e3, -+ ,e6—e7,e6+er}
is a basis for Eg. The Gram matrix of this basis is

2 0 0 0 0 0 0
2 -1 0 0 0 0
-1 2 -1 0 0 0

-1 2 -1 0 0

o -1 2 -1 0
0 o -1 2 -1
0 0 0o -1 2 -1
1 2 0 0 0 0o -1 2

which corresponds to the quadratic form

SN
I
coococoo
cooco
cCooc o=

8 7
Qx) =2 fo - QinzH_l + 221 25.
i=1 i=1

For this quadratic form Corollary 19.9 implies that rg(2m) = 24003(m) (noting
that By = —55.) Similarly, since Bg = —55 we have rq(2m) = 48007(m) for any
quadratic form coming from an even unimodular lattice in dimension 16.

Proof. By Corollary 19.6 we have ©1, € My(SLa(Z)) = CEy, @ Si(SL2(Z)) where
FE is the normalized weight-k Eisenstein series. Hence O = AEj + f for some
A€ C and f € Sk(SL2(Z)). By comparing the constant term in both sides we get
that A = 1. Noting that rg(2m) is the m-th Fourier coefficients of ©, (cf. (19.2))
and using the Fourier expansion of Ej, (see (2.23)) we get that

ro(2m) = —%Jk,l(m) + R(m),

where R(m) is the m-th Fourier coefficient of the cusp form f. The formula then
follows from Deligne’s bound that |R(m)| < m = 7 on the Ramanujan’s conjec-
ture. The moreover part is true since for n = 8 or 16, S;(SL2(Z)) = {0} by the
dimension formula (4.1). O

Finally, we mention that in general even unimodular lattices are not unique.
Indeed, there are 1 (Eg), 2 (E16 and Eg @ Fg'®) and 24 even unimodular lattices
in dimension 8, 16 and 24 respectively, and the number grows rapidly after di-
mension 24. For instance there are more than 1 billion even unimodular lattices
in dimensional 32; see [Kin03, Corollary 17] and the references therein for more
details.

In the next section we study quadratic forms whose theta series are no longer
modular forms with respect to the modular group. For simplicity of presentation
we do not treat the most general case, instead we consider the most classical case,
namely the sum-of-squares quadratic form.

20. SUM OF SQUARES FUNCTIONS
Let n € N and let
(20.1) Qulz) =22+ - +22

be the sum-of-n-squares quadratic form. It is a classical question to represent a pos-
itive integer by @,. For small n it is not always the case that such a representation

18This is the direct sum of two Eg lattices given by Fg @ Fg := {(u, v) ERC 1y v € Eg}.
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exists. Indeed, a positive integer m is a sum of two squares if and only if m has the
prime decomposition m = p* ---pp* with a; even whenever p; = 3 (mod 4) (see
e.g. [HWO08, Theorem 366]), while Legendre’s theorem (see e.g. [Shi20]) states that
m is a sum of three squares if and only if m # 4%(8b+7) for some non-negative inte-
gers a,b. Finally, Lagrange’s four-square theorem (see e.g. [HW08, Theorem 369])
confirms that every positive integer is a sum of four squares. This, in particular,
also implies that every positive integer is a sum of n > 4 squares.

In this section we derive explicit formulas for the number of such representations,
(i.e. for the counting function rq, (m)) for the special case when n = 0 (mod 4). We
note that the other cases are similar but slightly more involved. For simplicity of
notation we abbreviate rg, (m) and Og, by r,(m) and O,, respectively. As before
we use modular forms and the main ingredient for our approach is the Jacobi’s
inversion formula (19.6).

Proposition 20.1. Assumen =0 (mod 4) and let k = 5. We have ©, € M (')
if n =0 (mod 8) and ©,, € My(T'(2)) if n =4 (mod 8), where 'y = (T2, S) is the

congruence subgroup generated by T? and S as discussed in Ezxercise 6.8.

Proof. The facts that ©,, is holomorphic on H and at cusps follow from similar
arguments as in Corollary 19.6. Next, note that ©,(z +2) = 0,,(z) for any z € H,
i.e. ©,[T?%; = ©,,. Moreover, applying Jacobi’s inversion formula (19.6) to L = Z"
we get

O,(82) = (=i2)*0,(2), Vze€H.

When n =0 (mod 8), k = % =0 (mod 4) and (—i)* =1, thus 6,,(Sz) = 2¢6,,(2),
ie. ©,[S]x = ©,. This implies that ©,, € My(Ty).
When n = 4 (mod 8) we have 0,,[Sz] = —0,(z) for any z € H, ie. ©,[S]x =

—O,,. Then let U = (}9) and note that U = —ST2S. Thus
en[U}k = @n[_STQS] = _@n[TQS]k = _@n[s]k =0,.

This shows that ©,, is weakly modular with respect to (I, T? U), which by
Exercise 24 below is the principle congruence subgroup I'(2). This finishes the
proof. (I

Exercise 24. Show that I'(2) = (£1, (3 %),(39)).

As before we will proceed by writing ©,, as a linear combination of functions
from Mj,(Tg) or M (I'(2)) and then compare the Fourier coefficients in both sides.
The main term would come from Eisenstein series. In the next two sections we
first study the Eisenstein series of a principle congruence subgroup I'(N) and then
specify to the special case when N = 2 where certain things can be simplified.

20.1. Eisenstein series of principle congruence subgroups. Let N € N. Re-
call from Lemma 6.10 that the cusps of I'(/V) are in one-one-one correspondence
with order N elements in (Z/NZ)?. For any integer k > 3 and and any order N
element ¥ € (Z/NZ)? the weight-k Eisenstein series associated with U is defined by

_ 1
20.2 Gi(z) := T —— H.
(202) &= > g 2
meZ\{0}
m=v (mod N)
The following lemma shows that G} is indeed a weight-k modular form with respect
to T'(N).
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Lemma 20.2. For any v € SLy(Z) we have GY[y];, = G}". In particular, G} €
M (L(N)).

Proof. The in particular part follows from the first statement and the fact that
['(N) acts trivially on the group (Z/NZ)?. We thus only need to prove the first
statement. For this take v = (‘j Z) € SLs(Z), we have by definition

- 1
szk(z) = (CZ + d)_k 2 : az+b k
mez*\ {0} (ma &g +ma)*

m=v (mod N)

1
- mEZZ%{O} ((m1a +mac)z + (mab + mad))*
m=v (mod N)
Making a change of variable n = (ny,ns) := (mya + mac, m1b + mod) and noting
that n = m~y runs over all nonzero integer pairs satisfying n = 7y (mod N) we get

v 1 Rl
Grlk(z) = Z m =G, (2),
neZ*\{0}
n=v75 (mod N)
as desired. (I

Next, we compute the values of G} at cusps. First, using similar computation
as in Lemma 20.2 one can easily compute

_ ) _— 1
Gi(00) = yll)rgo Giliy) = Z mk
2

0=mi1=v; (mod N)
0#ma=vz (mod N)

is exactly the contribution of the terms with m; = 0. For a general cusp r = yoo €
QU {oo} we can use Lemma 20.2 to compute
- - 0 if (vy)1 Z 0 (mod N),
Gi(r) =G}, 0) = .
(r) k)i (o) { Y m=(m)s (mod Ny s if (7)1 =0 (mod N).

Next, we compute its Fourier expansion (at the cusp 0o). Note that since I'(IV) o =
(“x£7 (1)), GY has the following Fourier expansion

o0
Gi(z) = D enaln)e ()
n=0
for some cx5(n) € C. Since e(’F) decays exponentially in Jm(z) as Jm(z) — oo,
we see that the constant term ¢ 5(0) is exactly limy oo G} (iy) which by defini-
tion is G} (o). Non-constant Fourier coefficients are computed in the following
proposition.

Proposition 20.3. We have for any n > 1,

ckw(n) = N7Fcy Z d" e (d%) + (=1)* Z d¥ e (‘j‘f}’z)
d|n d|n
Z=v; (mod N) L=—v; (mod N)
—27i)*
where Cy, = %



102 SHUCHENG YU

Proof. As mentioned above ¢, 3(0) = G} (o0) is the sum over all terms with m; = 0.
Thus we have

GA=as0+ 3 st Y e

mi1>0 m1 <0
m=v (mod N) m=v (mod N)
1 1
= c5(0 E S — g L E S —
crw(0) + = (myz + ma)k +(=1) P (m1z + ma)F
m=v (mod N) m=—7 (mod N)

. C}C,U(O) +I+II

Here for the second equality we made a change of variable m — —m. Now to
compute I we rewrite mq as mg = vy +£N with ¢ € Z and apply the identity (2.19)
to get that

1 1
mzzvgz(l:nod ) (mlz + m2)k: % Nk(m1?V+U2 + g)k:

_ e + v
= N7FC Y db e (dmlz )
d=1 N

Hence

_ Nk — k1 M1z + U2
I=N"Cj E E d" e (dN>
my1>1 d=1
mi=v; (mod N)

Mk N o, (d

Z=v; (mod N)

The formula for I7 is identical except with —v in place of ©. Plugging these formulas
for I and IT into the previous expression for G} we get the desired formula for

ckz(n). O

20.2. Specifying to N = 2. We now specify our discussion to the case when
N = 2 where the formulas can be further simplified mainly due to the simple
fact that x = —z (mod 2) for any =z € Z. First note that since —Ir € I'(2),
M (T(2)) = {0} if k is odd, we thus assume k > 4 is even. Note that there
are three vectors in (Z/2Z)? with order 2, namely (1,0),(0,1) and (1,1). They
correspond to cusps 00,0 = Soo and 1 = T'Soo respectively. For the values at
(1,0) _
cusps we have G} 7 (00) = 0,

G 2(0) = GV (Sl (00) = GYV% (00) = G (00)
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and G,(gl’o)(l) = G,(gl’o)TS(oo) = chl’l)(oo) = 0. The computations for the other two
Eisenstein series are similar and are summarized in the following chart.

00 0 1
B 0 1 0
(20.3) X
E.” 1 0 0
MY 0 0 1
Here E} := m@‘z is the normalized Eisenstein series at v.
Next, for the non-constant Fourier coefficients, since v = —v; (mod 2), k is even

and e (%2) = e (=%2) = (—1)%*2 we have for n # 0,

ceo(n) =250 Y0 (F)™ad* =21 Crofly (n).

d|n
Z=v1 (mod N)

Explicitly, we have

oV =Y a7 oMV m)y = Y (—1tdt
dln d|n
% odd I even

and

1,1 _
oV m) = Y (-1)tah
d|n
4 odd

Remark 20.4. For later reference we note that Jlgl_’(i) (n) and J,g();ll)(n) have the

following alternative expressions which can be checked directly:

1,0 n — 0,1 n —
(205)  of"Pm)= > (-1)"Hd Tl and o*V(n) = Y (~1)mrdahL
dln d|n
4 odd 7 even
20.3. Explicit formulas for r,(m). With the results on Eisenstein series for I'(2)
obtained in the previous two sections, we derive in this section explicit formulas

for the counting function r,(m). We first treat the case when n = 0 (mod 8).

Recall that ©, € My (I'g) with k = % and I'g = (T?,S). Recall T'y has two cusps
represented by co and 1 (see Example 6.8 and case (2) of Example 6.11) and thus
M, (Tg) contains two linearly independent Eisenstein series. We can use Eisenstein

series of I'(2) to represent these two Eisenstein series.
Lemma 20.4. Assumen =0 (mod 8) and let k = 5. Then we have G,(Cl’l), G,(Cl’o) +
GO e My (T).

Proof. Tt suffices to verify F[S], = F for F = Gg’l) or G,(Cl’o) + G,(Co’l). For F =
G,(Cl’l) we have
Gg’l)[S]k _ G;:’US _ G;:’l),

as desired. Here for the first equality we applied Lemma 20.2 and for last equality
we used that (1,1)S = (1,—1) = (1,1) (mod 2). Similarly, for F = Gg’o) + G’(€0,1)
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we have
(G](:,o) 4 G;O’l)) S = G;l,o)s " G’(go,l)s _ G}(Co,l) n G,](€1,0)7
as desired. This finishes the proof. O
Now in view of this lemma and Proposition 20.1 we have that for n = 0 (mod 8),
O = MG 40 (G 4 G0V ) 4 f

for some A1, Ay € C and f € Sk(Ty). The next goal is to determine the coefficients
A1 and Ag. Since we have computed the values of these Eisenstein series at cusps,
it suffices to compute the values of ©,, at cusps. For the cusp oo, it is easy to see
that

We thus only need to compute ©,,(1).
Lemma 20.5. Assume n =0 (mod 4) we have ©,(1) = 0.

Proof. Since 1 = T'Soo, by definition ©,,(1) = 0,,[T'S](c0) and (noting that T'S =
(19')
Ou[TSIk(2) = 2%, (1 - 1) =»7F Z erillvl?(1=1)
vEL™
_ —k Z —7ﬂi“v“2+2ﬂivt5
=2z e z
vEL™

n

where § = (%,--+,1) € R" and for the last equality we used that [[v||> = Y7 | v; =
206 (mod 2) for any v € Z". Plugging in z = iy we get

Ou[TS](iy) = (iy) ™ 3 e T+,

veL™

Let f(z) = e~ml=1” and apply the generalized Poisson summation formula (19.11)
for f 5 we get for any z € R",

> fale o)=Y Fa)em™

vEL™ vEL™

"
:yka f<%>e27rwx
VEL™
2
—k _ el ® +27Ti’Ut£E
=Yy E e v )
vEZL™

where for the second equality we used that ]T\/\g(x) = y’kf(%) = y’kf(ﬁ) Hence

taking = ¢ we get
OuTSl(iy) =" > fy(+v)=i" D emmlotly,
v€Z7l ;UGZ"L
Taking y — oo one can show that the above rightmost sum vanishes, implying that
0,(1) = 0. This concludes the proof. O

We can now determine the coefficients A\; and A2 to compute r,,(m).
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Theorem 20.6. Assume n =0 (mod 8). Then for any m € N,

2k e
@ g VO
d|lm

k
2

(20.6) Tn(m) = ),

where By, is the k-th Bernoulli number.
Proof. In view of the chart (20.3) and the computations that ©,(co) = 1 and
©,(1) = 0 we see that

1
2(1 = 27%)¢(k)
for some f € S;(I'y). Taking the m-th Fourier coefficient in both sides we get

0, = (G0 + ) +

ralim) = g (A )+ 02 m) + R(m)
where Cj = % and R(m) is the m-th Fourier coefficient of the cusp form f.
Using the formula ¢(k) = — (22#,;!),63;C (cf. Homework 1) we get
(20.7) 2700 ek >0,

212 MCk) - DB,

Moreover, using the alternative expression (20.5) for al(ﬂlfi)(m) and 01(607,11) (m) we get

03y (m) + 02 (m) = (-~ 1),

d|m
Finally we can finish the proof by plugging all these terms into the above expression
for r,,(m) and applying Hecke’s bound Proposition 8.10 on Fourier coefficients of
cusp forms to get |R(m)| < m5. O

Remark 20.8. When n = 8 one can show using the pole/zero theorem Theorem 4.3
that S4(T'g) = {0}. This implies that (using also that By = —355)

rg(m) =16y (—1)™"d®.
dl

Next, we treat the case when n =4 (mod 8). Recall from Proposition 20.1 that
in this case ©,, € My(I'(2)) with k = % as before. The case when n = 4 (i.e. when
k = 2) is a little different since the construction of Eisenstein series discussed in
the previous section is no longer valid. (Recall that we need the weight parameter
k to be greater than 2 to ensure absolute convergence.) We thus treat this case

separately later. For now we assume n > 12 and in this case we similarly have
On = MG + 0600 + 0G0 + f

for some A1, A2, A3 € C and f € Si(I'(2)). To determine these coefficients we need
to evaluate values of ©,, at the three cusps of I'(2) which can be represented by
00,0, 1 respectively. We similarly have ©,,(c0) = 1 and ©,(1) = 0 (cf. Proposition
20.5). It thus remains to compute 6,(0). For this we note that Jacobi’s inversion
formula implies that in this case (noting that i* = —1) ©,,[S]x = —©,, and hence

0,(0) = 6,[S]k(c0) = =6, (c0) = —1.

We can then determine these coefficients to give the following formula for r,(m).



106 SHUCHENG YU
Theorem 20.7. Assume n =4 (mod 8) with n > 12. Then we have

Tn(m) = (2F _Qﬁ)Bk(—l)ml ;(—1)“7‘?&1 +0(m?).

Proof. Comparing the chart (20.3) and the above values of ©,, at cusps, we get
that

1 0,1) (1,0)

On = 5 (G0~ G)
P am e )

with f € Si(I'(2)). Taking the m-th Fourier coefficient and applying Hecke’s bound

on the Fourier coefficient of f and the identity (20.7) we get

—2k 0,1 1,0 k
Tn(m) = @~ 1By (01271)(7”) - Uzifl)(m)) +O(m?2).
Finally we can apply (20.5) to get

(071)

Ok—1 (m) — Ug_’(i)(m) = Z (_1)m+ddk71 . Z (_1)m+ddk71

dlm djm
o even o odd
— (_1)m Z (_1)d+%dk—1 + Z (_1)d+%dk—1
dlm dlm

‘7 even = odd

_ (71)m Z(il)dJr%dkfl'
dlm

This finishes the proof. (I

Finally we treat the case when n = 4. In this case ©,, € My(I'(2)). For this
we need more backgrounds on weight-2 Eisenstein series. We refer the reader to
[DS05, Chapter 4.6] for more details and here we only give a sketch of the necessary
ingredients to compute 74(m). As mentioned before the problem is that the defining
series for k = 2 in (20.2) is no longer absolutely convergent. Instead we define G§
with © € (Z/NZ)? of order N by fixing the order of summation as following:

_ 1
G5(z) := —— zeH
2(2) Z B Z (m1z 4 my)?
m1€Z ma=vy (mod N)
m1=v1 (mod N) mo#0 if m; =0
Then inspecting the proof of the Fourier expansion in sections 20.1 and 20.2 we see
that G3 shares the same Fourier expansion formula as G}, for k > 3. However, due
the the lack of absolute convergence GG no longer satisfies the conclusion in Lemma
20.2, instead it satisfies the following transformation rule that

F[7}2:F7 V’YEF(N)a
where F(z) := G5(2) — §25m5- This function F is however not holomorphic any-

more, to resolve this problem we consider differences of Eisenstein series. Indeed,
for any two 0,7 € (Z/NZ)? of order N, the difference

T v N _ [ 4 v’ 0
G:) = G5 () = (€36) = gz ) = (6500~ i)
satisfies the same transformation rule as F', while is still holomorphic. Specifying

to N = 2 we have the following more explicit description of the space Ma(I'(2));
see [DS05, p. 108 and Theorem 4.6.1].
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Theorem 20.8. We have M3 (T'(2)) = Spang {Ggo’l) - GS’O), Gél’o) - Gél’l)}.

This, together with our previous computations of values of ©,, and Eisenstein
series at cusps implies that

_ 1 (0.1) _ ~(1,0)
94 = 2(1 — 2-F)¢(k) (Gk G )

from which we can derive the famous Jacobi’s four-squares formula.

Theorem 20.9 (Jacobi). We have for any m € N,

ra(m) =28 Z d.
d|
4td

Proof. By the same arguments as above and using Theorem 20.8 we have

R S 0= CR VR )
04 = 2(1—2-2)((2) <G2 Gz ) ’

which implies that (noting also that By = &)
ra(m) = 8(—1)"1 (1) d.
dlm

If m 2 0 (mod 4) (so that the condition 4 t d for any divisor d | m is automatically
satisfied) one can easily check that

ra(m) =8(-=1)" Y (1) Td=8) d=8) d.
d|m d|lm

dlm
44d

We thus assume m = 0 (mod 4). For such m we can write it as m = 2*mg with
a > 2 and mg odd. Then every divisor d | m is of the form d = 28dy with 0 < 8 < «
and dg | mg. We then have

ra(m) =8| - > do+i > 2Pd— > 2%dy

do|mo B=1do|mo do|mao
=8(2°—(2°=2)+1) > do=24 ) do,
do|mo do|mo

while

1
8% d=8Y" Y 2%dy=24>" dy,
dlm B=0dy|mo do|mo

4td

showing that

r4(m) =8 Z d,
dl

4td

as desired. O
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21. DISTRIBUTION OF INTEGRAL POINTS ON SPHERES

In view of the counting formula (20.6) we know that when n = 0 (mod 8) the
number of integral points on the sphere {z € R" : ||z]|> = m} increases to oo as
m — oo. In this section we study the distribution of these integral points. More
precisely, we project these points onto the unit sphere S"~1 := {x € R" : ||z| = 1}
and then study the distribution of these projected points on S™~!. For this, for
any m € N define

(21.1) Ay = {ﬁ ez, || = m} c st

We will show that {A,,}men become equidistributed on S"~1 as m — oo, which
roughly speaking says that these point sets become more and more evenly dis-
tributed on S®~!. To state the main result, we need to introduce some more
definitions.

Definition 21.2. Let (X, B, 1) be a probability space with X a topological space,
B the o-algebra of Borel sets and p a probability Borel measure on X. Let C.(X) be
the space of compactly supported continuous functions on X. Given a sequence of
finite point sets { A, bmen of X, we say {A;, bmen equidistribute on X with respect
to p if for any f € C.(X),

(21.3) #1Amw§ f(z) — /X fdu asm — oc.

Remark 21.4. Note that if f = xp is the indicator function of some Borel set
B C X with finite measure, we have

Y fl@)=#(4n N B).
TEA,

Using an approximation argument one can replace the above continuous test func-
tions by indicator functions to show that {A4,, }men equidistribute on X with respect
to w if and only if for any Borel set B C X with boundary of measure zero

#(Am N B)

#Am

So intuitively equidistribution means that asymptotically the number of points of
A, inside any fixed “nice” set is proportional to the measure (or mass) of this
set. In practice in order to prove equidistribution one usually uses the following
equivalent statement which also follows from an approximation argument: The sets
{A,,} men equidistribute on X with respect to u if and only if (21.3) holds for any
f from a dense subset of C¢(X).

— u(B) asm — 0.

As can be seen from the above definition, in order to talk about equidistribution
one needs a measure on S" ! to begin with. There is a natural probability measure
(called spherical measure) on S™~1 which is characterized by the property of beign
rotation-invariant.

Definition 21.5. Let n : R>y — R be a smooth, compactly supported non-negative
function satisfying [, n([|lz[|*) dz = 1. Let o, be the measure on S"~! defined
such that for any f € C(S"™1),

/Sn—l flz) dom(z) = /n (<)1) f (ﬁ) dx.
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Lemma 21.1. The measure o, is a rotation-invariant probability measure on S™ 1.

Proof. The fact that o, is a probability measure comes from the assumption that
Jemn(l|2]?) dz = 1. We thus only need to show it is rotation-invariant. Note
that rotations in R™ (with respect to the origin) are parameterized by the special
orthogonal group

SO,(R) :={g € SL,(R) : g'g = I, } .
We thus need to show

/S Fgx) don(z) = /SM F(z) do (@)

for any f € C(S™~!) and any g € SO,,(R). For this by definition
fgzdanx:/nfo ) dw
[t don@) = [ ntlel)f ()

= [ ntielys ()
:/ i f(x) dan($)7

as desired. Here for the second equality we made a change of variable gz — = and
used the facts that g € SO,,(R) preserves || - || and the Lebesgue measure. O

Remark 21.6. Although our definition of o, depends on the choice of the function
7, the defining properties of o, that it being rotation-invariant and a probabil-
ity measure uniquely determine o,. Indeed, we have the following more intrinsic
description of o,, that for any Borel set A C S,

o) LebC)

Leb(Bl) ’

where Leb is the usual Lebesgue measure on R", B; C R™ is the unit ball centered
at origin and A= {tx: 0 <2 <1, x € A}. Note also that o,, naturally gives an
inner product on the function space C'(S"~!), namely, for any f,g € C(S""!) we
can define (f, g) := [g._1 fg doy,.

We can now state the main result of this section.

Theorem 21.2. Assumen =0 (mod 8). The point sets { Ay }men with A, C S"~1
given as in (21.1) become equidistributed on S"~1 with respect to o, as m — oc.

The remaining of this section is devoted to proving this theorem.

21.1. Harmonic analysis on spheres. In this section we collect some results
from spherical harmonic analysis which are necessary for our proof to Theorem
21.2. The main reference is the online note by Garrett [Garl4]. Let
0? o2
A= — 44—
0z3 ox2
be the usual Laplace operator on R™. A function f on R"” is called harmonic
if it is twice continuously differentiable in all variables and is annihilated by the
Laplace operator, that is, Af = 0. Let C[z] be the polynomial ring in variables =
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(21,...,2,), and for any d > 0 let CD[z] := {f € C[z] : f(Az) = A?f(z) V A € C}
be the subspace of homogeneous polynomials of degree d. Let

Hy={f € CDla]: Af =0}
be the subspace of harmonic homogeneous polynomials of degree d and let
Hq = {f‘Sn—l 1 fe Hd}

be the restriction of functions in Hy to S™!. Elements in Hq4 are usually called
spherical harmonics. The main goal of this section is to prove the following theorem
regarding Hg.

Theorem 21.3. The subspace Sg>o0Hq is dense in C(S™1). Moreover, (Ha, Ha') =
0 whenever d # d'.
We first prove the first statement of this theorem. Define a pairing
Clz] x Cla] = C, (P,Q) = (Q()P(x))|,_y»
Khere Q(0) is Q(x) but with = (z1,---,z,) replaced by (%,~-~ ,%) and
Q(0) is its complex conjugate. For instance, if Q(z) = 2% + 221209 — 37%, then
Q(9) = aa—;g + 28%18% — 368—;2. We list a few properties of this pairing.
1 3

Proposition 21.4. Let (-,-) be the paring as above.
(1) (+,-) is a Hermitian form, that is for any A1, A2 € C, Py, Pa, @1, Q2 € C[z],
(AP + X2 P2, Q) = Mi(Pr, Q) + A2 (P2, Q)
and ~ ~
(P,AM1Q1 + A2Q2) = Mi(P, Q1) + A2(P, Q).
(2) For any P,Q € C|z]
(AP,Q) = (P, |]*Q).

(3) (P,Q) = 0 whenever P,Q are two homogeneous polynomials of different
degrees.
(4) For any (a1, ,an), (b1, ,bn) € Z>o with Y i, a; =Y i, bi we have

a1 . .an b1 bny al!"'a’n! if(a17"'7an>:(b17~-~7bn);
(] Tn'r Ty ') = { 0 otherwise.

In particular, (-,-) is positive definite on the subspace C(D[x].
Proof. (1) can be checked directly. (2) is true since by definition
(P [21*Q) = [2]?Q(9) P()],_, = AQ(D)P(2)|,_,

=Q)AP(z)[,_, = (AP,Q).
For (3), suppose deg(P) > deg(Q), then Q(d)P(x) is a homogeneous polynomial
of degree deg(P) — deg(Q) and thus its evaluation at 0 vanishes. On the other
hand if deg(P) < deg(Q), then Q(0)P(z) = 0. In particular its evaluation at 0
also vanishes. For (4) the case when (aq,...,a,) = (b1,...,b,) follows from direct
computation. If (a,...,an) # (b1,...,b,), since > 1, a; = Y. b;, there exists
some 1 < i < nsuch that b; > a;. Then by direct computation 68; (x{* - 2xin) =0

b
i
T;

implying that (z{*--- 22", x}{l ---a%) = 0. The in particular part follows since the
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above assertion implies that {z]" --- 2% : a; > 0, Y, a; = d} is an orthogonal basis

with respect to (,-) and (v,v) > 0 for any element v from this basis. O
Corollary 21.5. For any d > 2, the map A : C[z] — CU=2)[z] is surjective.
Moreover, (f,||z||>h) =0 for any f € Hy and h € C4=2)[z].

Proof. For the first half, since (-, -) is positive definite on C(@[z], it suffices to prove
the statement that for any h € C@=2)[z], (Af,h) = 0 for any f € C¥[z] implies
that h = 0. This is true since by (2) of Proposition 21.4 we have

(f, lz][?h) = (Af,h) =0, ¥ fe€CWDla].

Since (-, -) is positive definite on C(®[z], the above condition implies that ||z[>h = 0
which then implies that A = 0. This proves the first half of this corollary. The sec-
ond half follows since for for f € Hy and h € C(4=2)[z], again by (2) of Proposition
214 (f, [lz|*h) = (Af,h) = (0,h) = 0. 0

Corollary 21.6. For any d > 0, if d is even then CD[z] = Hy @ ||z||?Hyg_2 &
@ ||x||YHy, while if d is odd then C[z] = Hy @ ||z Hg—o @ - @ ||z||* Hy. In
particular,

(21.7) Clz] g0 s = P Ha.

d>0

Proof. For the first half, by Corollary 21.5 we have (Hy,||z|>*C(?~?[z]) = 0 and
dim Hy + dim C4=2[z] = dim C@[z] (since A : C¥[z] — C@=2)[z] is surjective
with kernel being Hy). These two conditions together with the fact that (-,-) is
positive definite on C(¥)[z] imply that

(21.8) C9Dz] = Hy @ ||z||>)Cl4=2[z].

Then the desired decomposition of C(¥)[z] follows by applying (21.8) repeatedly. For
the in particular part we need to show for any polynomial P, there exists f; € H;
for finitely many ! > 0 such that P|gn—1 = ), fi. Without loss of generality we

may assume f is homogeneous of degree d for some d > 0. Then by the first half
we have

P=Pu+el?Past

with P, € H. Restricting to S"~! and noting that ||z||*> = 1 for x € S"~1 we get
Plgn-1 = fa+ fa—2+ -,

where f; := Pj|gn—1 € H;. This finishes the proof.

O

Remark 21.9. From the above proof we see that dim H,; = dim C(? [z]—dim C(?~2)[z]
where the latter two can be easily computed. Indeed one can show dim C(®[z] =
("er*l) implying that dim Hy; = (”J“d*l) — ("+d73).

n—1 n—1 n—1

Remark 21.10. Finally we give a more precise description of functions in Hy. First
Hy = C is just the space of constant functions, and H; = CM[z] is the whole
su bspace of linear polynomials (since A annihilates any linear polynomials). For
d > 2, we state without proof that Hy is spanned by functions of the form P, (z) :=
(u'z)? with u € C" such that |lu/|? = 0. It is easy to see that any function of this
form is an element in Hy;. However the other direction is nontrivial and we refer
the reader to [Iwa97, Theorem 9.1].
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We can now prove the first half of Theorem 21.3.

(Sketch). By the Weierstrauss approximation theorem (see e.g. [Garl4, Appendix])
Clx]|gn—1 is dense in the function space C'(S™~1), but the former set is just ©g>0Ha
by Corollary 21.6. O

Next, we prove the the second half of (21.3). For this we introduce the Laplace
operator on S™~1. To define this operator, it suffices to define its action on smooth
functions.

Definition 21.11. The spherical Laplace operator on S™~ ', denoted by A, is
defined such that for any f € C>°(S"1),

A% f = (AF)|guos,

where F(z) := f (ﬁ) for any z € R™ \ {0}.
Recall from Remark 21.6 that we have introduced an inner product structure on
C>(S"~1), the space of smooth functions on ™71, that for any f,g € C>°(S"1),

(f,9) = [gu—1 fg don. The following proposition shows that A% is self-adjoint and
non-positive with respect to this inner product.

Proposition 21.7. For any f,g € C®(S""1) we have

(21.12) (A%f,9) = (f,A%),
and
(21.13) (ASF, 1) <0

with the equality holds if and only if f is a constant.

Proof. Let F(x) := f(x/|z|) and G(z) := g(z/||z||). Abbreviate r := ||z| then by
definition

@5£,9) = [ nGANAF) (@/r) G (/1) da,

where 7 is the function as fixed in Definition 21.5. Note that F(tz) = F(x) and
G(tx) = G(z) for any t > 0. Applying A to both sides of the equation F(tx) = F(x)
we get

t*(AF)(tz) = AF ().

Taking t = 1/r we get (AF) (z/r) = r2AF(z), implying that
(A°f,g) = / ) n(r?)r}(AF)(x)G(z) dz.

Now by integration by parts and noting that » is compactly supported we get (with
5(r2) = r2n(r?))
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Since F(tx) = F(z) for any t > 0 and = € R™ \ {0}, differentiating both sides with
respect to t gives

ij )=0, Yt>0.

Plugging this identity (With t = 1) to the previous expression for (A% f, g) we get

(ASF,g) /ZF Gj(z) da.

The above expression for (A f, g) is symmetric in F and G, giving (21.12). For
(21.13) taking g = f (so that F' = G) and we see from the above equation that

(AL f) /Z\F )25(r2) da < 0

with the equality holds if and only if F; = 0 for all 1 < j < n. The latter condition
implies that F' is a constant, or equivalently f is a constant. ([l

We have the following direct corollary stating that eigenfunctions of A° of dis-
tinct eigenvalues are mutually orthogonal with respect to (-, ).

Corollary 21.8. (1) For any f € C>®(S™1Y), suppose ASf = \f for some
A e C, then X <0.
(2) For any fi,fo € C®(S™Y), suppose ASfi = Nifi with \i # Ag, then
(f1.f2) = 0.

Proof. For (1) we have by (21.13),

MEF)=(A°F,F) <0

If (f, f) > 0, we then have A < 0. If (f, f) = 0, then f = 0 implying that A%f =0,
ie. A = 0. In both cases we have A < 0. This proves (1). For (2) by (21.12) we
have

M {f1, f2) = (A5 f1, fo) = (f1, A fo) = Mo (f1, fo),
where for the last equality we used that Ao < 0 is real. This implies that (A —
A2){f1, f2) = 0. Since \; # A2, we must have (f1, fo) = 0 as desired. O
We now give the proof of the second half of Theorem 21.3.

Proof. In view of (2) of Corollary 21.8 it suffices to prove the following claim that
(21.14) ASf=—dd+n—2)f, VY fecHa
Take any f € Hgy, by definition f = P|gn—1 for some P € Hgy, and

ASf = (AF)|suns

with F(z) = f(Hi—H) Since f agrees with P on S”~! and P is homogeneous of
degree d we have F(z) = P(ﬁ) = ||z||~¢P(z). By direct computation we have for
any 1 <j <n,

0

5 F @)= —dl|a]| =2z P(x) + 2| P (2),
J
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and
O Fle) = 2 (=dlal| =22, P(x) + 2] ~P,(x)
ax? o J J

= (d(d + 2)]ll| =" a5 — dlj2l|7*7?) P(x) — 2d|lz|| 77?2, P;(2) + [l = P;(2),

where Pj := a%jP and Pj; = %P. Thus we have
AF(z) = (d(d +2) — nd) ||z ~*?P(x) — 2d|lx| =4 z;P;(x) + |z *AP(x).
j=1

Since P € Hy, AP = 0. Moreover note that for any homogeneous polynomial @ of
degree d,

(21.15) > 2;Q; = dQ.

j=1
This identity can be directly checked for monomials and then extended to a general

homogenous polynomial by linearity. Now applying (21.15) to the above expression
for AF we get

AF(z) = (d(d +2) = nd)||z]|~*7*P(x) — 2d|l[| > P(x)
= —d(d+n —2)|jz| "2 P(x).

Finally restricting to S™~! gives the desired formula for A f (noting that (AF)|gn-1 =
ASf and ||z|| 792 P|gn-1 = f). O

21.2. Theta series revisited. Another main ingredient for our proof to Theorem
21.2 is to realize certain sum that appears naturally when proving equidistribution
as Fourier coefficients of a cusp form. For this we need to study generalized theta
series associated to harmonic polynomials that we now introduce.

Definition 21.16. Let d be a non-negative integer and let P € Hy. The theta
series associated to the quadratic form @, (cf. (20.1)) and P is defined by

O,(z; P) := Z P(v)em”v”zz, z € H.
vEL™
Note that ©,(z;1) agrees with the theta series defined in (19.2) (with @ = Q5,).
The connection between O,(z; P) and the equidistribution problem is from the
following simple identity which generalizes (19.2):

(2117) G)(Z’P) = P(O) + Z P(,U)e-rri”bHQz — 640 + Z Z P(v)eﬂ'imz.
veZm\ {0} m=1 | vHeQZ"

Here for the second equality we used that P(0) = 0 if d > 1. The main goal of

this section is to prove the following theorem stating that when n = 0 (mod 8) and

d > 0 the theta series ©,(z; P) is a cusp form of weight 4 + d.

Theorem 21.9. Assume n = 0 (mod 8) and d > 0. Then for any P € Hy,
On(z; P) € Spra(To) with k =% and Ty = (T?,S) as before.

The main tool for our proof to Theorem 21.9 is an inversion formula for ©,,(z; P)
which generalizes Theorem 19.4.
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Theorem 21.10. Letn € N, d >0 and k = 5. For anyx € R*, P € Hy and for
any z € H we have

(21.18) Z P(U+$)ewi\|v+$“2 ik, —k—d Z P(v —||v||?/z+20" a:)
vEL™ vEL™

In particular, taking x = 0 we get

(21.19) O,(2; P) =i*27%740,,(~1/2; P).

Proof. First note that when d = 0, Hy = C is the space of constant functions and
we may assume f = 1 in which case (21.18) reads as

(21.20) Z emillvtal®z _ sk, —k Z ~llol|?/z+20'e)

vEL™ vEL™

Note that Jacobi’s inversion formula (19.6) (with L = Z™) is the special case of
this identity when = 0. Using the same arguments as in the proof of Theorem
19.4 but with the generalzied Poisson summation formula (19.11) in place of (19.8)
(with L = Z™) we can prove (21.19), i.e. the d = 0 case of (21.18). Next for d > 1,
in view of Remark 21.10 we may assume P(z) = (ulz)? where u € C" and satisfies
|lul|? = 0 if d > 2. Define a differential operator

- 0
D= F—.

Z i 6xj

j=1
Applying D to the left hand side of (21.20) and by direct computation we get

D(LHS) = (27iz) Z u' (v + a?)e”i”“'x”?z

vEL™

More generally applying D d times to the left hand side of (21.20) we get

Dd(LHS) — (27Ti2)d Z (ut(v + x))dewiuu.t,_zuzz
erZ”L
= (2miz)? Y P(v+z)emlvtel’s,
vEL™

Here when d > 2 we need to use the assumption that |[ul|? = 0. Similarly, applying
D d times to the right hand side of (21.20) we get

DYRHS) = (2mi)%i*= " Y P( —llvli?/z+2v"z)
vEL™
Equating D4(LHS) with D?(RHS) gives (21.18). O

With this inversion formula we can now give the

Proof of Theorem 21.9. Using similar arguments as before we see ©,,(z;P) is a
holomorphic function on H and vanishes at co in view of the second equality in
(21.17). Thus it suffices to show F[T?|x1q = F and F[S]y1q = F with F(z) :=
©,,(z; P). The first equation is clear in view of the second equality in (21.17) while
the second equation is just (21.19). This finishes the proof. O



116 SHUCHENG YU

21.3. Proof of main result. In this section we collect all the results from the
previous sections to give the proof of Theorem 21.2.

Proof. Since @®g>oHq is dense in C(S™~!) (see Theorem 21.3) and in view of the
alternative criterion for equidistribution described in Remark 21.6, it suffices to
show

1
(21.21) lim —— flx)= f doy,
m—oo #A,, IEZA:m /an

for any d > 0 and any f € Hg. If d = 0, then f is a constant function and the
above limit equation holds trivially. We thus assume d > 0 and note that in this
case by the second half of Theorem 21.3 the right hand side of (21.21) vanishes
(since [g._, f don = (f,1)). Thus it suffices to show

(21.22) lim > fla)=o.

Now by definition, there exists some P € Hy such that f = P|gn—1. Using the
definition (21.1) of A,, we have

r@= Y f(x)=mt Y PO,

x€EA,, veZ™ veZ™
lvl?=m l[o]|*=m
Now by (21.17) the sum > ,ez» P (v) is the m-th Fourier coefficient of the theta
l[v]|*=m

series ©,,(z; P) which by Theorem 21.9 is contained in Syy4(I'g) with k& = %. Then
by Hecke’s bound (8.18) we have

Z P (v) <m'T
vEL™
l[v]*=m

On the other hand #A4,, = r,(m) which by the asymptotic formula (20.6) can
be seen to satisfy the grwoth condition that #A,, =< mF~!. Combining all these
estimates we get

1 d_ k+d k
_— Z fl@)| < m! TR =l 2,
#Am €A,
With this estimate we can take m — oo to prove (21.22) (since k = § > 4). This
finishes the proof. O

Remark 21.23. Similar arguments also hold for other n’s. Indeed with more involved
analysis we can use Hecke’s bound to establish the same equidistribution result for
any n > 5, while for n = 4 Deligne’s bound on Ramanujan’s conjecture (for integral
weight modular forms) is sufficient. However, for ternary form @3 Deligne’s bound
just falls short for equidistribution. Indeed we know in this case by Legendre’s
theorem not every positive integer m is representable as a sum of three squares,
i.e. A,, could be empty for m along an unbounded subsequence of N. Nevertheless,
using ergodic arguments Linnik [Lin68] proved equidistribution of A,, C S? along
a subsequence admissible to Legendre’s theorem and a certain splitting condition
called Linnik’s condition. This splitting condition was finally removed by Duke
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[Duk88] using analytic methods which ultimately rely on Iwaniec’s improvements
to Hecke’s bound for half integral modular forms; see [Iwa87].
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