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1. Elliptic functions

1.1. Periodic functions. A function f : R → C is periodic of period 1 if

f(x+ n) = f(x), for all x ∈ R and n ∈ Z.(1.1)

There are two natural ways constructing periodic functions. One can simply take
any function on the segment [0, 1) and extend its values uniquely to R by requiring
periodicity. Another construction uses the averaging method. Let g : R → C be
any function of rapid decay at ±∞ so that the series

f(x) :=
∑
n∈Z

g(x+ n)(1.2)

converges absolutely. Then f defines a periodic function of period one.
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By classical Fourier analysis any periodic and piecewise continuous function f :
R → C has the Fourier series representation

f(x) =
∑
n∈Z

ane(nx)(1.3)

with coefficients given by

an :=

∫ 1

0

f(x)e(−nx) dx.(1.4)

For f as in (1.2) we note

an =

∫ ∞

0

∑
n∈Z

g(x+ n)e(−nx)dx =

∫ ∞

−∞
g(x)e(−nx)dx = ĝ(n),

where

ĝ(y) :=

∫
R
g(x)e−2πixy dx

is the Fourier transform of g. Therefor the Fourier expansion (1.3) becomes∑
n∈Z

g(x+ n) =
∑
n∈Z

ĝ(n)e(nx).

Taking x = 0 we get the Poisson summation formula∑
n∈Z

g(n) =
∑
n∈Z

ĝ(n).

More generally, for g : Rn → C a “nice” function of rapid decay, we have the higher
dimensional Poisson summation formula∑

n∈Z
g(n) =

∑
n∈Zn

ĝ(n).

Remark 1.5. Poisson summation formula is a key input in proving the analytic
continuation and functional equation of the Riemann zeta function

ζ(s) =
1

ns
for Re(s) > 1.

1.2. Elliptic functions. The next generalization of periodic functions are “peri-
odic” functions on the complex plane C viewed not just as R2, but as a Riemannian
manifold with a complex structure.

Note that Zn is a lattice in Rn, i.e. it is a discrete free abelian subgroup of Rn

of (full) rank n. We also need a lattice in C. Let ω1, ω2 be two complex numbers
which are linearly independent over R, that is

C = ω1R+ ω2R.
Let

Λ = ω1Z+ ω2Z

be the lattice generated by ω1 and ω2.

Definition 1.1. A function f : C → C is elliptic with respect to Λ iff

(1) f is meromorphic on C,
(2) f is periodic with periods Λ, i.e.

f(u+ w) = f(u) for all u ∈ C and w ∈ Λ.(1.6)
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Choose a fundamental parallelogram for the lattice Λ,

P = tω1 + t2ω2 + µ, 0 ≤ t1, t2 < 1,

with µ ∈ C such that f has no poles or zeros on ∂P .
Some easy observations:

(1) f is completely determined by its values on P , thus can be viewed as a
function on the tours C/Λ.

(2) If f is holomorphic, then f is a constant: Since P is precompact, f is
bounded on P . Then periodicity implies that it is also bounded on C.
Then by Liouville’s theorem (see e.g. [SS03, p. 50, Corollary 4.5]), f is a
constant.

Recall that around every w, f has a power series expansion

f(u) =

∞∑
k=m

ak(u− w)k

with coefficients ak ∈ C and am ̸= 0. Then m = ordw(f) is the order of f at w and
a−1 = resw(f) is the residue of f at w.

Proposition 1.1. Let f be an elliptic function with respect to Λ. Then we have∑
w∈P

resw(f) = 0,(1.7)

∑
w∈P

ordw(f) = 0,(1.8)

and ∑
w∈P

ordw(f)w ≡ 0 (mod Λ).(1.9)

Here the last equation means that the left side is always an element in Λ, indepen-
dent of the choice of P .

Proof. Integrating along ∂P and noting that the integrals along opposite sides
cancel out by periodicity we have by Cauchy’s theorem (see e.g. [SS03, p. 77,
Corollary 2.2])

0 =
1

2πi

∫
∂P

f(u)du =
∑
w∈P

resw(f),

finishing the proof of (1.7). Similarly, (1.8) follows by applying (1.7) to the elliptic

functions f ′

f and noting that ordw(f) = resw(f
′/f) which follows from an easy

computation. We leave the proof of (1.9) as an exercise. □

Exercise 1. Prove case (3) in Proposition 1.1. (Hint: Consider the function uf ′/f .
Note that it is no longer elliptic, but you can still integrate it along ∂P . The integral
may depend on the choice of P , but you only need to show it lies in Λ.)

Definition 1.10. Define the order of f to be the sum of orders of zeros in P or
the negative of the sum of orders of poles in P , i.e.

ord(f) :=
∑
w∈P

max{ordw(f), 0} = −
∑
w∈P

min{ordw(f), 0}.
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Note that relation (1.8) guarantees that this definition is well-defined.

Corollary 1.2. (1) There is no elliptic function of order 1, i.e. there is no
elliptic functions with one simple zero (or one simple pole).

(2) For any c ∈ C, f takes the value c for exactly ord(f) points in P counted
with multiplicity

Proof. For (1), suppose an elliptic function f is of order 1, then it has exactly a
simple pole in P , say at w0 ∈ P . Then

∑
w∈P resw(f) = resw0

(f) ̸= 0, contradicting
(1.7).

For (2), applying (1.8) for f and f − c we get

ord(f) = −
∑
w∈P

min{ordw(f), 0}

= −
∑
w∈P

min{ordw(f − c), 0}

=
∑
w∈P

max{ordw(f − c), 0},

where the last sum exactly counts the number of times (with multiplicity) when
f(u) = c for u ∈ P . □

From (1) above we know that for an function to be elliptic, it must be of order at
least 2. One natural way to construct an elliptic function is to start with a function
with a double pole and then apply the averaging trick. For example, we can take
g(z) = 1

z2 and then define the sum∑
w∈Λ

1

(u− w)2
.(1.11)

However there is some convergence issue with this construction. We need to add
some “corrected terms” to resolve it.

Definition 1.12. The Weierstrauss ℘ function is defined by

℘(u) :=
1

u2
+
∑′

w∈Λ

(
1

(u− w)2
− 1

w2

)
, u /∈ Λ,(1.13)

where ′ means that w = 0 is skipped in the summation.

The convergence of the above series will be guaranteed by the following lemma.

Lemma 1.3. Let Λ be a lattice in C. For any R > 0 and u ∈ C with |u| < R, the
series ∑

w∈Λ
|w|≥2R

1

|u+ w|c
≪R,Λ,c 1

for any c > 2.

Remark 1.14. In this course for any two quantities A,B, we will use the notation
A ≪λ B to mean that there exists some constant C > 0 such that A ≤ CB,
and here the subscript means that the bounding constant C may depend on the
parameter λ.
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We now give the proof of this lemma1.

Proof. For any t > 0 consider the set

P (t) = {aw1 + bw2 : a, b ∈ R, max{|a|, |b|} = t} .
Note that Λ \ {0} =

⊔
n≥1(P (n) ∩ Λ) and it is easy to check |P (n) ∩ Λ| = 8n and

P (n) = nP (1). There exist constants B > 0 and N > 1 sufficiently large such that
|w| ≥ B + R

N for any w ∈ P (1). Since P (n) = nP (1), for any integer n ≥ N and
for any w ∈ P (n)

|w| ≥ n
(
B + R

N

)
≥ nB +R.

In particular, for any |u| < R, |u + w| ≥ |w| − |u| ≥ nB. Hence the series∑
w∈Λ

|w|≥2R

1
|u+w|c is bounded from above by

∑
w∈Λ

|w|≥2R

1

|u+ w|c
≤
∑
n<N

|P (n) ∩ Λ|R−c +
∑
n≥N

|P (n) ∩ Λ|(nB)−c

≤ 8N2R−c + 8B−c
∑
n≥N

1

nc−1
≪R,Λ,c 1,

finishing the proof. □

Exercise 2. Let Λ be a lattice in C. For any R > 0 and u ∈ C with |u| < R. Show
that the series ∑

w∈Λ
|u|≥2R

1

|u+ w|2

diverges.

Proposition 1.4. The Weierstrauss ℘ function is a meromorphic function with
double poles only at lattice points. Similarly, its derivative

℘′(u) = −2
∑
w∈Λ

1

(u− w)3
, u /∈ Λ(1.15)

is a meromorphic function with triples poles only at lattice points.

Proof. We only prove the statement for ℘; the statement for ℘′ follows from similar
arguments. It suffices to show for any R > 0, ℘ is meromorphic for |u| < R. For
this rewrite

℘(u) =
1

u2
+

∑
|w|<2R

(
1

(u− w)2
− 1

w2

)
+

∑
|w|≥2R

(
1

(u− w)2
− 1

w2

)
.

Note that for the terms in the second sum, using |u| < R ≤ 1
2 |w| we have∣∣∣∣ 1

(u− w)2
− 1

w2

∣∣∣∣ = ∣∣∣∣ (2w − u)u

(u− w)2w2

∣∣∣∣ ≤ 12R

|w|3
.

Then by Lemma 1.3 we see that the second sum is absolutely convergent, hence
defines a holomorphic function in |u| < R. We are thus left with a finite sum which

1Note that the proof given here differs slightly from the one I gave in class, but they use the
same ideas of grouping the summation terms.
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clearly is meromorphic with double poles at all the lattice points inside the ball
{u ∈ C : |u| < R}. □

Remark 1.16. Clearly ℘′ is elliptic with respect to Λ.

Proposition 1.5. ℘ is even and elliptic with respect to Λ = ω1Z+ ω2Z.

Proof. To see ℘ is even, for any u /∈ Λ,

℘(−u) = 1

u2
+
∑′

w∈Λ

(
1

(u− (−w))2
− 1

(−w)2

)
= ℘(u),

where for the last equality we used that −(Λ \ {0}) = Λ \ {0}. To show ℘ is elliptic
with respect to Λ, it suffices to show

℘(u+ ω1) = ℘(u) and ℘(u+ ω2) = ℘(u), ∀ u /∈ Λ.

Consider Fi(u) := ℘(u+ ωi)− ℘(u). Since ℘′ is elliptic with respect to Λ,

F ′
i (u) = ℘′(u+ ωi)− ℘′(u) = 0.

Hence Fi(u) = ci is a constant. Now take u = −wi

2 to get

ci = ℘
(ωi

2

)
− ℘

(
−ωi

2

)
= ℘

(ωi

2

)
− ℘

(ωi

2

)
= 0.

This finishes the proof. □

Exercise 3. Show that ℘ and ℘′ generate the field of elliptic functions with respect
to Λ, that is any elliptic function can be written as a rational function in ℘ and ℘′.

Remark 1.17. Let us discuss some of the consequences of this proposition. On the
torus C/Λ, there are three 2-torsion points (i.e. u /∈ Λ, 2u ∈ Λ), namely ω1

2 + Λ,
ω2

2 + Λ and ω3

2 + Λ with ω3 = ω1 + ω2.
Since ℘′ is elliptic, for i = 1, 2, 3

−℘′
(ωi

2

)
= ℘′

(
−ωi

2

)
= ℘′

(
ωi −

ωi

2

)
= ℘′

(ωi

2

)
,

implying that ℘′ (ωi

2

)
= 0. For ℘′, we know it is an order 3 odd elliptic function.

It has zeros at the three 2-torsion points in C/Λ, Thus these are exactly the three
simple zeros modulo Λ of ℘′.

For ℘, we know it is an order 2 even elliptic function. Thus it takes any value
exactly twice counted with multiplicity. For any c ∈ C, there exists some w /∈ Λ
such that ℘(w) = c. If w ̸≡ −w (mod Λ), (i.e. w+Λ is not a 2-torsion point), since
℘ is even, then ±w (mod Λ) are the two simple zeros of ℘(u) − c. If w + Λ is one
of the three 2-torsion points, then the function ℘ − c has a double zero modulo Λ
at w, since its derivative, being ℘′, also vanishes at w.

This analysis also implies that the three values ℘(ω1

2 ), ℘(ω2

2 ), ℘(ω3

2 ) are distinct
since otherwise we have e.g. ℘(ω1

2 ) = ℘(ω2

2 ) = c, then the function ℘(u)− c has at
least four zeros (counted with multiplicity) which is a contradiction.

Proposition 1.6. Let ℘ be the Weierstrauss function with respect to Λ = ω1Z +
ω2Z. Then

(1) The Laurent expansion of ℘ is

℘(u) =
1

u2
+

∞∑
k=1

k even

(k + 1)Gk+2(Λ)u
k,
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for all u such that 0 < |u| < inf{|w| : w ∈ Λ \ {0}}. Here

Gk(Λ) :=
∑′

w∈Λ

1

wk

is the weight k Eisenstein series.
(2) The functions ℘ and ℘′ satisfy the relation

(℘′(u))2 = 4(℘(u))3 − g2(Λ)℘(u)− g3(Λ),(1.18)

where g2(Λ) = 60G4(Λ) and g3(Λ) = 140G6(Λ).
(3) Let ei = ℘(ωi/2) for i = 1, 2, 3 with ωi as above. Then the cubic equation

satisfied by ℘ and ℘′ is equivalent to

(℘′(u))2 = 4(℘(u)− e1)(℘(u)− e2)(℘(u)− e3).

This equation is nonsingular, meaning the right side has distinct roots.

Proof. For (1), we use the geometric series square formula

1

(1− z)2
=

∞∑
k=0

(k + 1)zk, ∀ |z| < 1.

Thus for |u| < |w| we have

1

(u− w)2
− 1

w2
=

1

w2

(
1

(1− u/w)2
− 1

)
=

∞∑
k=1

(k + 1)uk

wk+2
.

Hence for |u| < inf {|w| : w ∈ Λ \ {0}} we have

℘(u) =
1

u2
+
∑′

w∈Λ

∞∑
k=1

(k + 1)
uk

wk+2

=
1

u2
+

∞∑
k=1

k even

(k + 1)Gk+2(Λ)u
k,

where for the second line we changed order of summationand used the fact that
Gk(Λ) = 0 whenever k is odd.

For (2) let us define

F (u) := (℘′(u))2 − 4(℘(u))3 + g2(Λ)℘(u) + g3(Λ)

and we wish to show F (u) = 0. Since F is meromorphic, it suffices to show F (u) = 0
for |u| < inf{|w| : w ∈ Λ\{0}}. By direct computation we see that for |u| < inf{|w| :
w ∈ Λ \ {0}} the Laurent expansion of (℘′(u))2 and 4(℘(u))3 − g2(Λ)℘(u)− g3(Λ)
both equal

4u−6 − 24G4(Λ)u
−2 − 80G6(Λ) +O(u2).

In particular, this implies that F is holomorphic with a Laurent expansion F (u) =
O(u2). But since F is elliptic, it must be a constant, which then together with
F (u) = O(u2) implies that F = 0 as desired.

For (3), first the fact that e1, e2, e3 are distinct already follows from Remark
1.17. Now factoring the cubic polynomial in the right side of (1.18) we have there
exist complex numbers c1, c2, c3 such that

(℘′(u))2 = 4(℘(u)− c1)(℘(u)− c2)(℘(u)− c3).
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Plugging in u = ω1

2 ,
ω2

2 ,
ω3

2 respectively and noting that the left side vanishes (cf.
Remark 1.17) we get that {e1, e2, e3} ⊂ {c1, c2, c3}. But since e1, e2, e3 are distinct,
this must be an equality, concluding the proof. □

1.3. The modular discriminant and j-invariant.

Definition 1.19. The modular discriminant ∆ = ∆(Λ) is defined by

∆ := 16
∏

1≤i<j≤3

(ei − ej)
2,(1.20)

where e1, e2, e3 are the simple roots of the cubic polynomial in (1.18).

Lemma 1.7. For any lattice Λ, ∆(Λ) = g2(Λ)
3 − 27g3(Λ)

2 and ∆(Λ) ̸= 0.

Proof. The non-vanishing of ∆ follows from the definition (1.20) and the fact that
e1, e2, e3 are distinct. We thus only need to prove this expression for ∆. Abbreviate
g2 = g2(Λ) and g3 = g3(Λ). Consider the Vandermonde matrix determined by
e1, e2, e3:

V :=

 1 1 1
e1 e2 e3
e21 e22 e23

 .

From linear algebra we know its determinant is given by det(V ) =
∏

1≤i<j≤3(ei −
ej). Hence

∆ = 16det(V )2 = 16det(V V t) = 16 det

 3 S1 S2

S1 S2 S3

S2 S3 S4

 ,

where Sk = ek1 + ek2 + ek3 for 1 ≤ k ≤ 4. From the equation

(x− e1)(x− e2)(x− e3) = x3 +Ax−B,

with A = −g2/4 and B = g3/4 we get

B = e1e2e3, A = e1e2 + e2e3 + e3e1 and S1 = e1 + e2 + e3 = 0.

From the above third relation we get S2 + 2A = (e1 + e2 + e3)
2 = 0; hence S2 =

−2A. Moreover, we can check that for each j = 1, 2, 3, e3j = −Aej + B. Hence

S3 = −A(e1 + e2 + e3) + 3B = 3B and e4j = −Ae2j + Bej . The latter then implies

that S4 = −AS2 = 2A2. Thus get

∆ = 16 det

 3 0 −2A
0 −2A 3B

−2A 3B 2A2

 = 16(−4A3 − 27B2) = g32 − 27g24 ,

finishing the proof. □

Definition 1.21. The j-invariant function is defined by

j(Λ) :=
1728g2(Λ)

3

∆(Λ)
.

Since ∆(Λ) ̸= 0, this function is well-defined.
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2. Modular forms: definition and examples

The functions Gk(Λ),∆(Λ), j(Λ) can all be viewed as functions in

L := {Λ ⊂ C : Λ is a lattice in C} ,

the space of lattices in C. Some of them are in fact examples of modular forms.

Definition 2.1. Let k be a non-negative integer. A modular form of weight k is a
function

F : L → C

satisfying the following properties:

(1) F is homogeneous of degree −k, i.e.

f(λΛ) = λ−kf(Λ) for any λ ∈ C× and Λ ∈ L,(2.2)

(2) “F is holomorphic in L”,
(3) “F is holomorphic at ∞”.

To make the above definition more clear, we need a parameterization of the
domain for functions defined above, namely the space of latices L.

Definition 2.3. A pair of complex numbers ⟨ω1, ω2⟩ is called positive if Im(ω1

ω2
) >

0.

We can use positive pairs to parameterize L: Clearly, each positive pair ⟨ω1, ω2⟩
is R-linearly independent, thus gives rise to a lattice Λ = ω1Z + ω2Z. Moreover,
each lattice can be realized by a positive pair: Given any lattice Λ, let {ω1, ω2}
be a basis so that Λ = ω1Z + ω2Z. Up to replacing ω1 by −ω1, we can have
Im(ω1

ω2
) > 0, i.e. ⟨ω1, ω2⟩ is a positive pair. However, there is some redundancy in

this parameterization as shown in the following lemma.

Lemma 2.1. Two positive pairs ⟨ω1, ω2⟩ and ⟨ω′
1, ω

′
2⟩ give the same lattice if and

only if there exists some γ =
(
a b
c d

)
∈ SL2(Z) such that(

ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
.(2.4)

Here

SL2(Z) :=
{(

a b
c d

)
∈M2(Z) : ad− bc = 1

}
is the modular group, i.e. the group of two by two integral matrices with determinant
1.

Proof. This direction “⇐” is clear. We only need to prove the other direction.
Assume ω1Z + ω2Z = ω′

1Z + ω′
2Z. First since ω′

1, ω
′
2 ∈ ω1Z + ω2Z, there exist

a, b, c, d ∈ Z such that ω′
1 = aω1 + bω2 and ω′

2 = cω1 + dω2. Similarly, there exist
a′, b′, c′, d′ ∈ Z such that ω1 = a′ω′

1 + b′ω′
2 and ω2 = c′ω′

1 + d′ω′
2. This implies that(

ω′
1

ω′
2

)
=

(
a b
c d

)(
ω1

ω2

)
=

(
ω′
1

ω′
2

)
=

(
a b
c d

)(
a′ b′

c′ d′

)(
ω′
1

ω′
2

)
.

Thus
(
a b
c d

) (
a′ b′

c′ d′

)
= I2, implying that γ =

(
a b
c d

)
is an invertible integral matrix,

i.e. det(γ) = ±1. It thus remains to show det(γ) > 0. This is an easy exercise. □
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For any positive pair ⟨ω1, ω2⟩ we denote by z = z(ω1, ω2) =
ω1

ω2
∈ H, where

H := {z = x+ iy ∈ C : y > 0}
is the usual upper half plane of the complex plane. Let F be a modular form
of weight k. The homogeneity condition (2.2) implies that for any positive pair
⟨ω1, ω2⟩,

F (ω1Z+ ω2Z) = ω−k
2 F (ω1

ω2
Z+ Z).(2.5)

Thus F is uniquely determined by its values on the subset {zZ+ Z : z ∈ H} ⊂ L is
can be naturally parameterized by H. We thus define

f(z) := F (zZ+ Z).

Now condition (2) in Definition 2.1 just means that f is holomorphic in the variable
z ∈ H. We also need to rephrase the homogeneity condition (2.2) in terms of f .
For any z ∈ H and γ =

(
a b
c d

)
∈ SL2(Z). By definition we have

f(z) = F (Z+ zZ) = F ((az + b)Z+ (cz + d)Z)

= (cz + d)−kF (az+b
cz+dZ+ Z) = (cz + d)−kf

(
az+b
cz+d

)
.

Or equivalently,

f (γz) = (cz + d)kf(z), ∀ γ ∈ SL2(Z), z ∈ H.

Here γz = az+b
cz+d is the usual linear fractional transformation. (Lemma 2.2 below

shows that this is a well-defined action on H.) We now give an alternative definition
of a modular form in terms of this function f .

Definition 2.6. Let k be a non-negative integer. A function f : H → C is a
modular form of weight k if

(1) f satisfies the transformation rule

f(γz) = (cz + d)kf(z), ∀ z ∈ H, γ =
(
a b
c d

)
∈ SL2(Z),(2.7)

(2) f is holomorphic on H,
(3) f is holomorphic at ∞.

If f further vanishes at ∞ then f is called a cusp form of weight k.

We denote the set of modular forms (resp. cusp forms) of weight k byMk(SL2(Z))
(resp. Sk(SL2(Z)); when there is no ambiguity we simply write Mk and Sk.

Remark 2.8. Let us make the following few remarks.

(1) From the homogeneity condition we see modular forms of different weights
are linearly independent over C.

(2)
Mk1Mk2 ⊂ Mk1+k2 for any k1, k2 ≥ 0

(3) Taking γ = −I2, (2.10) becomes f(z) = (−1)kf(z). Hence Mk = {0} if k
is odd.

(4) Let T = ( 1 1
0 1 ) and S =

(
0 1
−1 0

)
. Applying (2.10) for these two transforma-

tions we have

f(z + 1) = f(z) and f(−1/z) = (−z)kf(z), ∀ z ∈ H.(2.9)

We will see later that in order to verify (2.10), it suffices to verify it for
these two transformations.
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Here we need to explain the definition a bit. Let q = q(z) = e2πiz = e2πixe−2πy.
This map sends H to the punctured disc D′ := {q ∈ C \ {0} : |q| < 1}2. Define
g : D′ → C, corresponding to f , by g(q) = f(log(q)/2πi). Note that apriori g may
not be well-defined since the complex logarithmic function is defined only up to
an integer multiple of 2πi. However, the first transformation rule in (2.9) removes
this ambiguity. Namely, around every q ∈ D′ we can choose a branch for log q.
Then any other choice of branch is of the form log q + 2nπi and we have by the
transformation rule

f((log q + 2nπi)/2πi) = f(log q/2πi+ n) = f(log q/2πi),

implying that g is well-defined and is holomorphic on D′ and it has a Laurent
expansion g(q) =

∑
n∈Z anq

n for q ∈ D′. Now note that |q| = e−2πy, thus q → 0 as
y → ∞. Then the condition f is holomorphic at ∞ just means that g can extends
holomorphically to the punctured point q = 0, i.e. the Laurent series sums only
over n ∈ N. This means that f has a Fourier expansion

f(z) =

∞∑
n=0

an(f)e(nz).(2.10)

Similarly, f vanishes at ∞ means that a0(f) = 0 in the above Fourier expansion,
that is,

f(z) =

∞∑
n=1

an(f)e(nz).(2.11)

Remark 2.12. Let f : H → C be a function satisfying conditions (1) and (2) in
Definition 2.6 and denote by f(∞) := limy→∞ f(iy). Then we have the following
criterion for whether f is a modular or cusp form:

f is a modular form (resp. cusp form) ⇔ f(∞) <∞, (reps. f(∞) = 0).

For any γ ∈ SL2(Z) and non-negative integer k define the weight k operator [γ]k
on functions f : H → C by

(f [γ])k(z) := jγ(z)
−kf(γz), ∀ z ∈ H,

where jγ(z) = cz + d is called the factor of automorphy. Note that under this new
terminology condition (2.7) becomes

f [γ]k = f, ∀ γ ∈ SL2(Z).

Below we list some basic properties of this operator.

Lemma 2.2. For all γ, γ′ ∈ SL2(Z) and z ∈ H,

(1) jγγ′(z) = jγ(γ
′z)jγ′(z) (chain rule),

(2) (γγ′)z = γ(γ′z),
(3) f [γγ′]k = (f [γ]k)[γ

′]k,

(4) Im(γz) = Im(z)
|jγ(z)|2 .

2But it’s not biholomorphic since q is Z-periodic, i.e. q(z + 1) = q(z) for any z ∈ H. In fact it
sends each of the strip {z ∈ H : Re(z) ∈ [a, a+ 1)} biholomorphically to D′.
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Exercise 4. Prove this lemma.
Hint: Note that for γ =

(
a b
c d

)
∈ SL2(Z),(

a b
c d

)(
z
1

)
=

(
az + b
cz + d

)
= jγ(z)

(
γz
1

)
.

2.1. Examples of modular forms. In fact, we have already encountered some
explicit modular forms. Recall for any integer k ≥ 3,

Gk(Λ) =
∑′

w∈Λ

1

wk
.

As a function on H, Gk is given by

Gk(z) = Gk(zZ+ Z) =
∑′

(c,d)∈Z2

1

(cz + d)k
.(2.13)

The following proposition asserts that Gk is a weight k modular form.

Proposition 2.3. For any integer k ≥ 3, Gk ∈ Mk but Gk /∈ Sk.

Proof. It is clear from the original definition that Gk(Λ) is homogeneous of degree
−k which is equivalent to the fact that Gk(z) satisfies the transformation rule (2.7).
Next, we show the defining series of Gk(z) converges absolutely and uniformly in
the compact set

KB :=
{
z = x+ iy : |x| ≤ B, B−1 ≤ y ≤ B

}
for any B > 1, and hence defines a holomorphic function on H. For this, first we
show |cz + d|2 ≫B c2 + d2 uniformly for any z ∈ KB . By direct computation

|cz + d|2 = |c(x+ iy) + d|2 = (cx+ d)2 + c2y2 ≥ (cx+ d)2 +B−2c2.

If |d| ≥ 2|cx|, then (cx+ d)2 ≥ (|d| − |cx|)2 ≥ 1
4d

2. Hence in this case

|cz + d|2 ≥ B−2c2 +
1

4
d2 ≫B c2 + d2.

If |d| < 2|cx|, then c2 + d2 ≤ c2 + 4B2c2, i.e. c2 ≥ c2+d2

1+4B2 . Hence in this case

|cz + d|2 ≥ B−2c2 ≥ c2 + d2

B2(1 + 4B2)
≫B c2 + d2.

In both cases we have for z ∈ KB , |cz + d| ≫B (c2 + d2)
1
2 . Hence for z ∈ KB ,∑′

(c,d)∈Z2

1

|cz + d|k
≪B

∑′

(c,d)∈Z2

1

(c2 + d2)
k
2

<∞.

Here the convergence is guaranteed by Lemma 1.3. This proves that Gk is holo-
morphic on H.

Finally, an easy computation shows that

Gk(∞) = lim
y→∞

Gk(iy) = 2ζ(k) <∞,(2.14)

implying that G is also holomorphic at ∞. □

Remark 2.15. As mentioned before, Gk = 0 when k ≥ 3 is odd.

Corollary 2.4. ∆ ∈ S12.
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Proof. Recall
∆ = g32 − 27g23 = 216000G3

4 − 529200G2
6.

Hence in view of Proposition 2.3, ∆ ∈ M12. Moreover, using identities ζ(4) = π4

90

and ζ(6) = π6

945 we have

∆(∞) =
64π12

27
− 64π12

27
= 0.(2.16)

This finishes the proof. □

Remark 2.17. The j-invariant function j = 1728g32/∆ has a simple pole at ∞ and
hence is not a modular form. It is an example of weight 0 modular function; see
Definition 4.3 below.

We have the following precise Fourier expansion formulas for Gk.

Proposition 2.5. For any even k ≥ 4,

Gk(z) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e(nz),

where for any s ≥ 0, σs(n) =
∑

d|n d
s is the s-divisor function.

Remark 2.18. The divisor function σs is multiplicative, i.e. σs(mn) = σs(m)σs(n)
for any gcd(m,n) = 1, and satisfies the growth condition that σs(n) ≪ϵ n

s+ϵ.

To prove this Fourier expansion formula we need the following identity.

Lemma 2.6. For any integer k ≥ 2 and z ∈ H,∑
m∈Z

1

(z +m)k
=

(−2πi)k

(k − 1)!

∞∑
m=1

mk−1e(mz).(2.19)

Proof. It suffices to prove this identity for k = 2. We apply the following infinite
product identity for the sine function which can be proved by comparing zeros on
both sizes (see e.g. [SS03, p. 142, Equation (3)])

sin(πz) = πz

∞∏
m=1

(1− z2

m2
) = πz

∞∏
m=1

(1− z

m
)(1 +

z

m
).

Taking logarithmic derivatives in both sides we get

LHS = π
cos(πz)

sin(πz)
= πi

e(z/2) + e(−z/2)
e(z/2)− e(−z/2)

= πi
e(z) + 1

e(z)− 1

= πi(1 +
2

e(z)− 1
) = πi(1− 2

∞∑
m=0

e(mz)),

and

RHS =
1

z
+

∞∑
m=1

(
1

z +m
+

1

z −m
).

Further differentiating both sides we get

−2πi

∞∑
m=0

(2πim)e(mz) = − 1

z2
−

∞∑
m=1

(
1

(z +m)2
+

1

(z −m)2

)
= −

∑
m∈Z

1

(z +m)2
.

We can then finish the proof by negating both sides. □
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We can now easily prove Proposition 2.5.

Proof of Proposition 2.5. Rearrange the sum we get

Gk(z) =
∑
d̸=0

1

dk
+
∑
c̸=0

∑
d∈Z

1

(cz + d)k

= 2ζ(k) + 2

∞∑
c=1

(2πi)k

(k − 1)!

∞∑
m=1

mk−1e(cmz)

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

∑
m|n

mk−1e(nz)

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e(nz),

as desired. □

Remark 2.20. Using this Fourier expansion formulas we can compute

∆(z) = (12π)12
∞∑

n=1

τ(n)e(nz),

with τ(1) = 1, τ(2) = −24, τ(3) = 252, τ(4) = −1472, · · · . The coefficient function
τ is called the Ramanujan function. It is not a coincidence that these coefficients
are all integers. In fact we will see later that ∆ has the following infinite product
expression

∆(z) = (2π)12e(z)

∞∏
n=1

(1− e(nz))24.

from which it follows easily that τ(n) ∈ Z. Based on many numerical computations,
Ramanujan (1916) made the following conjecture regarding this function.

Conjecture 2.21 (Ramanujan).

(1) τ is multiplicative, i.e. τ(mn) = τ(m)τ(n) whenever gcd(m,n) = 1,
(2) τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1) for all primes p,

(3) |τ(p)| ≤ 2p
11
2 for all primes p.

The first two statements were proved by Mordell [Mor17] one year later and the
last statement was proved by Deligne [Del74] as a consequence of his proof of the
Weil conjectures.

Remark 2.22. The normalized Eisenstein series is defined by

Ek(z) :=
1

2ζ(k)
Gk(z) = 1 + a1e(z) + a2e(2z) + · · · .

We have seen from the first homework that Ek has the following series expression

Ek(z) =
1

2

∑
gcd(c,d)=1

1

(cz + d)k

and its Fourier expansion formula is given by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)e(nz),(2.23)
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where Bk is the k-th Bernoulli number defined by the formal power series expansion

t

et − 1
=

∞∑
k=0

Bk
tk

k!
.

3. The modular group and its fundamental domain

In this section we study more closely the SL2(Z)-linear fractional action on the
upper half plane. Two important transformations are given by S =

(
0 1
−1 0

)
and

T = ( 1 1
0 1 ), where

Sz = −1/z and Tz = z + 1, ∀z ∈ H.

Theorem 3.1. The modular group SL2(Z) is generated by S and T .

Proof. It suffices to show for any γ =
(
a b
c d

)
∈ SL2(Z) after finitely many steps of

left multiplying S and T we can reduce γ into the identity matrix. Note that

S

(
a b
c d

)
=

(
−c −d
a b

)
and

Tn

(
a b
c d

)
=

(
a+ cn b+ dn
c d

)
.

If c = 0, then γ = ± ( 1 n
0 1 ) for some n ∈ Z. Applying T−n we get ±I2. Applying

S2 = −I if necessary to kill the negative sign, we can get the identity matrix. If
c ̸= 0, then apply Tn for some appropriate n ∈ Z we can get a new top left entry
a′ with 0 ≤ a′ < |c|. Then apply S to get a new bottom left entry with absolute
value strictly smaller than |c|. After applying this process finitely many times we
can get a matrix with bottom left entry 0, reducing the argument to the first case.
This finishes the proof. □

Remark 3.1. In view of Lemma 2.2 and the above theorem, in order to check
condition (2) in the definition of a modular form, it suffices to check (2.7) for γ =
S, T . That is, (2.7) is equivalent to saying that f satisfies the two transformation
rules in (2.9).

Definition 3.2. A set F ⊂ H is called a fundamental domain for the modular
group Γ = SL2(Z)-action on H if

(1) F is a domain (i.e. a nonempty and connected open set) in H,
(2) every orbit of Γ has a point in F or on the boundary ∂F ,
(3) distinct points in F are not in the same orbit of Γ.

Theorem 3.2. The set

F :=
{
z ∈ H : |z| > 1, |Re(z)| < 1

2

}
(3.3)

is a fundamental domain for the SL2(Z)-action on H.
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Figure 1. The fundamental domain F with boundary identified.

Remark 3.4. Roughly speaking, the quotient space Γ\H (with Γ = SL2(Z)) is where
a modular form lives3 . It can be visualized as F with the boundary of F identified
by T and S respectively as shown in Figure 1. After gluing the equivalent sides of
the boundary, F becomes a punctured sphere. (The missing point is the point at ∞
and is called a cusp of Γ\H.) One can add this point at infinity to Γ\H and equip
suitable complex charts on Γ\H∪ {∞} to make it a compact Riemann surface, i.e.
a connected 1-dimensional complex manifold.

Proof of Theorem 3.2. Clearly, F is a domain. We thus only need to verify condi-
tions (2) and (3). For (2), take any z = x + iy ∈ H, we need to show there exists
z′ ∈ Γz such that z′ ∈ F =

{
z ∈ H : |z| ≤ 1, |Re(z)| ≤ 1

2

}
. First we claim that

there exists z′′ ∈ Γz attains the maximal height (the imaginary part) among all
points in Γz. Moreover, each such a point satisfies the property that |z′′| ≥ 1. To
prove this claim, note that for any γ =

(
a b
c d

)
∈ Γ

Im(γz) =
y

|cz + d|2
=

y

(cx+ d)2 + c2y2

{
≤ 1

c2y ≤ 1
y if c ̸= 0,

= y if c = 0.

In other words, heights of elements in Γz is uniformly bounded by max{y, y−1}.
This implies the existence of such a point with maximal height. For the moreover
part, suppose not, then we have some z′ ∈ Γz with maximal height but |z′′| < 1.
Then clearly Sz′′ ∈ Γz, but

Im(Sz′′) =
Im(z′′)

|z′′|2
> Im(z′′),

violating the maximality of the height of z′′. Now take such a z′′ ∈ Γz, applying
Tnz′′ = z′′ +n for some appropriate n ∈ Z we can make z′ = Tnz′′ with |Re(z′)| ≤
1
2 . But since this action does not change the height, z′ is still of maximal height.

Thus |z′| ≥ 1. In other words, z′ ∈ F . This verifies condition (2).

3Let f be a modular form. If f is of weight 0, then it is left Γ-invariant and can be viewed

as a function on Γ\H. If f is of positive weight, then it is no longer a function on Γ\H due to
the factor jγ(z) in (2.7). However, it is still uniquely determined by its values on a fundamental

domain of Γ\H.
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For (3), let z1, z2 ∈ F with z1 = γz2 and γ ∈ Γ. We would like to show z1 = z2.
Without loss of generality we may assume Im(z1) ≥ Im(z2). Write z2 = x+ iy and

note that y >
√
3
2 . Using similar computation as above we see that Im(z1) ≥ Im(z2)

implies that

(cx+ d)2 + c2y2 ≤ 1.(3.5)

In particular, we have c2y2 ≤ 1, implying that c2 ≤ y−2 < 4
3 . Hence c = 0,±1.

If c = 0, then γ = ±Tn for some n ∈ Z, implying that z1 = z2 + n. But
max{|Re(z1)|, |Re(z2)|} < 1

2 forces n = 0. Hence z1 = z2 as desired.

If c = ±1, since |x| < 1
2 , we have |cx+ d| > 1

2 unless d = 0. If d ̸= 0, then

(cx+ d)2 + c2y2 = (cx+ d)2 + y2 >
1

4
+

3

4
= 1,

violating (3.5). If d = 0, then (3.5) is equivalent to x2 + y2 < 1, or equivalently,
|z2| < 1, violating z2 ∈ F . Hence we can not have c = ±1. This verifies condition
(3) and hence finishes the proof. □

4. Dimension formula

The main goal of this section is to prove the following dimension formula for
Mk.

Theorem 4.1. Let k ≥ 0 be an even integer. The dimension of the space Mk is
given by

dimC Mk =

{
⌊k/12⌋ k ≡ 2 (mod 12),
⌊k/12⌋+ 1 k ̸≡ 2 (mod 12).

(4.1)

We first have the following preliminary lemma.

Lemma 4.2. For k ≥ 4 even, we have

dimC Sk = dimC Mk − 1.(4.2)

Proof. Let k ≥ 4 be even. Consider the map Mk → C given by f 7→ f(∞). Since
Gk ∈ Mk and Gk(∞) ̸= 0, this map is surjective. One easily sees that this map is
a group homomorphism with kernel Sk, concluding this lemma. □

4.1. The zero-pole theorem. The key ingredient to prove the dimension formula
(4.1) is the following zero-pole theorem for modular forms. To state this theorem
we need to introduce some more notation.

Definition 4.3. A weight-k modular function is a weight-k modular form except
we only require it to be meromorphic on H ∪ {∞}.

Example 4.4. The j-invariant function 1728g32/∆ is a weight-0 modular function,
which is holomorphic on H but has a simple pole at ∞ (since g2(∞) ̸= 0 and ∆ has
a simple zero at ∞; see Remark 2.20).

Let f be a weight k modular function. For any z ∈ H, ordz(f) is the order of
f at z defined as before. We also need to define the order of f at ∞: Similar to
modular forms, f also has a Fourier expansion at ∞

f(z) =

∞∑
n=m

an(f)e(nz),
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withm ∈ Z the smallest integer (not necessarily non-negative) such that am(f) ̸= 0.
Then m is defined as the order of f at ∞, denoted by ord∞(f).

We also let

F ′ = F ∪ {z ∈ ∂F : Re(z) ≤ 0}

be a genuine fundamental domain for the SL2(Z)-action on H, that is, every Γ-orbit
has one and only one point in F ′. We now state the zero-pole theorem.

Theorem 4.3. For a weight k modular function f : H → C not identically zero we
have

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∑
z∈F ′

τ ̸=ρ,i

ordz(f) =
k

12
,(4.5)

where ρ = − 1
2 +

√
3
2 i.

Lemma 4.4. Let Aα(z0, r) be the counter-clockwise arc boundary of the sector,
centered at z0 ∈ C with angle α ∈ (0, 2π) and radius r; see Figure 2. Then for any
meromorphic function f , we have

lim
r→0+

1

2πi

∫
Aα(z0,r)

f ′

f
(z) dz =

α

2π
ordz0(f).

Figure 2. The arc Aα(z0, r).

Proof. Write f(z) = (z − z0)
mg(z) with m = ordz0(f) and g(z) holomorphic and

nonzero around z0. Then

f ′

f
(z) =

m

z − z0
+
g′

g
(z).

Since g is holomorphic and nonzero around z0, we have

lim
r→0+

1

2πi

∫
Aα(z0,r)

g′

g
(z) dz = 0.

This lemma then follows by a simple integration. □
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Figure 3. The integration path.

Proof of Theorem 4.3. Let L be the red path shown in Figure 3. Here we make
small circular detours on the boundary of the standard fundamental domain F
whenever f has a pole or zero there. The horizontal line segment HA is taken
sufficiently high so that all the non-infinity poles or zeros of f in F are below HA.

Around the three points w = ρ, i, ρ′ with ρ′ = 1
2 +

√
3
2 i, the path is the intersection

between the small r-circle around w and F . We can choose r > 0 sufficiently small
so that f has neither poles nor zeros in the sectors enclosed by ∂F and this arc
(except possibly at w). We integrate f ′/f along this path to get

1

2πi

∫
L

f ′

f
(z) dz =

∑
z∈F ′

z ̸=ρ,i

ordz(f).

On the horizontal path HA, write f(z) =
∑∞

n=m an(f)e(nz) with m = ord∞(f).
Then f ′(z) =

∑∞
n=m an(f)(2πin)e(nz) and we have

f ′

f
(z) =

∞∑
ℓ=0

bℓe(ℓz),

with b0 = 2πim. Hence

1

2πi

∫ A

H

f ′

f
(z) dz = −m = −ord∞(f).

To compute the remaining integrals, for any γ =
(
a b
c d

)
∈ SL2(Z), let Fγ(z) :=

f(γz). By the chain rule we have

F ′
γ(z) = f ′(γz)

dγz

dz
= f ′(γz)jγ(z)

−2.

On the other hand, Fγ(z) = f(γz) = jγ(z)
kf(z), thus

F ′
γ(z) = kjγ(z)

k−1cf(z) + jγ(z)
kf ′(z).

This implies that

f ′(γz) = jγ(z)
k+1(ckf(z) + jγ(z)f

′(z)).
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Thus

f ′

f
(γz) dγz =

jγ(z)
k+1(ckf(z) + jγ(z)f

′(z))

jγ(z)k+2f(z)
dz =

(
ck

jγ(z)
+
f ′

f
(z)

)
dz.(4.6)

Now we compute the remaining integrals. Note that GH = −TAB. Hence by (4.6)
we get

1

2πi

∫ H

G

f ′

f
(z) dz = − 1

2πi

∫ B

A

f ′

f
(Tz) dTz = − 1

2πi

∫ B

A

f ′

f
(z) dz,

implying

1

2πi

(∫ B

A

+

∫ H

G

)
f ′

f
(z) dz = 0.

We can apply Lemma 4.4 and (4.6) to get

lim
r→0+

1

2πi

(∫ C

B

+

∫ G

F

)
f ′

f
(z) dz = lim

r→0+

1

2πi

(∫ G−1

F−1

+

∫ C

B

)
f ′

f
(z) dz = −1

3
ordρ(f),

and

lim
r→0+

1

2πi

∫ E

D

f ′

f
(z) dz = −1

2
ordi(f).

It remains to evaluate the integral along the arcs CD and EF . Note that EF =
−SCD. Then by (4.6) we have

1

2πi

∫ F

E

f ′

f
(z) dz = − 1

2πi

∫ D

C

(
k

z
+
f ′

f
(z)

)
dz.

This implies that

1

2πi

(∫ D

C

+

∫ F

E

)
f ′

f
(z) dz =

1

2πi

∫ C

D

k

z
dz → π/6

2π
k =

k

12

as r → 0+. We then conclude the proof by collecting all the terms. □

4.2. Proof of the dimension formula. We can now give the

Proof of Theorem 4.1. We prove by induction. For a non-negative even integer k,
let f be a weight k modular form which is not identically zero. In particular, when
applying (4.5) to f , the terms in the left hand side of (4.5) are all non-negative.
Case I: k = 0. In this case f is a holomorphic function on Γ\H which is also holo-
morphic at ∞. This forces that f to be entire and bounded, and thus is a constant,
i.e. M0 = C, consisting of constant functions.

Case II: k = 2. In this case M2 = {0} since it is not possible for the left side of
(4.5) to equal to 2

12 = 1
6 .

Case III: k = 4, 6, 8, 10. We claim for these k, Mk = CGk. The containment “⊃”
is clear. For the other containment by (4.2) it suffices to show Sk = {0} in view of
Lemma 4.2. This is true since if there exists a nonzero f ∈ Sk, applying (4.5) for
f the left hand side is at least one while the right hand side is k

12 , strictly smaller
than 1, giving a contradiction.
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Case IV: k = 12. In this case we claim S12 = C∆ and Mk = Sk ⊕ CG12. The
containment “⊃” is clear. For the other containment, again in view of Lemma 4.2
it suffices to show S12 = C∆. Let f ∈ S12 so that f vanishes at ∞. Since ∆ has a
simple zero at ∞ (see (2.16)) and it does not vanish on H (see Lemma 1.7) we have

f

∆
∈ M0 = C,

implying that there exists some c ∈ C such that f = c∆, finishing the proof of this
case.
Case IV: k > 12. In general, the map

Mk−12 → Sk, f 7→ f∆

is a bijection since its inverse map f 7→ f/∆ is well-defined. This implies that

dimCMk = dimCSk + 1 = dimCMk−12 + 1.

Applying this formula, together with our previous dimension formulas for k ≤ 12
we can conclude the proof by induction. □

Remark 4.7. When k = 4, applying (4.3) to G4 we see that the left hand side
equals that right hand side, i.e. 1

3 , only if ordρ(f) = 1 and ordz(f) = 0 for any
other z ∈ F ′. Thus G4 has a unique simple zero at ρ. Similarly, we can conclude
G6 has a unique simple zero at i.

Corollary 4.5. The function G4 and G6 are algebraically independent, and

∞⊕
k=0

Mk = C[G4, G6].

Proof. We first show that G4, G6 generate modular forms of all weights. This can
be easily checked for k < 12. For k ≥ 12 even, take f ∈ Mk. We want to show f
can be expressed as a polynomial in G4 and G6. First we can find (i, j) ∈ (Z≥0)

2

such that 4i+ 6j = k. Then Gi
4G

j
6 is a weight k modular form which is nonzero at

∞. Hence we can find some c ∈ C such that f − cGi
4G

j
6 ∈ Sk. Then the function

h(G4, G6) :=
f−cGi

4G
j
6

∆ ∈ Mk−12, which by induction, is a polynomial in G4, G6.

Thus f = cGi
4G

j
6 +∆h(G4, G6) is a polynomial in G4, G6.

Next, we show G4 and G6 are algebraically independent. Suppose not, then
there is some nonzero complex polynomial P (x, y) such that P (G4, G6) = 0. Since
modular forms of different weights are C-linearly independent (Remark 2.8), we
may assume the monomials in P (G4, G6) are of the same weight. We can also
assume this weight is minimal. If a pure power of G4 occurs in P (G4, G6), i.e.
there exists some positive integer m and some lower degree polynomial P ′(x, y)
such that

0 = P (G4, G6) = Gm
4 +G6P

′(G4, G6).

Taking z = i and noting that G6(i) = 0 we get Gm
4 (i) = 0 which is impossible

since G4(i) ̸= 0; see Remark 4.7. Hence there is no pure power of G4 appearing in
P (G4, G6). This shows that P = G6P

′(G4, G6) for some lower degree polynomial
P ′. But since G6 only vanishes at one point, we have P ′(G4, G6) = 0, contradicting
the assumption that monomials of P are of minimal weight. □
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5. Relations with elliptic curves

Recall that (℘, ℘′) satisfies the relation (1.18). This gives a realization of the
complex torus C/Λ as an elliptic curve.

Definition 5.1. A complex elliptic curve E is a smooth projective algebraic curve
of genus 1. Up to isomorphism it is given by the Weierstrass form

E =
{
(x, y) ∈ C2 : y2 = 4x3 − a2x− a3

}
∪ {∞}

with a32 − 27a23 ̸= 04.

In view of (1.18) and Lemma 1.7 every lattice Λ ⊂ C gives rise to an elliptic
curve EΛ with a2 = g2(Λ) and a3 = g3(Λ).

Lemma 5.1. For any lattice Λ ⊂ C, the map sending u+Λ ∈ C/Λ to (℘(u), ℘′(u)) ∈
EΛ is bijective5.

Proof. We only need to show the inverse map exists. We define a map ι : EΛ → C/Λ
as following: Set ι(∞) = Λ. For a non infinity point (x, y) ∈ EΛ, if y ̸= 0 (so that
x ̸= ej for j = 1, 2, 3), then there exists u which is not a 2-torsion point such that
℘(u) = x. Then set ι(x, y) = u + Λ and ι(x,−y) = −u + Λ. If y = 0 then x = ej
for some 1 ≤ j ≤ 3 and we set ι(x, y) =

ωj

2 + Λ. □

This map transfers the group law from the complex torus to the elliptic curve.
More precisely, if P1, P2 ∈ EΛ is the image of u1 + Λ and u2 + Λ under the above
map. Then P1+P2 ∈ EΛ is defined to be the image of u1+u2+Λ under the above
map. We have the following geometric description of this group law. We denote
by O the ∞ point of EΛ which is the image of Λ ∈ C/Λ under the above map, and
thus is the identity element in EΛ.

Proposition 5.2. For any P1, P2, P3 ∈ EΛ, P1 + P2 + P3 = O if and only if
P1, P2, P3 are colinear, i.e. they are the intersection points of a line with EΛ.

Proof. For i = 1, 2, 3, assume Pi = (℘(ui), ℘
′(ui)) for some ui ∈ C. Let L :

ax+ by + c = 0 be the line passing through P1 and P2, that is, the function

f(u) := a℘(u) + b℘′(u) + c

vanishes at u = u1, u2. If b ̸= 0, then f has a triple pole at 0 (mod Λ) (cf.
Remark 1.17). Then by (1.8) f must have another zero. We thus have the following
equivalent statements:

P3 ∈ EΛ is on the line P1P2 ⇐==⇒ u3 is a zero of f

(1.9)⇐==⇒ u1 + u2 + u3 − 3 · 0 ∈ Λ

⇐==⇒ P1 + P2 + P3 = O.

The case when b = 0 follows from similar analysis which implies that in this case
P1 + P2 = O = P3. □

4More precisely, E ⊂ PC3 is cut out the projective homogeneous cubic polynomial zy2 =

4x3 − a2xz2 − a4z3 which consists of the affine curve y2 = 4x3 − a2x − a3 by setting z = 1

together with the point [0, 1, 0] viewed as the ∞ point.
5Here (℘′(0), ℘(0)) is understood as the ∞ point of EΛ.
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Figure 4. Group law on the elliptic curve y2 = 4x3 − 4x.

We have seen that every lattice Λ gives rise to an elliptic curve EΛ. Indeed
the converse is also true. For this we need the following simple application of the
zero-pole theorem to the j-invariant function.

Lemma 5.3. The j-invariant function j : H → C is a bijection.

Proof. For any value c ∈ C, consider the function f(z) = j(z) − c. Since j has a
simple pole at ∞ and is holomorphic everywhere else, we can apply (4.5) to f to
get

1

2
ordi(f) +

1

3
ordρ(f) +

∑
z∈F ′

τ ̸=ρ,i

ordz(f) = 1.

For this equality to hold the left side must have exactly one positive term, implying
that j is a bijection. □

The following theorem shows that indeed up to isomorphism every complex el-
liptic curve can be realized as EΛ for some lattice Λ.

Theorem 5.4. For any complex elliptic curve y2 = x3−a2x−a3 with a32−27a23 ̸= 0.
There exists some lattice Λ such that g2(Λ) = a2 and g3(Λ) = a3.

Proof. Note that

j =
1728g32

∆
=

1728

1− 27g23/g
3
2

.

By Lemma 5.3 there exists some z ∈ H such that j(z) = 1728
1−27a2

3/a
3
2
. In terms of

lattices, this means that the lattice Λ = zZ+ Z satisfies

g32(Λ)

g23(Λ)
=
a23
a32
.(5.2)

Note that g2(λΛ) = λ−4g2(Λ) and g3(λΛ) = λ−6g3(Λ) for any nonzero λ ∈ C.
We can find λ such that g2(λΛ) = a2. This, together with (5.2) implies that
g23(λΛ) = a23. Thus up to changing λ to −λ, this lattice λΛ satisfies the desired
property that g2(λΛ) = a2 and g3(λΛ) = a3. This concludes the proof. □
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6. Modular forms for congruence subgroups

6.1. A quick review of hyperbolic geometry. Let

H = {z = x+ iy ∈ C : y > 0}
be the usual upper half plane. It is equipped with the hyperbolic metric

|dz|2

y2
=
dx2 + dy2

y2
.

This is to say, for each z = x + iy ∈ H the tangent space TzH ∼= C of H at

z is equipped with the inner product ⟨v, w⟩z := (v,w)
y2 , where (v, w) = vw is the

usual inner product on C with w the complex conjugation. Or equivalently, TzH is
equipped with the norm ∥ · ∥z := y−1| · |, where | · | is the usual Euclidean norm on
C. The hyperbolic distance is defined such that for any z, w ∈ H,

dH(z, w) = inf
ϕ

∫ 1

0

∥ϕ′(t)∥ϕ(t)dt,

where ϕ(t) : [0, 1] → H runs through all smooth curves in H connecting z and w.

Lemma 6.1. Let z1 = iT1, z2 = iT2 for some T1 > T2 > 0. Then dH(z1, z2) =

log
(

T1

T2

)
with the geodesic given by the line segment connecting z1 and z2.

Proof. Let ϕ(t) = x(t) + iy(t) : [0, 1] → H be any smooth curve connecting z1, z2.
Then we have∫ 1

0

∥ϕ′(t)∥ϕ(t)dt =
∫ 1

0

y(t)−1|ϕ′(t)|dt ≥
∫ 1

0

|y′(t)|
y(t)

dt

≥
∫ 1

0

y′(t)

y(t)
dt = log y(t)

∣∣∣∣1
0

= log
(

T1

T2

)
.

Since ϕ is an arbitrary smooth curve connecting z1 and z2, we conclude that

dH(z1, z2) ≥ log
(

T1

T2

)
. Moreover, we see from the computation that the equal-

ity holds when x′(t) = 0 and y′(t) ≥ 0 for all t ∈ [0, 1], implying that the geodesic
from z1 to z2 is the line segment connecting z1 and z2. □

6.2. The isometry group. The group M2(R) of 2 × 2 real matrices is a vector
space with a norm given by

∥g∥ = a2 + b2 + c2 + d2, g =
(
a b
c d

)
∈M2(R).

This norm gives a metric topology to the subgroup

SL2(R) = {g ∈M2(R) : det(g) = 1}
through the natural embedding. This subgroup SL2(R) acts on H via linear frac-
tional transformation:

gz =
az + b

cz + d
, ∀ g =

(
a b
c d

)
, z ∈ H.

Let ∂H = R ∪ {∞} be the boundary of H. Then SL2(R) also acts on ∂H with the
same formula6.

Lemma 6.2. Consider the SL2(R)-action on H.

6Precisely, g∞ = a
c
, and for any x ∈ R, gx = ax+b

cx+d
∈ R unless cx + d = 0 for which gx is

understood as ∞.
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(1) This action is transitive.
(2) This action is isometric, that is,

dH(gz1, gz2) = dH(z1, z2), ∀ z1, z2 ∈ H, g ∈ SL2(R).

Proof. For (1), take any z = x + iy ∈ H, we want to show there exists some

g ∈ SL2(R) such that gi = z. Note that the matrix g = ( 1 x
0 1 )

(
y

1
2 0

0 y− 1
2

)
∈ SL2(R)

suffices.
For (2), let ϕ : [0, 1] → H be any smooth curve connecting z1 and z2. Then gϕ

is a smooth curve connecting gz1 and gz2. Thus

dH(gz1, gz2) ≤
∫ 1

0

∥dgϕ∥gϕ(t) dt.

Note that for any z ∈ H, dgz = dz
jg(z)

and Im(gz) = Im(z)
|jg(z)|2 , where jg(z) = cz + d

is the automorphy factor as before. This implies that for any 0 ≤ t ≤ 1,

∥dgϕ(t)∥gϕ(t) = Im(gϕ(t))−1 |dϕ(t)|
|jg(ϕ(t))|2

= Im(ϕ(t))−1|dϕ(t)| = ∥dϕ(t)∥ϕ(t).

Thus

dH(gz1, gz2) ≤
∫ 1

0

∥dϕ∥ϕ(t) dt.

Since ϕ is arbitrary we deduce that dH(gz1, gz2) ≤ dH(z1, z2). On the other hand,
since g ∈ SL2(R) is arbitrary, we also have

dH(z1, z2) = dH(g
−1gz1, g

−1gz2) ≤ dH(gz1, gz2),

implying that dH(gz1, gz2) = dH(z1, z2). This finishes the proof. □

Remark 6.1. In fact, the group PSL2(R) := SL2(R)/⟨±I2⟩ is the orientation pre-
serving isometry group of H.

As a corollary we have the following description of geodesics on H.

Corollary 6.3. The geodesics on H are semi-circles connecting two points in ∂H.
Here we regard the vertical line connecting x ∈ R and ∞ as the semi-circle con-
necting these two points.

Proof. Given z1, z2 ∈ H, we want to show the geodesic from z1 to z2 is the arc from
z1 to z2 on the semi-circle determined by z1 and z2. First we show that there exists
g ∈ SL2(R) satisfying g−1z1 = i and g−1z2 ∈ iR>0. The first condition is equivalent

to gi = z1. For x ∈ R, y > 0, θ ∈ [0, 2π) let nx = ( 1 x
0 1 ), ay =

(
y

1
2 0

0 y− 1
2

)
and

kθ =
(

cos θ sin θ
− sin θ cos θ

)
respectively. We take g = nx1ay1kθ1 ∈ SL2(R) with x1 = Re(z1),

y1 = Im(z1) and θ1 ∈ [0, 2π) to be determined. One easily checks that kθ1 fixes i
and thus gi = nx1ay1i = x1 + iy1 = z1. Hence the first condition is satisfied. The
second condition is equivalent to finding θ1 such that k−θ1a

−1
y1
n−1
x1
z2 ∈ iR>0 (note

that k−1
θ = k−θ. Then by Exercise 5 below we can always find such θ1 and hence

this condition can be satisfied. Now let g be such that g−1z1 = i and g−1z2 ∈ iR>0.
Let G be the geodesic from g−1z1 to g−1z2. Then by Lemma 6.1 it is the vertical
line segment from g−1z1 to g

−1z2. Since g acts on H as isometries, it sends geodesics
to geodesics. Thus gG is the geodesic from z1 to z2. By Exercise 6 below wee see
that gG is the desired arc on the semi-circle determined by z1 and z2. □
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Exercise 5. For any θ ∈ [0, 2π) let kθ be as above. Show that for any z ∈ H there
exists some θ such that kθz has real part equaling 0.

Exercise 6. Let g =
(
a b
c d

)
∈ SL2(R). Show that g sends the vertical line iR to the

semi-circle connecting a
c and b

d .

The group SL2(R) has an Iwasawa decomposition that any g ∈ SL2(R) can be
written uniquely of the form

g = nxaykθ, for some x ∈ R, y > 0, θ ∈ [0, 2π),

where nx = ( 1 x
0 1 ), ay =

(
y

1
2 0

0 y− 1
2

)
and kθ =

(
cos θ sin θ
− sin θ cos θ

)
. The matrix nx acts as

translations nxz = z + x and has exactly one fixed point ∞, ay acts as dilations
ayz = yz and has two fixed points 0,∞, while kθ fixes i and acts as rotation around
i.

The action of SL2(R) can be classified by the fixed points of its action on H∪∂H.

Proposition 6.4. Let g ̸= ±I2 ∈ SL2(R) and consider its action on H ∪ ∂H.

(1) g has exactly one fixed point on ∂H if | tr(g)| = 2,
(2) g has two fixed points both on ∂H if | tr(g)| > 2,
(3) g has exactly one fixed point in H if | tr(g)| < 2.

Definition 6.2. The transformations in these three cases are called parabolic, hy-
perbolic and elliptic respectively.

Proof of Proposition 6.4. Take g =
(
a b
c d

)
. If c = 0 (so that d = a−1), then ∞ is

clearly has a fixed point. To see if it has any other fixed point, assume z ∈ H ∪ R
such that gz = z. This is equivalent to (1 − a2)z = b. Note that in this case
| tr(g)| = |a + a−1| ≥ 2. If | tr(g)| = 1, i.e. |a| = 1, then this equation has no
solution unless b = 0, but this is the case when g = ±I2, violating our assumption.
If | tr(g)| > 2 (i.e. |a| ≠ 1), then z = b

1−a2 is another fixed point and its on ∂H.
This proves the case when c = 0.

If c ̸= 0 and suppose z ∈ H is a fixed point of g, that is,

γz =
az + b

cz + d
= z.

Note that in this case the denominator can not be zero since otherwise z = −d
c ̸=

∞ = γz. Hence the above equation is equivalent to the quadratic equation cz2 +
(d− a)z − b = 0. Computing the discriminant we get

∆ = (d− a)2 + 4bc = a2 − 2ad+ d2 + 4bc = (a+ d)2 − 4 = tr(g)2 − 4.

When | tr(g)| = 2, this quadratic equation has only one real solution, lying on
∂H. Hence | tr(g)| > 2, it has two real solutions, thus both lying on ∂H. When
tr(g)| < 2, it has two complex solutions, one lies in H and the other lies in the lower
half plane. This finishes the proof. □

6.3. Discrete subgroups.

Definition 6.3. A subgroup Γ < SL2(R) is discrete if the induced topology in Γ
is discrete, i.e. if the sets {γ ∈ Γ : ∥γ∥ < r} are finite for any r > 0.
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Definition 6.4. A discrete subgroup Γ < SL2(R) is called a lattice if its funda-
mental domain has finite area with respect to the hyperbolic measure

dµ(z) =
dxdy

y2
.

It is called uniform (resp. non-uniform) if the closure of its fundamental domain
is compact (resp. non-compact).

Exercise 7. Show that µ is SL2(R)-invariant, i.e. dµ(gz) = dµ(z) for any g ∈
SL2(R).

Example 6.5. The subgroup

Γ =

{(
1 n
0 1

)
: n ∈ Z

}
is discrete, but it’s not a lattice since it has a fundamental domain

F = {z = x+ iy ∈ H : 0 ≤ x < 1}
with hyperbolic area

µ(F) =

∫ 1

0

∫ ∞

0

dxdy

y2
= ∞.

Example 6.6. The modular group SL2(Z) is an example of a non-uniform lattice.
It is clearly discrete. Recall the set F defined in (3.3) is a fundamental domain for
SL2(Z). It is clearly non-compact, but its hyperbolic area is finite:

µ(F) =

∫ 1
2

− 1
2

∫ ∞

√
1−x2

dydx

y2
=

∫ 1
2

− 1
2

dx√
1− x2

=

∫ π
6

−π
6

dθ =
π

3
.

Let Γ < SL2(Z) be a finite-index subgroup of SL2(Z). Let {γi} ⊂ SL2(Z) be
such that SL2(Z) =

⊔
i Γγi if −I2 ∈ Γ and Γ =

⊔
i(Γγi ⊔ Γ − γi) if −I2 /∈ Γ. We

have the following description of the fundamental domain of Γ which implies that
Γ is also a non-uniform lattice.

Proposition 6.5. Let F ⊂ H be a fundamental domain of SL2(Z), we claim without
proof that the set

FΓ :=
⋃
i

γiF

is a disjoint union and is a fundamental domain for Γ.

Remark 6.7. The set FΓ clearly depends on the choice of coset representatives. For
some choices FΓ may not be a domain, and thus here we do not require condition
(1) of Definition 3.2. This proposition easily implies that all finite-index subgroups
of SL2(Z) are also non-uniform lattices.

Proof of Proposition 6.5. We assume −I2 ∈ Γ and note that the case when −I2 /∈ Γ
follows from similar arguments. We first show that this union is disjoint. Suppose
not, then there exists i ̸= j and z1, z2 ∈ F such that γiz1 = γjz2, or equivalently,

γ−1
2 γ1z1 = z2. Since F is a fundamental domain of SL2(Z), z1, z2 ∈ F and γ−1

2 γ1 ∈
SL2(Z), we have γ−1

2 γ1 = ±I2 ∈ Γ7 which is a contradiction since γi and γj lie in
different Γ cosets. Next, we show any two points in FΓ are in distinct Γ orbits.

7We didn’t state this fact, but it follows from our proof of Theorem 3.2.
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Suppose γiz1, γjz2 ∈ FΓ lie in the same Γ orbit, i.e. there exists some γ ∈ Γ such

that γγiz1 = γjz2. Again this implies that γ−1
j γγi = ±I2 and z1 = z2. The first

condition implies that γi and γj are in the same Γ coset and hence i = j, implying
that γiz1 = γjz2.

Finally, we show that for any point z ∈ H, there exists γ ∈ Γ such that γz ∈ FΓ.
Taking the inverse from the right coset decomposition we have SL2(Z) =

⊔
i γ

−1
i Γ.

Now since F is a fundamental domain for SL2(Z), there exists some γ′ ∈ SL2(Z)
such that γ′z ∈ F . From the above left coset decomposition, we have γ′ = γ−1

i γ

for some i and γ ∈ Γ. That is, γz ∈ γiF ⊂ FΓ. This finishes the proof. □

Example 6.8. This shows that any finite-index subgroup of SL2(Z) is also a non-
uniform lattice. For instance, consider Γ = ⟨T 2, S⟩ generated by T 2 and S. Note
that −I2 = S2 ∈ Γ. One easily sees that [SL2(Z) : Γ] = 3 and we can choose
{I2, T, TS} as a set of right Γ-coset representatives. Let F be the fundamental
domain as in (3.3). Then the resulting fundamental domain of Γ is as in the
following first figure. The second fundamental domain is obtained by cutting the
first one along the line Re(z) = 1 and moving the part to the right of the line to
the left by the transformation T−2.

Figure 5. Fundamental domains for Γ = ⟨T 2, S⟩

Let Γ be a non-uniform lattice. For any x ∈ ∂H, let us denote by

Γx := {γ ∈ Γ : γx = x}
the stabilizer of x in Γ. We say Γx is trivial if Γx does not contain any parabolic
motion, or equivalently, Γx is nontrivial if Γx contains some parabolic motion.

Lemma 6.6. Let Γ be a finite-index subgroup of SL2(Z).
(1) SL2(Z) acts on Q ∪ {∞} and this action is transitive.
(2) SL2(Z)x is nontrivial if and only if x ∈ Q ∪ {∞}.
(3) For any x ∈ Q ∪ {∞}, Γx is cyclic and generated by a parabolic motion8.
(4) Γ-action on Q ∪ {∞} has finitely many orbits.

Proof. For (1), the first part is clear. For (2), for any r ∈ Q ∪ {∞} we need to
show there exists g ∈ SL2(Z) such that g∞ = r. If r = ∞, we simply take g = I2.
If r = a

c is rational written in lowest terms, i.e. gcd(a, c) = 1. Then there exist

8More precisely, when −I2 ∈ Γ, it is generated by a parabolic motion together with −I2.
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b, d ∈ Z such that ad − bc = 1. Then g =
(
a b
c d

)
∈ SL2(Z) and g∞ = a

c = r
satisfying the desired property.

For (2) we only prove the easy direction “⇐”. The other direction is left as an
exercise. When x = ∞ this is clear since

SL2(Z)∞ = {± ( 1 n
0 1 ) : n ∈ Z} .

For general x ∈ Q ∪ {∞}, we can find τ ∈ SL2(Z) such that τ∞ = x. We claim
that SL2(Z)x = τ SL2(Z)∞τ−1 from which it is clear that SL2(Z)x is nontrivial. To
prove this claim, we prove a slightly more general statement that for any finite-index
subgroup Γ and σ ∈ SL2(R) such that σ∞ = x, we have

σ−1Γxσ = (σ−1Γσ)∞.(6.9)

Applying this statement for Γ = SL2(Z) and τ = σ we easily get the above claim.
Take any element γ = σ−1γ′σ ∈ σ−1Γxσ for some γ′ ∈ Γx. Clearly γ ∈ σ−1Γσ.
We also have γ∞ = σ−1γ′σ∞ = σ−1γ′x = σ−1x = ∞, implying that σ−1Γxσ ⊂
(σ−1Γσ)∞. The other containment follows by applying the same argument to the
lattice Γ′ = σ−1Γσ and the translating matrix σ−1 sending x to ∞. This proves
the statement.

For (3), by (2) for any x ∈ Q ∪ {∞} there exists some parabolic motion τx ∈
SL2(Z) such that SL2(Z)x = ⟨±τx⟩. In particular, this implies that Γx (a subgroup
of SL2(Z)x) can only consist of the trivial motion and parabolic motions. Suppose
Γx is trivial, then τ ix /∈ Γ for any nonzero integer i. In particular, this implies that
Γτ ix, i ∈ Z are distinct Γ-cosets, contradicting the finite index assumption.

For (4), write SL2(Z) =
⊔

i Γγi in coset decompositions. Then Q ∪ {∞} =
SL2(Z)∞ =

⋃
i Γγi∞. This finishes the proof. □

Exercise 8. Show that if SL2(Z)x is non-trivial then x ∈ Q ∪ {∞}.

Definition 6.10. A cusp of Γ is a Γ-orbit under the Γ-action on Q ∪ {∞}. We
also use elements in each Γ-orbit to represent this cusp. Two elements in the same
Γ-orbit are called Γ-equivalent.

Example 6.11.

(1) In view of (1) of Lemma 6.6, SL2(Z) has only one cusp. We can say ∞
(or any other point in Q ∪ {∞}) is a cusp of SL2(Z).

(2) The lattice Γ = ⟨T 2, S⟩ is of index 3 with coset representatives given by
{I2, T, TS}, but it has only two cusps: ΓI2∞ = Γ∞ = ΓT∞ and ΓTS∞ =
Γ1. We can say ∞ and 1 are the two inequivalent cusps of Γ.

Remark 6.12.

(1) In view of (4) of Lemma 6.6, a finite-index subgroup of Γ has finitely many
cusps. However, in general the number of cusps is smaller than the index
of Γ in SL2(Z) as seen from the above example.

(2) Geometrically, cusps of a non-uniform lattice correspond to “cusps” of the
quotient space Γ\H (endowed with the quotient topology from the natural
projection map H → Γ\H and visualized by its fundamental domain with
sides identified).

Let a ∈ Q ∪ {∞} be a cusp of Γ and let τa ∈ SL2(Z) be such that τa∞ = a.
Then

τ−1
a Γaτa = (τ−1

a Γτa)∞ = ⟨“± ”
(
1 ma
0 1

)
⟩,
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for some positive integer ma. This integer ma is called the width of the cusp a.
Similarly, there exists σa ∈ SL2(R) satisfying

σa∞ = a, τ−1
a Γaτa = (τ−1

a Γτa)∞ = ⟨“± ” ( 1 1
0 1 )⟩.

For instance, we may take σa = τa

(√
ma 0

0 1/
√
ma

)
. The matrix σa is called a scaling

matrix of the cusp a.

Remark 6.13.

(1) The width of a cusp measures the size of a cusp, e.g. for Γ = ⟨T 2, S⟩,
one sees that Γ∞ = ⟨± ( 1 2

0 1 )⟩ and thus the cusp ∞ has width 2. For
the cusp 1 one can take τ1 = ( 1 0

1 1 ). It is easy to see Γ1 = ⟨±T 2S⟩ and

τ−1
1 Γ1τ1 = (τ−1

1 Γτ1)∞ = ⟨± ( 1 1
0 1 )⟩. This implies that the cusp 1 has width

1.
(2) A scaling matrix is essentially used as a “change of variable” to transfer

cusp a (of Γ) to the cusp ∞ (of σ−1
a Γσa); see Remark 6.15 below.

Definition 6.14. Let Γ < SL2(Z) be a finite-index subgroup. A function f : H →
C is a modular form of weight k with respect to Γ if

(1) f is holomorphic,
(2) f is weakly modular of weight k with respect to Γ, i.e. f [γ]k = f , ∀ γ ∈ Γ,
(3) f is holomorphic at each cusp of Γ.

If in addition f vanishes at each cusp, then f is called a cusp form of weight k with
respect to Γ.

Remark 6.15.

(1) For any σ ∈ SL2(R), one easily sees that f is weakly modular of weight k
with respect to Γ if and only if f [σ]k is weakly modular of weight k with
respect to σ−1Γσ. Let a ∈ Q ∪ {∞} be a cusp of Γ with a scaling matrix
σa. Then f is holomorphic at a means that f [σa]k is holomorphic at ∞,
which as before means that it has the following Fourier expansion at ∞

f [σa]k(z) =

∞∑
n=0

f̂a(n)e(nz).

Similarly, f vanishes at a means we further have f̂a(0) = 0.
(2) We denote byMk(Γ) (resp. Sk(Γ)) the set of weight k modular (resp. cusp)

forms with respect to Γ. If Γ1 < Γ2, then we have the relations Mk(Γ2) ⊂
Mk(Γ1) and Sk(Γ2) ⊂ Sk(Γ1). (Smaller group means less restrictions from
the weak modularity assumption (condition (2) of Definition 6.14).)

(3) If −I2 ∈ Γ, then Mk(Γ) is empty for odd weights. If −I2 /∈ Γ, Mk(Γ) may
not be empty.

6.4. Congruence groups. In this course we mainly work with modular forms
with respect to certain family of subgroups of SL2(Z) called congruence subgroups.

Definition 6.16. For any N ∈ N, the principle congruence group of level N is
defined by

Γ(N) := {γ ∈ SL2(Z) : γ ≡ I2 (mod N)} .

Remark 6.17. For γ =
(
a b
c d

)
, this notation γ ≡ I2 (mod N) is a shorthand for

a ≡ d ≡ 1 (mod N) and b ≡ c ≡ 0 (mod N).
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Definition 6.18. A discrete subgroup of SL2(R) is called a congruence subgroup
if Γ(N) < Γ < SL2(Z) for some N ∈ N.

The following two families of groups are common examples of congruence sub-
groups: For any N ∈ N, define

Γ1(N) := {γ ∈ SL2(Z) : γ ≡ ( 1 ∗
0 1 ) (mod N)} ,

and

Γ0(N) := {γ ∈ SL2(Z) : γ ≡ ( ∗ ∗
0 ∗ ) (mod N)} .

Proposition 6.7. For any N ∈ N, we have

[Γ(1) : Γ(N)] = N3
∏
p|N

(1− p−2),(6.19)

[Γ(1) : Γ1(N)] = N2
∏
p|N

(1− p−2),(6.20)

and

[Γ(1) : Γ0(N)] = N
∏
p|N

(1 + p−1),(6.21)

where the product
∏

p|N runs over all prime divisors of N .

Lemma 6.8. The natural reduction map from SL2(Z) to SL2(Z/NZ) is surjective.

Proof. Let π be this projection. The case when N = 1 is trivial since in this case
SL2(Z/NZ) is trivial. Assume N ≥ 2. Take any

(
a b
c d

)
∈ M2(Z) such that its

reduction modulo N lies in SL2(Z/NZ), that is, ad − bc ≡ 1 (mod N). We need

to show that there exists
(
a′ b′

c′ d′

)
∈ SL2(Z) whose reduction modulo N is the same

as that of
(
a b
c d

)
. We first note that the condition ad − bc ≡ 1 (mod N) implies

that gcd(c, d,N) = 1. Changing c to c + N we may assume c ̸= 0. First we show
that we can take (c′, d′) ∈ Z2 with gcd(c′, d′) = 1 and (c′, d′) ≡ (c, d) (mod N). We
take c′ = c and d′ = d + kN with k ∈ Z to be determined. Let P1 =

∏
p|c
p|d
p and

P2 =
∏

p|c
p∤d
p. Clearly gcd(P1, P2) = 1. By the Chinese Remainder theorem we can

find k satisfying

k ≡ 1 (mod P1) and k ≡ 0 (mod P2).

Let p | c be a prime divisor of c. If p | d, then gcd(p,N) = 1 (since gcd(c, d,N) = 1)
and p | P1. Hence gcd(c, d + kN) = gcd(c, kN) = 1. If p ∤ d, then p | P2 and thus
p | k. Hence (p, d + kN) = gcd(p, d) = 1. This shows that any prime divisor of
c′ = c is coprime to d′ = d + kN and thus gcd(c′, d′) = 1. Since gcd(c′, d′) = 1,
there exist u, v ∈ Z such that ud′ − vc′ = 1. Then we have(

a b
c′ d′

)(
u v
c′ d′

)−1

=

(
ad′ − bc′ ∗

0 ud′ − vc′

)
≡
(
1 ∗
0 1

)
(mod N).

Thus there exists some ℓ ∈ Z such that(
a b
c d

)
≡
(
a b
c′ d′

)
≡
(
1 ℓ
0 1

)(
u v
c′ d′

)
=

(
u+ ℓc′ v + ℓd′

c′ d′

)
(mod N).

Then a′ = u+ ℓc′ and b′ = v + ℓd′ satisfy the desired properties. □
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Proof of Proposition 6.7. Consider the reduction map SL2(Z) → SL2(Z/NZ). By
Lemma 6.8 it is surjective and clearly with kernel Γ(N). Hence

[Γ(1) : Γ(N)] = #SL2(Z/NZ).

Now (6.19) follows from the counting formula for SL2(Z/NZ) (see Exercise 9). For
(6.21) consider the map Γ1(N) → Z/NZ sending

(
a b
c d

)
to b (mod N). We easily

check that it is a group homomorphism and is surjective with kernel Γ(N). Hence
[Γ1(N) : Γ(N)] = q. This, together with (6.19) implies (6.20). Finally, for (6.21),
note that the map Γ0(N) → (Z/NZ)× sending

(
a b
c d

)
to d (mod N) is a surjective

group homomorphism with kernel given by Γ1(q). Hence [Γ0(1) : Γ1(N)] = ϕ(N),
implying that

[Γ(1) : Γ0(N)] = [Γ(1) : Γ1(N)]ϕ(N)−1 =
N2
∏

p|N (1− p−2)

N
∏

p|N (1− p−1)
= N

∏
p|N

(1 + p−1),

as desired. □

Exercise 9. Show that #SL2(Z/NZ) = N3
∏

p|N (1− p−2).

6.5. Cusps of principle congruence subgroups. In this subsection we give an
explicit description of the cusps of the principle congruence subgroup Γ(N). That
is, we classify the orbits of the Γ(N)-action on Q ∪ {∞}. Since we already know
Γ(1) = SL2(Z) has one cusp, we assume n ≥ 2 in the below.

The starting point is the following lemma giving necessary and sufficient condi-
tions on when two elements in Q ∪ {∞} represent the same Γ(N)-orbit.

Lemma 6.9. Let s = a
c and s′ = a′

c′ be elements of Q ∪ {∞} with gcd(a, c) =
gcd(a′, c′) = 1. Then

Γ(N)s = Γ(N)s′ ⇐⇒
(
a′

c′

)
≡ ± ( ac ) (mod N).

Proof. For this direction “⇒”, suppose there exists some γ = ( p q
r t ) ∈ Γ(N) such

that s′ = γs = pa+qc
ra+tc . First note that gcd(pa + qc, ra + tc) = 1 (see Exercise 10).

This then implies that(
a′

c′

)
= ±

(
pa+ qc
ra+ tc

)
≡ ±

(
a
c

)
(mod N).

For the other direction, assume
(
a′

c′

)
≡ ± ( ac ) (mod N). we want to find γ ∈ Γ(N)

such that γs = s′. Up to changing
(
a′

c′

)
to
(

−a′

−c′

)
we may assume

(
a′

c′

)
≡

( ac ) (mod N). We first assume ( ac ) = ( 10 ) so that s = 1
0 = ∞ and

(
a′

c′

)
≡

( 10 ) (mod N). Since gcd(a′, c′) = 1 and a′ ≡ 1 (mod N), there exists β, δ ∈ Z
such that a′δ − c′β = 1−a′

N , or equivalently, a′(Nδ + 1) − c′βN = 1. Then the

matrix γ =
(

a′ βN
c′ 1+δN

)
lies in Γ(N) and satisfies that γ∞ = a′

c′ = s′. In general,

there exists b, d ∈ Z such that α =
(
a b
c d

)
∈ SL2(Z). Note that α ( 10 ) = ( ac ). Hence

the vector
(
a′′

c′′

)
:= α−1

(
a′

c′

)
satisfies

(
a′′

c′′

)
≡ α−1 ( ac ) ≡ ( 10 ) (mod N). Then by

the previous argument, there exists γ′ ∈ Γ(N) satisfying γ′∞ = a′′

c′′ = α−1 a′

c′ . Let

γ = αγ′α−1 Then we have

γs = αγ′α−1 a

c
= αγ′∞ = αα−1 a

′

c′
= s′.
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Moreover, since Γ(N) < SL2(Z) is normal, we also have γ ∈ Γ(N). This finishes
the proof. □

Exercise 10. Let ( ac ) ,
(
a′

c′

)
∈ Z2 be two nonzero integer vectors. Suppose ( ac ) =

γ ( ac ) for some γ ∈ SL2(Z). Show that gcd(a, c) = gcd(a′, c′).

Lemma 6.10. Let a, c ∈ Z2 and let a, c ∈ Z/NZ be their reductions in Z/NZ. The
following are equivalent.

(1) There exists a lift
(
a′

c′

)
∈ Z2 of ( ac ) with gcd(a′, c′) = 1,

(2) gcd(a, c,N) = 1,
(3) ( ac ) has order N in (Z/NZ)2.

Proof. If condition (1) holds, then there exists k, l, s, t such that k(a+ sN) + l(c+
tN) = 1, i.e. ka + lc + (ks + lt)N = 1. This implies that gcd(a, c,N) = 1, giving
condition (2).

If condition (2) holds, then there exist b, d, k ∈ Z such that ad − bc + kN = 1,

implying that
(
a b
c d

)
≡ I2 (mod N). Then by Lemma 6.8 there exists a lift

(
a′ b′

c′ d′

)
∈

SL2(Z). In particular,
(
a′

c′

)
∈ Z2 satisfies gcd(a′, c′) = 1 and

(
a′

c′

)
≡ ( ac ) (mod N),

giving condition (1).

Finally, we show (2) ⇔ (3). Note that k ( ac ) ≡
(

0
0

)
(mod N) is equivalent to N |

k gcd(a, c). Thus condition (3) is equivalent to the statement that N | k gcd(a, c) if
and only if N | k, which is equivalent to gcd(a, c,N) = 1, i.e. condition (2). □

Proposition 6.11. Let hN be the number of cusps of Γ(N). We have

hN =

{
1
2N

2
∏

p|N (1− p−2) N > 2,

3 N = 2.

Proof. In view of Lemma 6.9 and Lemma 6.10 and the fact that N ≥ 1, 1 ≡
−1 (mod N) if and only if N = 2 we know that

hN = δN#
{
(a, c) ∈ (Z/NZ)2 : gcd(a, c,N) = 1

}
,

where δN = 1 if N = 2 and δN = 1
2 if N > 2. Let φ(N) be the above counting

function. We have

φ(N) =
∑
d|N

∑
a∈Z/NZ

gcd(a,N)=d

∑
c∈Z/NZ

gcd(c,d)=1

1 =
∑
d|N

ϕ(N/d)(N/d)ϕ(d)

with ϕ the Euler’s totient function. With a standard computation one gets that

φ(N) = N2
∏
p|N

(1− p−2)

implying the desired formula for hN . □

Exercise 11. Fill in the details of the above computation.

Example 6.22.

(1) For Γ(3) as ( ac ) runs through {0, 1, 2}2 and after ruling out the ones with
gcd(a, c, 3) > 1 we get 4 pairs of integral vectors ( 01 ) ∼ ( 02 ), ( 10 ) ∼ ( 20 ),
( 11 ) ∼ ( 22 ) and ( 12 ) ∼ ( 21 ) which gives 4 inequivalent cusps 0,∞, 1, 12 .

(2) For Γ(4) one can similarly get that Γ(4) has 6 cusps with a complete list of
cusp representatives given by 0,∞, 1, 12 ,

1
3 , 2.
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7. Eisenstein series and Poincaré series

7.1. Poincaré series for the modular group. Let Γ = SL2(Z) and let k ≥ 4 is
be an even integer. Recall that the normalized weight k Eisenstein series is defined
by

Ek(z) =
1

2ζ(k)
Gk(z) =

1

2

∑
(c,d)∈Z2

gcd(c,d)=1

1

(cz + d)k
.

There is a more intrinsic way of defining this series which can be generalized to
produce more modular forms. Let Γ = SL2(Z) and let

Γ∞ = {γ ∈ Γ : γ∞ = ∞} = ⟨± ( 1 1
0 1 )⟩

be the stabilizer of the cusp ∞ in Γ as before. We have the following simple lemma.

Lemma 7.1. Let Γ′
∞ = ⟨( 1 1

0 1 )⟩ be the index two subgroup of Γ∞ and let

Z2
pr :=

{
(c, d) ∈ Z2 : gcd(c, d) = 1

}
be the set of primitive integer points in R2. The map from Γ′

∞\Γ to Z2
pr sending

Γ′
∞γ to (0, 1)γ is well-defined and a bijection.

Remark 7.1. Similarly, Γ∞\Γ is in bijection with Z2
pr/± which can be further iden-

tified with the set {(0, 1)} ∪ {(c, d) ∈ Z2
pr : c > 0}.

Proof. First note that (0, 1)γ is exactly the bottom row of γ and left multiplying
elements of Γ′

∞ does not change the bottom row of γ. This implies that this map
is well-defined. It is also surjective since for any (c, d) ∈ Z2

pr we can find (a, b) ∈ Z2

such that ad − bc = 1, i.e. γ =
(
a b
c d

)
∈ Γ and satisfies (0, 1)γ = (c, d). It is

also injective: Suppose (0, 1)γ1 = (0, 1)γ2 for some γ1, γ2 ∈ Γ. Then we have
(0, 1)γ1γ

−1
2 = (0, 1), implying that γ1γ

−1
2 ∈ Γ′

∞, i.e. Γ′
∞γ1 = Γ′

∞γ2. □

Recall that for any γ =
(
a b
c d

)
, jγ(z) = cz + d is the factor of automorphy. Thus

the normalized Eisenstein series can be rewritten as

Ek(z) =
1

2

∑
γ∈Γ̃∞\Γ

jγ(z)
−k =

∑
γ∈Γ∞\Γ

jγ(z)
−k.

We can construct more general modular forms via this averaging technique.

Definition 7.2. Let p : H → C be holomorphic and periodic with period 1.

(1) The corresponding weight k Poincaré series is defined by

P (z) =
∑

γ∈Γ∞\Γ

jγ(z)
−kp(γz)

whenever this series is absolutely convergent.
(2) When p(z) = e(mz) for some integer m ≥ 0, the corresponding Poincaré

series, denoted by Pm,k is called the m-th Poincaré series of weight k.

Remark 7.3. The 0-th Poincaré series P0,k is simply the normalized Eisensetien
series Ek.

Lemma 7.2. The Poincaré series is well-defined.
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Proof. We need to show the definition is independent of the choice of coset represen-
tatives. First note that p is periodic with period 1 means that p(γz) = p(z) for any
γ ∈ Γ∞. Let {γi}, {γ′i} be two complete sets of coset representatives of Γ∞\Γ. Up
to reordering we may assume Γ∞γi = Γ∞γ

′
i for each i. Then there exists ni ∈ Γ∞

such that γ′i = niγi. Then we have jγ′
i
(z) = jniγi

(z) = jni
(γiz)jγi

(z) = jγi
(z) and

p(γ′iz) = p(niγiz) = p(γiz). Hence∑
i

jγ′
i
(z)−kp(γ′iz) =

∑
i

jγi(z)
−kp(γiz)

is independent of the choice of coset representatives. This finishes the proof. □

Lemma 7.3. Pm,k ∈ Sk for any m ≥ 1.

Proof. Since e(mz) is uniformly bounded by 1 and is holomorphic and k ≥ 4, the
defining series converges absolutely and uniformly on compact sets, it defines a
holomorphic function on H. Moreover, one can show

lim
y→∞

Pm,k(iy) = lim
y→∞

e(mz) = 0,

vanishing at ∞. Here the last equality holds since m ≥ 1 and z ∈ H. It thus
remains to show Pm,k is weakly modular with respect to Γ, i.e. Pm,k[α]k = Pm,k

for any α ∈ Γ. Take any α ∈ Γ we have

Pm,k[α]k(z) = jα(z)
−kPm,k(αz) = jα(z)

−k
∑

γ∈Γ∞\Γ

jγ(αz)
−ke(mγαz)

=
∑

γ∈Γ∞\Γ

jγα(z)
−ke(mγαz) =

∑
γ∈Γ∞\Γ

jγ(z)
−ke(mγz) = Pm,k(z).

Here for the third equation we used the chain rule of jγ(z) (see Lemma 2.2) and
for the second last equality we used the fact that if {γi} is a set of representatives
for Γ∞\Γ, so is {γiα} for any α ∈ Γ. This concludes the proof. □

Remark 7.4. When k = 12, for any m ≥ 1, Pm,12 = cm∆ for some cm ∈ C.

7.2. Poincaré series for congruence subgroups. The same construction also
works for a general congruence subgroup. Let Γ < SL2(Z) be a congruence subgroup
and let CΓ ⊂ Q ∪ {∞} be a complete set of inequivalent cusps of Γ, e.g. CSL2(Z) =

{∞} and CΓ(3) = {0,∞, 1, 12}.

Definition 7.5. Let a ∈ CΓ be a cusp of Γ and let p : H → C be holomorphic and
periodic with period 1.

(1) The corresponding weight k Poincaré series of Γ at the cusp a is defined by

Pa(z) =
∑

γ∈Γa\Γ

jσ−1
a γ(z)

−kp(σ−1
a γz)

whenever this series is absolutely convergent. Here σa is a scaling matrix
at the cusp a.

(2) When p(z) = e(mz) for some m ≥ 0, the corresponding Poincaré series,
denoted by Pa,m(z), is called the m-th Poincaré series of Γ at the cusp a.
The 0-th Poincaré series is called the Eisenstein series of Γ at the cusp a
and we denote it by Ea(z).

Remark 7.6. Each cusp defines a Poincaré series.



36 SHUCHENG YU

Lemma 7.4. For each a ∈ CΓ, Pa(z) is well-defined.

Proof. The proof is similar to that of Lemma 7.2. Let {γi} and {γ′i} be two sets of
coset representatives for Γa\Γ. Up to reordering we may assume γ′i = τiγi for some
τi ∈ Γa. Recall that σ

−1
a Γaσa = ⟨“± ” ( 1 1

0 1 )⟩. Thus τi is of the form τi = σaniσ
−1
a

for some ni ∈ ⟨“± ” ( 1 1
0 1 )⟩. We then have∑

i

jσ−1
a γ′

i
(z)−kp(σ−1

a γ′iz) =
∑
i

jniσ
−1
a γi

(z)−kp(niσ
−1
a γiz)

=
∑
i

jσ−1
a γi

(z)−kp(σ−1
a γiz),

implying this definition is independent of the choice of coset representatives. □

Lemma 7.5. For k ≥ 3 and m ≥ 0, Pa,m(z) is holomorphic and weakly modular
of weight k with respect to Γ.

Proof. Since k ≥ 3, by Proposition 2.3 the defining series converges absolutely and
uniformly on compact sets of H, thus defines a holomorphic function. Next we show
Pa,m is weakly modular of weight k with respect to Γ. Take any α ∈ Γ, we have

Pa,m[α]k(z) = jα(z)
−k

∑
γ∈Γa\Γ

jσ−1
a γ(αz)

−ke(mσ−1
a γαz)

=
∑

γ∈Γa\Γ

jσ−1
a γα(z)

−ke(mσ−1
a γαz)

=
∑

γ∈Γa\Γ

jσ−1
a γ(z)

−ke(mσ−1
a γz) = Pa,m(z).

This finishes the proof. □

In order to show that Pa,m is a modular form with respect to Γ, we need to show
that it is holomorphic at all cusps of Γ. For this we prove explicitly the Fourier
expansion of Pa,m. We first carry out the computation for the modular group.

7.3. Fourier expansion of Poincaré series for the modular group. Let k ≥ 4
be even and m ≥ 1. Since Pm,k ∈ Sk, it has a Fourier expansion

Pm,k(z) =

∞∑
n=1

p̂k(m,n)e(nz)

with

p̂k(m,n) =

∫ 1

0

pm,k(z)e(−nz) dx.

Here as usual z = x + iy. Before presenting the theorem, we first introduce some
notation.

Definition 7.7. For any m,n ∈ Z and c ≥ 1, the classical Kloosterman sum is
defined by

S(m,n; c) =
∑

ad≡1 (mod c)

e

(
ma+ nd

c

)
.

Exercise 12. Let c ≥ 1 be a positive integer and m,n ∈ Z. Show that

(1) S(m,n; c) = S(n,m; c).
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(2) S(am, n; c) = S(m, an; c) if gcd(a, c) = 1.
(3) (multiplicativity in c)

S(m,n; c) = S(qm, qn; r)S(rm, rn; q)

if c = qr with (q, r) = 1 and qq ≡ 1 (mod r) and rr ≡ 1 (mod q).

Definition 7.8. Let ν ∈ Z, the J-Bessel function of type ν is defined by the
following formal power series expression

ex(z−
1
z )/2 =

∞∑
ν=−∞

Jν(x)z
ν .

Exercise 13. Use the power series expression for the exponential function to show
that

Jν(x) =
∑

m=max{0,−ν}

(−1)m

m!(m+ ν)!

(x
2

)ν+2m

.

We have the following explicit formula for p̂k(m,n), generalizing Proposition 2.5.

Theorem 7.6. For any m ≥ 1 and n ≥ 1,

p̂k(m,n) = δmn + 2πi−k
( n
m

) k−1
2

∞∑
c=1

c−1S(m,n; c)Jk−1

(
4π

√
mn

c

)
.

Remark 7.9. We can alternatively write

p̂k(m,n) =
( n
m

) k−1
2

(
δmn + 2πi−k

∞∑
c=1

c−1S(m,n; c)Jk−1

(
4π

√
mn

c

))
.(7.10)

By (1) of Exercise 12 we see that p̂(m,n) has a symmetry in (m,n) in the sense
that (m

n

) k−1
2

p̂k(m,n) =
( n
m

) k−1
2

p̂k(n,m).

Here p̂k(m,n) in the left hand side is the n-th Fourier coefficient of the m-th
Poincaré series while p̂k(n,m) in the right hand side is the m-th Fourier coeffi-
cient of the n-th Poincaré series. This is why we write this Fourier coefficient as

p̂k(m,n) rather than the more conventional P̂m,k(n).

Proof of Theorem 7.6. For any γ ∈ Γ, we denote by γ(c,d) to indicate that (c, d) is
the bottom row of γ. Then by definition and the bijection in Remark 7.1 we have

p̂k(m,n) =

∫ 1

0

∑
γ∈Γ∞\Γ

jγ(z)
−ke(mγz)e(−nz) dx

=

∫ 1

0

e((m− n)z) dx+
∑

(c,d)∈Z2
pr

c>0

∫ 1

0

e(mγ(c,d)z)

(cz + d)k
e(−nz) dx

= δmn +

∞∑
c=1

∑
d∈Z

gcd(c,d)=1

∫ 1

0

e(mγ(c,d)z)

(cz + d)k
e(−nz) dx

= δmn +

∞∑
c=1

∑
d∈(Z/cZ)×

∑
d′≡d (mod c)

∫ 1

0

e(mγ(c,d′)z)

(cz + d′)k
e(−nz) dx,
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where in the last equality we split the sum over d into congruence classes modulo
c. This theorem then follows from the following calculation of the innermost sum
in the above equation; see also Remark 7.11 below. □

Proposition 7.7. For any γ =
(
a b
c d

)
∈ SL2(R) with c > 0 and 0 ≤ d < c and for

any m ≥ 0, n ∈ Z define

Iγ(m,n) :=
∑
ℓ∈Z

∫ 1

0

e(mγnℓz)

jγnℓ
(z)k

e(−nz) dx,

where and nℓ = ( 1 ℓ
0 1 ). Then we have Iγ(m,n) = 0 if n ≤ 0 and for n > 0

Iγ(m,n) =

 e
(
nd
c

) (
2π
ic

)k nk−1

(k−1)! m = 0,

2π
ikc

(
n
m

) k−1
2 e

(
ma+nd

c

)
Jk−1

(
4π

√
mn

c

)
m ≥ 1.

Remark 7.11. When γ = γ(c,d) is some element in SL2(Z) with the bottom row
given by (c, d), one easily sees that as ℓ runs through Z, the bottom right entry of
γ(c,d)nℓ, being d

′ = d + cℓ, runs through all integers in the same congruence class
as d (mod c). Hence in this case Iγ(c,d)

(m,n) agrees with the above innermost sum
in the proof of Theorem 7.6, namely,∑

d′≡d (mod c)

∫ 1

0

e(mγ(c,d′)z)

(cz + d′)k
e(−nz) dx.

Proof of Proposition 7.7. Note that

γz =
az + b

cz + d
=
a(z + d

c ) + b− ad
c

c(z + d
c )

=
a

c
+

bc− ad

c2(z + d
c )

=
a

c
− 1

c2(c+ d
c )
.

Hence

γnℓz = γ(z + ℓ) =
a

c
− 1

c2(z + ℓ+ d
c )
.

Hence we have

Iγ(m,n) =
∑
ℓ∈Z

∫ 1

0

e
(
m
(

a
c − 1

c2(z+ℓ+ d
c )

))
ck((z + ℓ+ d

c )
k

e(−nz) dx

z+ℓ7→z
=

∫
R

e
(
m
(

a
c − 1

c2(z+ d
c )

))
ck((z + d

c )
k

e(−nz) dx

z+ d
c 7→z
= c−ke

(
ma+ nd

c

)∫
R

e
(
− m

c2z − nz
)

zk
dx

= c−ke

(
ma+ nd

c

)∫ ∞+iy

−∞+iy

e
(
− m

c2z − nz
)

zk
dz.

By Cauchy’s theorem the above integral is independent of the choice of y > 0.
Note that since m ≥ 0 and z ∈ H we have |e

(
− m

c2z − nz
)
| = e2πny. In particular,
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if n ≤ 0 we have∣∣∣∣∣
∫ ∞+iy

−∞+iy

e
(
− m

c2z − nz
)

zk
dz

∣∣∣∣∣ =
∣∣∣∣∣ limY→∞

∫ ∞+iY

−∞+iY

e
(
− m

c2z − nz
)

zk
dz

∣∣∣∣∣
≤ lim

Y→∞

∫ ∞+iY

−∞+iY

dx

(x2 + Y 2)k/2

= 2 lim
Y→∞

Y 1−k

∫ ∞

0

dx

(x2 + 1)k/2
= 0

whenever k > 1. For n > 0 and m = 0, we can show again by Cauchy’s theorem

Iγ(0, n) = c−ke

(
nd

c

)∫ ∞+iy

−∞+iy

e(−nz)
zk

dz

= e

(
nd

c

)(
2π

ic

)k
nk−1

(k − 1)!
.

For n > 0 and m > 0, making a change of z 7→
√

m
n

z
c we get

Iγ(m,n) = c−1
( n
m

) k−1
2

e

(
ma+ nd

c

)∫ ∞+iỹ

−∞+iỹ

e
(
−

√
mn
c (z + z−1)

)
zk

dz,

where ỹ =
√
m√
nc
y. Again by Cauchy’s theorem, this above integral is independent

of ỹ > 0 and equals 2πi−kJk−1(4π
√
mn/c) (Exercise 14). Plugging this into the

above equation we get

Ic,d(m,n) =
2π

ikc

( n
m

) k−1
2

e

(
ma+ nd

c

)
Jk−1

(
4π

√
mn

c

)
,

finishing the proof. □

Exercise 14. Show that for any λ > 0, y > 0 and k ∈ N,

1

2πi

∫ ∞+iy

−∞+iy

e−
λ
2 i(z+z−1)

zk
dz = −i1−kJk−1(λ).

7.4. Fourier expansion of Poincaré series for congruence subgroups. Let
Γ < SL2(Z) be a congruence subgroup. For simplicity of presentation we assume
−I2 ∈ Γ so that

σ−1
a Γaσa = ⟨± ( 1 1

0 1 )⟩ =: B, ∀ a ∈ CΓ.
In this subsection we compute the Fourier expansion of the Poincaré series of Γ.
More precisely, let a, b ∈ CΓ be two (not necessarily distinct) cusps of Γ. We
compute the Fourier expansion of the Poincaré series Pa,m at the cusp b, that is,
the Fourier expansion of Pa,m[σb]k at ∞. We denote by

p̂a,b(m,n) =

∫ 1

0

Pa,m[σb]k(z)e(−nz) dx

the n-Fourier coefficient of Pa,m[σb]k so that

Pa,m[σb]k(z) =
∑
n∈Z

p̂a,b(m,n)e(nz).

In order to compute these Fourier coefficients, we first prove the following prelimi-
nary expression for Pa,m[σb]k.
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Lemma 7.8. For any z ∈ H we have

Pa,m[σb]k(z) =
∑

γ∈B\σ−1
a Γσb

jγ(z)
−ke(mγz).

Proof. By definition we have

Pa,m[σb]k(z) = jσb
(z)−k

∑
γ∈Γa\Γ

jσ−1
a γ(σbz)

−ke(mσ−1
a γσbz)

=
∑

γ∈Γa\Γ

jσ−1
a γσb

(z)−ke(mσ−1
a γσbz)

=
∑

γ∈Γa\Γ

jσ−1
a γσb

(z)−ke(mσ−1
a γσbz).

Now note that if {γi} is a set of coset representatives for Γa\Γ, i.e. Γ =
⊔

i Γaγi,
then

σ−1
a Γσb =

⊔
i

σ−1
a Γaσ

−1
a σaγiσb =

⊔
i

Bσaγiσb.

This implies that {σ−1
a γiσb} is a set of coset representatives for B\σ−1

a Γσb. Hence

Pa,m[σb]k(z) =
∑

γ∈B\σ−1
a Γσb

jγ(z)
−ke(mγz),

as desired. □

To further proceed the computation, we need the following double coset decom-
position of σ−1

a Γσb.

Proposition 7.9. The set σ−1
a Γσb is bi-B-invariant and

σ−1
a Γσb = δabB

⊔ ⊔
(c,d)∈C(a,b)

B

(
∗ ∗
c d

)
B,(7.12)

where δab is the Kronecker symbol and

C(a, b) =
{
(c, d) ∈ R2 : c > 0, 0 ≤ d < c, ( ∗ ∗

c d ) ∈ σ−1
a Γσb

}
.

Proof. We first show the right hand side of (7.12) is well-defined, that is the double
cosets there are independent of the choice of representatives. For some (c, d) ∈
C(a, b), suppose ω =

(
a b
c d

)
and ω′ =

(
a′ b′

c d

)
both lie in σ−1

a Γσb, we want to
show they represent the same double B-coset, i.e. BωB = Bω′B. For this write
ω = σ−1

a ω̃σb and ω′ = σ−1
a ω̃′σb with ω̃, ω̃′ ∈ Γ. Note that

γ := σaω
′ω−1σ−1

a = σaσ
−1
a ω̃′σbσ

−1
b ω̃−1σaσ

−1
a = ω̃′ω̃−1 ∈ Γ.

Moreover, since ω and ω′ have the same bottom row, ω′ω−1 = ( 1 ∗
0 1 ) fixes ∞. This

implies that

γa = σaω
′ω−1σ−1

a a = σa∞ = a.

In other words γ ∈ Γa. Hence ω′ω−1 = σ−1
a γσa ∈ σ−1

a Γaσa = B, giving Bω′B =
BωB as desired. Next we show the right hand side is a disjoint union. This is clear
from the following matrix computation:(

1 m
0 1

)(
a b
c d

)(
1 n
0 1

)
=

(
a+ cm ∗

c d+ cn

)
.(7.13)
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Indeed, if (c, d), (c′, d′) ∈ C(a, b) satisfy B ( ∗ ∗
c d )B = B ( ∗ ∗

c′ d′ )B, then (7.13) implies
that c = c′ and d ≡ d′ (mod c)9. But since 0 ≤ d, d′ < c, we must have d = d′.

Now we proceed to prove the statements in this proposition. First we show
σ−1
a Γσb is bi-B-invariant. Note that B = σ−1

a Γaσa = σ−1
b Γbσb. Thus

Bσ−1
a ΓσbB = σ−1

a ΓaΓΓbσb = σ−1
a Γσb.

Next, we prove the equality (7.12). From the bi-B-invariance of σ−1
a Γσb and the

definition of C(a, b) it is clear that the right hand side of (7.12) is contained in the

left hand side. It thus remains to prove the other containment. Let γ =
(
a′ b′

c′ d′

)
∈

σ−1
a Γσb. We can write γ = σ−1

a γ′σb for some γ′ ∈ Γ. We first show that if c′ = 0
then a = b and γ ∈ B. Suppose c′ = 0, then γ∞ = ∞. This implies that

γ′σb∞ = σa∞ ⇐⇒ γ′b = a.

Hence a and b are Γ-equivalent, implying that a = b and thus γ ∈ σ−1
a Γσa = B.

Next, we assume c′ ̸= 0, we want to show that γ lie in one of the double coset
B ( ∗ ∗

c d )B for some (c, d) ∈ C(a, b). Since −I2 ∈ B, up to change γ to −γ we
may assume c′ > 0. By right multiplication by ( 1 n

0 1 ) for some n ∈ Z we can

have γ ( 1 n
0 1 ) =

(
a′ b′+c′n
c′ d′+c′n

)
∈ σ−1

a Γσb with 0 ≤ d′ + c′n < c′. Thus by definition

(c, d) := (c′, d′ + c′n) ∈ C(a, b) and B
(

a′ b′+c′n
c′ d′+c′n

)
B is one of the double cosets in

the right hand side of (7.12). It is then clear that γ lies in this double coset. □

Remark 7.14. If −I2 /∈ Γ. Then by almost identical arguments one can prove the
same double coset decomposition as in (7.12) but with B and C(a, b) modified to
be ⟨( 1 1

0 1 )⟩ and
{
(c, d) ∈ R2 : c ̸= 0, 0 ≤ d < |c|, ( ∗ ∗

c d ) ∈ σ−1
a Γσb

}
respectively. The

Fourier expansion formula obtained later should also be modified accordingly.

Before stating the Fourier expansion we need to introduce some more notation.
Let C1(a, b) = pr1(C(a, b)), where pr1 : R2 → R is the projection to the first
coordinate. For any c ∈ C1(a, b) let

C(a, b; c) = {d ∈ [0, c) : (c, d) ∈ C(a, b)} .

Theorem 7.10. We have

Ea[σb]k(z) = Pa,0[σb]k(z) = δab +

∞∑
n=1

p̂ab(0, n)e(nz)

with

p̂ab(0, n) =

(
2π

i

)k
nk−1

(k − 1)!

∑
c∈C1(a,b)

c−kSab(0, n; c).

For m ≥ 1 we have

Pa,m[σb]k(z) =

∞∑
n=1

p̂ab(m,n)e(nz)

with

p̂ab(m,n) =
( n
m

) k−1
2

δabδmn + 2πi−k
∑

c∈C1(a,b)

c−1Sab(m,n; c)Jk−1

(
4π

√
mn

c

) .

9Here d, d′, c may not be integers. This notation just means d′ − d is an integral multiple of c.
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Here for any m,n ∈ Z and c ∈ C(a, b),

Sab(m,n; c) =
∑

d∈C(a,b;c)

e

(
ma+ nd

c

)
.

Remark 7.15. Here a ∈ R in the above definition is such that there exists some
ω =

(
a b
c d

)
such that ω ∈ σ−1

a Γσb. We have seen from the proof of Proposition 7.9

that if ω′ =
(
a′ b′

c d

)
is another element in σ−1

a Γσb with bottom row (c, d). Then
ω′ = ( 1 m

0 1 )ω′ for some m ∈ Z. Thus a ≡ a′ (mod c) and the above definition is
well-defined.

Example 7.16. Consider Γ = Γ0(N) and a = b = ∞. Then we can choose σa =
I2 and C(∞,∞) =

{
(c, d) ∈ Z2

pr : c > 0, 0 ≤ d < c, N | c
}

and for c = Nℓ with

ℓ ≥ 1, C(a, b; c) = {0 ≤ d < c : gcd(c, d) = 1} ∼= (Z/cZ)×. Hence S∞∞(m,n; c) =
S(m,n; c) and

p̂∞∞(0, n) =

(
2π

i

)k
nk−1

(k − 1)!

∞∑
ℓ=1

(Nℓ)−kS(0, n;Nℓ).

One can obtain similar formula for p̂∞∞(m,n) for m ≥ 1.

Combining this Fourier expansion and Lemma 7.5 we have the following corollary.

Corollary 7.11. For any k ≥ 3 and any a ∈ CΓ, Ea ∈ Mk(Γ) \ Sk(Γ), while
Pa,m ∈ Sk(Γ) for m ≥ 1.

Proof of Theorem 7.10. By the double coset decomposition Proposition 7.9 we have

B\σ−1
a Γσb = δabB\B

⊔ ⊔
(c,d)∈C(a,b)

B\Bγ(c,d)B,

where γ(c,d) is some element in σ−1
a Γσb with bottom row given by (c, d). We

can choose a set of coset representatives for B\Bγ(c,d)B to be {γ(c,d)nℓ}ℓ∈Z with
nℓ = ( 1 ℓ

0 1 ) as in Proposition 7.7. Then by Lemma 7.8 we have for any n ∈ Z

p̂ab(m,n) =

∫ 1

0

∑
γ∈B\σ−1

a Γσb

jγ(z)
−ke(mγz)e(−nz) dx

= δabδmn +
∑

(c,d)∈C(a,b)

∑
ℓ∈Z

∫ 1

0

e(mγ(c,d)nℓz)

jγ(c,d)nℓ
(z)k

e(−nz) dx

= δabδmn +
∑

c∈C1(a,b)

∑
d∈C(a,b;c)

Iγ(c,d)
(m,n).

The desired formulas for p̂ab(m,n) cna then be obtained by applying the formulas
of Iγ(c,d)

(m,n) obtained in Proposition 7.7. □

8. Petersson inner product on the space of cusp forms

8.1. Ptersson inner product on Sk. Let Γ = SL2(Z) and k ≥ 4 be even. In this
subsection we define an inner product on Sk = Sk(Γ) to make it a Hilbert space.

Recall that the hyperbolic measure dµ(z) = dxdy
y2 is SL2(R)-invariant.

Lemma 8.1. For any f, g ∈ Mk, the function F (z) := Im(z)kf(z)g(z) is Γ-
invariant.
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Proof. Given γ ∈ Γ,

F (γz) = Im(γz)kf(γz)g(γz)

= |jγ(z)|−2kIm(z)kjγ(z)
kf(z)jγ(z)

k
g(z)

= Im(z)kg(z) = F (z),

as desired. □

Definition 8.1. The Petersson inner product on Sk is defined by

⟨f, g⟩ =
∫
F
ykf(z)g(z) dµ(z), ∀ f, g ∈ Sk,

where F ⊂ H is a fundamental domain of Γ\H.

Remark 8.2.

(1) The Γ-invariance of Im(z)kf(z)g(z) and µ imply that the above definition
is independent of the choice of fundamental domains. Hence we may replace
F by the notation Γ\H.

(2) The assumption f, g ∈ Sk is to ensure integrability. Indeed,

f(z) = e(z)

∞∑
n=1

f̂(n)e((n− 1)z)

satisfies |f(z)| = e−2πyOf (1). Similarly, |g(z)| = e−2πyOg(1). Thus if we
pick the standard fundamental domain for SL2(Z) as given in (3.3), then
for any T > 2,

⟨f, g⟩ ≪f,g,T

∫ ∞

T

∫ 1

0

yk−2e−4πydxdy + 1 <∞.

In fact the same analysis shows that we only need to require one of f, g to
be in Sk to ensure integrability.

(3) (Sk, ⟨, ⟩) becomes a (finite dimensional) Hilbert space. This is important for
later discussions on Hecke theory (in order to apply certain linear algebra
results).

The following computation shows that integrate against Pm,k picks up the m-th
Fourier coefficient of f .

Proposition 8.2. Let f ∈ Sk with a Fourier expansion f(z) =
∑∞

n=1 f̂(n)e(nz).
Then we have for any m ∈ N,

⟨f, Pm,k⟩ =
Γ(k − 1)

(4πm)k−1
f̂(m).

Proof. By definition

⟨f, Pm,k⟩ =
∫
F
ykf(z)

∑
γ∈Γ∞\Γ

jγ(z)
−k
e(mγz) dµ(z),
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where F is a fundamental domain for Γ\H. Now making a change of variable
γz 7→ z and using the Γ-invariance of µ we get

⟨f, Pm,k⟩ =
∑

γ∈Γ∞\Γ

∫
γF

Im(γ−1z)kf(γ−1z)jγ(γ−1z)
−k
e(mz) dµ(z)

=
∑

γ∈Γ∞\Γ

∫
γF

|jγ−1(z)|−2kykjγ−1(z)kf(z)jγ−1(z)
k
e(mz) dµ(z)

=
∑

γ∈Γ∞\Γ

∫
γF

ykf(z)e(mz) dµ(z),

where for the second equality we used that 1 = jI2(z) = jγγ−1(z) = jγ(γ
−1z)jγ−1(z).

Now recall that the union
⋃

γ∈Γ∞\Γ γF is disjoint and forms a fundamental domain

for Γ∞ which can be chosen to be the region F∞ := {z ∈ H : 0 ≤ x < 1}. Hence

(and recall that dµ(z) = dxdy
y2 )

⟨f, Pm,k⟩ =
∫ ∞

0

∫ 1

0

f(z)e(mz)yk−2 dxdy.(8.3)

Note that∫ 1

0

f(z)e(mz) dx =

∞∑
n=1

f̂(n)e−2π(n+m)y

∫ 1

0

e((n−m)x) dx = f̂(m)e−4πmy.

Thus

⟨f, Pm,k⟩ = f̂(m)

∫ ∞

0

e−4πmyyk−2 dy
4πmy 7→y

=
Γ(k − 1)

(4πm)k−1
f̂(m)

as desired. □

Remark 8.4. The process of changing the integrating region from F (a fundamental
domain of Γ) to F∞ (a fundamental domain of the subgroup Γ∞) is called the un-
folding argument or unfolding trick. This is a very useful argument when computing
certain integrals involving modular forms constructed via the averaging technique.
We note that while the integral ⟨f, Pm,k⟩ is absolutely convergent for f ∈ Mk

and m ≥ 1, we do need the extra assumption that f ∈ Sk to ensure absolute
convergence in the integral in (8.3) which validates the unfolding argument.

We now discuss some consequences of this inner product formula.

Corollary 8.3. The set {Pm,k}m≥1 spans Sk.

Proof. If f ∈ Sk is orthogonal to the subspace spanned by the above set. Then by

Proposition 8.2 we have f̂(m) = 0 for all m ≥ 1, implying that f = 0. □

Remark 8.5. Indeed let dk = dimC Sk. Then one can show that {Pm,k}1≤m≤dk

spans Sk.

Next, we discuss some consequences of Proposition 8.2 on the Ramanujan τ -
function. Recall that

∆(z) = (2π)12
∞∑

n=1

τ(n)e(nz)
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and for each m ≥ 1 there exists cm ∈ C such that Pm,12 = cm∆. Using this relation
and Proposition 8.2 we can compute the inner product ⟨∆, Pm,k⟩ in two different
ways to get

cm∥∆∥2 = ⟨∆, Pm,12⟩ =
Γ(11)

(4πm)11
(2π)12τ(m).

Note that τ(m) ∈ R since ∆ = g32 − 27g23 and both g2 and g3 has real Fourier
coefficients. Thus

cm = cm = 2πΓ(11)(2m)−11τ(m)∥∆∥−2.(8.6)

Further computing ⟨Pm,12, Pn,12⟩ we can get

cmcn∥∆∥2 = ⟨Pm,12, Pn,12⟩ =
Γ(11)

(4πn)11
p̂12(m,n).

Applying the formulas (7.10) and (8.6) for p̂12(m,n) and cm respectively we get

τ(m)τ(n) = ν(mn)
11
2

(
δmn + 2π

∞∑
c=1

c−1S(m,n; c)J11

(
4π

√
mn

c

))
,(8.7)

where ν = ∥∆∥2

4π13Γ(11) is some fixed absolute constant. Taking m = 1 in (8.7) and

recall that τ(1) = 1 we get the following explicit formula for τ(n):

τ(n) = 2πνn
11
2

∞∑
c=1

c−1S(1, n; c)J11

(
4π

√
n

c

)
, ∀ n ≥ 2.(8.8)

Proposition 8.4. The Ramanujan τ -function satisfies the following recursive re-
lation

τ(m)τ(n) =
∑

d|(m,n)

d11τ(mnd−2)(8.9)

and the and growth condition

|τ(n)| ≪ϵ n
23
4 +ϵ.

Remark 8.10. Recall that the Ramanujan’s conjecture asserts that |τ(n)| ≪ϵ n
11
2 +ϵ.

Here we get slightly worse exponent (noting that 23
4 = 11

2 + 1
4 ).

Proof of Proposition 8.4. In order to prove the recursive relation we apply the Sel-
berg’s identity10 on the classical Kloosterman sum which states that

S(m,n; c) =
∑

d|(m,n,c)

dS(mnd−2, 1; cd−1).

We also have the following simple identity involving the δ-symbol:

δmn =
∑

d|(m,n)

δ1,mnd−2 .

10This identity was stated by Selberg in 1938 without proof. The first rigorous proof was
given by Kuznetsov [Kuz81] using trace formula. See also [Mat90] for an elementary proof of this

identity.
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Applying the above two formulas to (8.7) and changing summation order we get

τ(m)τ(n) = ν(mn)
11
2

 ∑
d|(m,n)

δ1,mnd−2 + 2π

∞∑
c=1

c−1
∑

d|(m,n,c)

dS(mnd−2, 1; cd−1)J11

(
4π

√
mn

c

)
=

∑
d|(m,n)

d11ν(mnd−2)
11
2

(
δ1,mnd−2 + 2π

∞∑
c=1

c−1S(mnd−2, 1; cd−1)J11

(
4π

√
mnd−2

c

))

=
∑

d|(m,n)

d11τ(mnd−2).

For the growth condition, we apply Weil’s bound on Kloosterman sum [Wei48] that

|S(m,n; c)| ≪ϵ (m,n, c)
1
2 c

1
2+ϵ(8.11)

and bounds on J-Bessel function that

|Jν(x)| ≪ min{xν , x− 1
2 }, ∀ x > 0(8.12)

to get

|τ(n)| ≪ϵ n
11
2

∞∑
c=1

c−
1
2+ϵ min

{(√
n
c

)11
,
(√

n
c

)− 1
2

}

≤ n
11
2

⌊√n⌋∑
c=1

c−
1
2+ϵ

(√
n
c

)− 1
2

+

∞∑
⌊√n⌋+1

c−
1
2+ϵ

(√
n
c

)11≪ n
23
4 +ϵ. □

Next, we discuss another application of Proposition 8.2 which is useful to gen-
eralize the above Fourier coefficient bounds to general cusp forms.

Proposition 8.5 (Petersson trace formula). Let {fj} ⊂ Sk be an orthonormal
basis with respect to the Petersson inner product. Then for any positive integers
m,n we have∑

j

f̂j(n)f̂j(m) =
(4π

√
mn)k−1

Γ(k − 1)

(
δmn + 2πi−k

∞∑
c=1

c−1S(m,n; c)Jk−1

(
4π

√
mn

c

))
.

Proof. Expand Pm,k with respect to {fj} and apply Proposition 8.2 to get

Pm,k =
∑
j

⟨Pm,k, fj⟩fj =
∑
j

⟨fj , Pm,k⟩fj

=
∑
j

Γ(k − 1)

(4πm)k−1
f̂j(m)fj .

Hence

⟨Pm,k, Pn,k⟩ =
∑
j

Γ(k − 1)2

(4π)2k−2(mn)k−1
f̂j(m)f̂j(n).

On the other hand, again applying Proposition 8.2 we get

⟨Pm,k, Pn,k⟩ =
Γ(k − 1)

(4πn)k−1
p̂k(m,n).

Equating both equations and applying the formula for p̂k(m,n) (see (7.10)) we get
the desired identity. □
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As a corollary of this trace formula, we get the following bound on Fourier
coefficients of a general weight k cusp form which generalizes the above bound on
τ(n).

Corollary 8.6. For any f ∈ Sk with a Fourier expansion f(z) =
∑∞

n=1 f̂(n)e(nz),
we have

|f̂(n)| ≪f,ϵ n
k−1
2 + 1

4+ϵ.

Proof. Choose an orthonormal basis {fj} which includes f/∥f∥. Applying Propo-
sition 8.5 for {fj} and m = n we get

|f̂(n)|2

∥f∥2
≤
∑
j

|f̂j(n)|2 ≪f n
k−1 + nk−1

∞∑
c=1

c−1|S(n, n; c)||Jk−1

(
4πn
c

)
|.

This bound then follows from the following bound

□(8.13)

∞∑
c=1

c−1|S(n, n; c)||Jk−1

(
4πn
c

)
| ≪ϵ n

1
2+ϵ.

Exercise 15. Use Weil’s bound on Kloosterman sum (8.11) and the bound (8.12)
on J-Bessel function to prove (8.13).

8.2. Petersson inner product for congruence subgroups. Let Γ < SL2(Z)
be a congruence subgroup and k ≥ 3. In this subsection we define the Petersson
inner product on Sk(Γ). The definition is similar to the modular group case.

Definition 8.14. The Petersson inner product on Sk(Γ) is defined by

⟨f, g⟩Γ :=

∫
Γ\H

ykf(z)g(z) dµ(z), ∀ f, g ∈ Sk(Γ).

Remark 8.15. Similar to the modular group case, for f, g ∈ Sk(Γ), the above in-
tegrand is left Γ-invariant and thus the integral is independent of the choice of
fundamental domains of Γ. Moreover, this integral is absolutely convergent as long
as one of f, g is a cusp form.

Proposition 8.7. Let f ∈ Sk(Γ). Then for any a ∈ CΓ and any m ≥ 1,

⟨f, Pa,m⟩Γ =
Γ(k − 1)

(4πm)k−1
f̂a(m).

Proof (Sketch). Let FΓ ⊂ H be a fundamental domain for Γ\H. Doing similar
computations as in the proof of Proposition 8.2 we have

⟨f, Pa,m⟩Γ =

∫
FΓ

ykf(z)
∑

γ∈Γa\Γ

jσ−1
a γ(z)

−k
e(mσ−1

a γz) dµ(z)

γz 7→z
=

∑
γ∈Γa\Γ

∫
γFΓ

ykf(z)jσa
(σ−1

a z)
k
e(mσ−1

a z) dµ(z)

σ−1
a z 7→z
=

∑
γ∈Γa\Γ

∫
σ−1
a γFΓ

Im(σaz)
kf(σaz)jσa

(z)
k
e(mz) dµ(z)

=
∑

γ∈Γa\Γ

∫
σ−1
a γFΓ

f [σa]k(z)e(mz) dµ(z).



48 SHUCHENG YU

Now note that
⋃

γ∈Γa\Γ σ
−1
a γFΓ is disjoint and forms a fundamental domain for

σ−1
a Γaσa\Γ which as before can be chosen to be {z ∈ H : 0 ≤ x < 1}. Hence

⟨f, Pa,m⟩Γ =

∫ ∞

0

∫ 1

0

f [σa]k(z)e(mz) dxy
k−2 dy =

Γ(k − 1)

(4πm)k−1
f̂a(m),

as desired. □

As a consequence of this inner product formula, we also have the following Pe-
tersson trace formula on Sk(Γ). We omit the proof which is similar to that of
Corollary 8.5.

Corollary 8.8. Let B ⊂ Sk be an orthonormal basis on Sk(Γ) with respect to the
Petersson inner product. For any a, b ∈ CΓ and for any m,n ≥ 1 we have

∑
f∈B

f̂a(m)f̂b(n) =
(4π

√
mn)k−1

Γ(k − 1)

δmnδab + 2πi−k
∑

c∈C1(a,b)

c−1Sab(m,n; c)Jk−1

(
4π

√
mn

c

) .

Remark 8.16. When Γ = Γ0(N), the corresponding Kloosterman sum Sab(m,n; c)
can be related to the classical Kloosterman sum. For example, when a = b = ∞,
the above formula becomes∑
f∈B

f̂∞(m)f̂∞(n) =
(4π

√
mn)k−1

Γ(k − 1)

(
δmn + 2πi−k

∞∑
c=1

(cN)−1S(m,n; cN)Jk−1

(
4π

√
mn

cN

))
.

From this trace formula we can similarly get

|f̂∞(n)| ≪ϵ,f,N n
k−1
2 + 1

4+ϵ.

More generally, one can get

|f̂a(n)| ≪ϵ,f,N n
k−1
2 + 1

4+ϵ, ∀ a ∈ CΓ0(N).(8.17)

8.3. General bounds on Fourier coefficients of cusp forms. In this subsec-
tion we give very soft arguments bounding Fourier coefficients of cusp forms for a
general congruence subgroup. The estimate we get is not as good as (8.17), but it
holds in a much greater generality.

Let Γ < SL2(Z) be a congruence subgroup. The argument is based on the
following simple observation.

Lemma 8.9. For any f ∈ Sk(Γ), the function F (z) = y
k
2 |f(z)| is left Γ-invariant

and bounded on H.

Proof. The assertion that F is left-Γ-invariant is easy: Take any γ ∈ Γ we have

F (γz) = Im(γz)
k
2 |f(γz)| = Im(z)

k
2 |jγ(z)|−k|jγ(z)kf(z)| = y

k
2 |f(z)| = F (z).

Hence F is determined by its values on a fixed fundamental domain of Γ\H. Let
FΓ ⊂ H be a fundamental domain of Γ\H with cusps CΓ ⊂ Q ∪ {∞}. We need to
show F is bounded on FΓ, which suffices to show F is bounded around every cusp
in CΓ. For any a ∈ CΓ, since σa∞ = a, to show F is bounded around a, it suffices
to show the function g(z) = F (σaz) is bounded around ∞, that is, it is bounded as
Im(z) → ∞ (with Re(z) uniformly bounded). We have

g(z) = F (σaz) = Im(σaz)
k
2 |f(σaz)| = y

k
2 |f [σa]k(z)|.
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Since f ∈ Sk(Γ), we have

|f [σa]k(z)| = |e(z)
∞∑

n=1

f̂a(n)e((n− 1)z)| ≪f e
−2πy.

Hence

|g(z)| ≪f y
k
2 e−2πy → 0 as y → ∞.

This proves the lemma. □

As a corollary, we have the following bounds on Fourier coefficients which is due
to Hecke.

Proposition 8.10 (Hecke). Let f ∈ Sk(Γ). For any N ≥ 1 and a ∈ CΓ, we have

N∑
n=1

|f̂a(n)|2 ≪f N
k.

Proof. Consider the function g(z) = f [σa]k ∈ Sk(σ
−1
a Γσa). By the same arguments

as above, we have the function y
k
2 |g(z)| is bounded. In other words,

|g(z)| ≪f y
− k

2 .

Hence ∫ 1

0

|g(z)|2 dx≪ y−k.

On the other hand, by the Fourier expansion

g(z) =

∞∑
n=1

f̂a(n)e(nz)

we have ∫ 1

0

|g(z)|2 dx =

∞∑
n=1

|f̂a(n)|2e−4πny.

Thus for any N ≥ 1,

e−4πNy
N∑

n=1

|f̂a(n)|2 ≤
N∑

n=1

|f̂a(n)|2e−4πny ≤
∫ 1

0

|g(z)|2 dx≪f y
−k.

Taking y = N−1 gives the desired inequality. □

We have the following two immediate corollaries.

Corollary 8.11. Keep the notation and assumptions as in Proposition 8.10. We
have

|f̂a(n)| ≪f n
k
2 , ∀ n ∈ N,(8.18)

and ∑
n≤N

|f̂a(n)| ≪f N
k+1
2 , ∀ N ∈ N.(8.19)

The next result shows that if we remove the absolute value sign in the left hand
side of (8.19), we can get an extra square root cancelation.
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Proposition 8.12. We have for any N ≥ 2,

|
N∑

n=1

f̂a(n)| ≪f N
k
2 logN.

Proof. Let g(z) = f [σa]k(z). Using the relation

f̂a(n) =

∫ 1

0

g(z)e(−nz) dx

we have

N∑
n=1

f̂a(n) =

∫ 1

0

g(z)

N∑
n=1

e(−nz) dx =

∫ 1

0

g(z)
e(−Nz)− 1

1− e(z)
dx.

Note that ∣∣∣∣e(−Nz)− 1

1− e(z)

∣∣∣∣≪ e2πNy|1− e(z)|−1.

This, together with the bound |g(z)| ≪f y
− k

2 implies that

|
N∑

n=1

f̂a(n)| ≪ y−
k
2 e2πNy

∫ 1

0

|1− e(z)|−1 dx≪ y−
k
2 e2πNy log(2 + y−1),

where for the last estimate we use Exercise 16 below. The desired bound then
follows by taking y = N−1. □

Exercise 16. Show that for any z = x+ iy ∈ H,∫ 1

0

|1− e(z)|−1 dx≪ log(2 + y−1).

9. Double coset operator

Let Γ1,Γ2 be two congruence subgroups. Let

GL+
2 (Q) =

{(
a b
c d

)
∈ M2(Q) : ad− bc > 0

}
be the group of 2 by 2 matrices with rational entries and positive determinants.
Each α ∈ GL+

2 (Q) defines a double coset

Γ1αΓ2 := {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2} .

Clearly, Γ1αΓ2 is left Γ1- and right Γ2-invariant. In particular, there is a right
Γ1-coset decomposition

Γ1αΓ2 =
⊔
j

Γ1βj .

The starting point of our discussion is that this coset decomposition is finite which
will be proved by the following two lemmas.

Lemma 9.1. Let Γ < SL2(Z) be a congruence subgroup and let α ∈ GL+
2 (Q). Then

α−1Γα ∩ SL2(Z) is still a congruence subgroup.
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Proof. By definition it suffices to show α−1Γα contains some principle congruence
subgroup. Since Γ is congruence and α ∈ GL+

2 (Q), there exists some Ñ ∈ N
such that Γ(Ñ) ⊂ Γ and Ñα, Ñα−1 ∈ M2(Z). Let N = Ñ3. We claim that
Γ(N) ⊂ α−1Γα, or equivalently, αΓ(N)α−1 ⊂ Γ. To see this, note that

αΓ(N)α−1 ⊂ α(I2 +NM2(Z))α−1 ⊂ I2 + ÑαÑM2(Z)Ñα−1 ⊂ I2 + ÑM2(Z).

Moreover, since αΓ(N)α−1 ⊂ SL2(R), we have

αΓ(N)α−1 ⊂ (I2 + ÑM2(Z)) ∩ SL2(R) = Γ(Ñ) ⊂ Γ,

finishing the proof. □

Remark 9.1. Let Γ1,Γ2 be any two congruence subgroups and α ∈ GL+
2 (Q), we

note that α−1Γ1α ∩ Γ2 is also a congruence subgroup. This is true since by the
above lemma there is some N1 ∈ N such that Γ(N1) ⊂ α−1Γ1α. Moreover, by
definition Γ(N2) ⊂ Γ2 for some N2 ∈ N. Then Γ(N1N2) ⊂ α−1Γ1α ∩ Γ2, proving
this claim.

Lemma 9.2. Let Γ1,Γ2 < SL2(Z) be two congruence subgroups and let α ∈
GL+

2 (Q). Set Γ3 = α−1Γ1α∩Γ2. Then there is a bijection between the two quotient
sets Γ3\Γ2 and Γ1\Γ1αΓ2. In particular,

#(Γ1\Γ1αΓ2) = #Γ3\Γ1 <∞.

Proof. Consider the map sending Γ2 → Γ1\Γ1αΓ2 given by γ 7→ Γ1αγ2. It is
clearly surjective. We just need to figure out when two elements in Γ2 give the
same Γ1-coset. Let γ1, γ

′
2 ∈ Γ2. Suppose Γ1αγ2 = Γ1αγ

′
2. This means that there

exists some γ1 ∈ Γ1 such that γ1αγ2 = αγ′2, or equivalently, α
−1γ1α = γ′2γ

−1
2 . This

implies that γ′2γ
−1
2 ∈ α−1Γ1α ∩ Γ2 = Γ3, i.e. Γ3γ2 = Γ3γ

′
2. We thus have shown

two elements in Γ2 give the same Γ1-coset if and only if they represent the same
Γ3-coset. This finishes the proof. □

Definition 9.2. The [Γ1αΓ2]k-operator is an operator on Mk(Γ1) defined by

f [Γ1αΓ2]k :=
∑

βj∈Γ1\Γ1αΓ2

f [βj ]k,

where for any β ∈ GL+
2 (R) and f : H → C,

f [β]k(z) = (det(β))
k
2 jβ(z)

−kf(βz).

Remark 9.3. The weight k-operator [β]k coincides with the previous weight-k oper-
ator when β ∈ SL2(R). Similar as before, one can check that f [β1β2]k = f [β1]k[β2]k
for any β1, β2 ∈ GL+

2 (R). The factor (det(β))
k
2 is such that [β]k is invariant under

scaling, i.e.

f [λβ]k = f [β]k, ∀ λ > 0.

Proposition 9.3. The double coset operator is well-defined and sends Mk(Γ1) and
Sk(Γ1) to Mk(Γ2) and Sk(Γ2) respectively.

Proof. We first show that it is well-defined. Let {β′
j} be another set of representa-

tives for the quotient Γ1\Γ1αΓ2. Up to reordering, we may assume Γ1βj = Γ1β
′
j .

Thus there exists some γj ∈ Γ1 such that βj = γjβ
′
j . Then we have∑

j

f [βj ]k =
∑
j

f [γjβ
′
j ]k =

∑
j

f [β′
j ]k,
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proving the definition of [Γ1αΓ2]k is independent of the choice of coset representa-
tives. Next, we show [Γ1αΓ2]k maps Mk(Γ1) to Mk(Γ2). Take f ∈ Mk(Γ1). In
particular, f is holomorphic onH. It is then clear that for any β ∈ GL+

2 (Q), f [β]k(z)
is also holomorphic on H. Hence each summand in the definition of f [Γ1αΓ2]k is
holomorphic, implying that f [Γ1αΓ2]k is holomorphic. Next we show f [Γ1αΓ2]k is
weakly modular of weight k with respect to Γ2. For this, take any γ2 ∈ Γ2, we have

f [Γ1αΓ2]k[γ2]k(z) =
∑

βj∈Γ1\Γ1αΓ2

f [βjγ2]k = f [Γ1αΓ2]k(z)

as desired, where for the last equality we used the fact that if {βj} is a set of coset
representatives for Γ1\Γ1αΓ2, then so is {βjγ2} for any γ2 ∈ Γ2. This is true since

Γ1αΓ2 = Γ1αΓ2γ2 =
⊔
j

Γ1βjγ2.

Finally, we need to show f [Γ1αΓ2]k is holomorphic at every cusp of Γ2. For this,
we note that since Γ2 is a congruence subgroup, it suffices to show f [Γ1αΓ2]k is
holomorphic at every x ∈ Q∪{∞}, or equivalently, f [Γ1αΓ2]k[τ ]k is holomorphic at
∞ for every τ ∈ SL2(Z). Since f ∈ Mk(Γ1) and Γ1 is also a congruence subgroup,
we have f [τ ]k is holomorphic at every x ∈ Q ∪ {∞}. By Exercise 17, f [β]k is
holomorphic at every x ∈ Q ∪ {∞}, implying every summand in the definition
of f [Γ1αΓ2]k is holomorphic at every x ∈ Q ∪ {∞}. In particular, f [Γ1αΓ2]k is
holomorphic at every x ∈ Q ∪ {∞}. Hence f [Γ1αΓ2]k ∈ Mk(Γ2). The statement
that [Γ1αΓ2]k : Sk(Γ1) → Sk(Γ2) follows similarly from Exercise 17. □

Exercise 17. Let Γ < SL2(Z) be a congruence subgroup and f ∈ Mk(Γ).

(1) Show that f [β]k is holomorphic at ∞ for any β ∈ GL+
2 (Q).

(2) Show that if f ∈ Sk(Γ), then f [β]k vanishes at ∞ for any β ∈ GL+
2 (Q).

10. Hecke operators for the modular group

In this section we define Hecke operators for the modular group Γ = SL2(Z).
For any n ∈ N, let

Gn := {g ∈M2(Z) : det(g) = n}

be the set of 2 by 2 integral matrices with determinant n. Clearly, Gn is bi-Γ-
invariant.

Definition 10.1. For any n ∈ N, the n-th Hecke operator Tn is an operator on
Mk defined by

Tnf := n
k
2−1

∑
β∈Γ\Gn

f [β]k, ∀ f ∈ Mk.

Remark 10.2. The Hecke operator Tn also implicitly depends on the weight param-
eter k. Since this parameter is fixed throughout our discussion, we omit it in our
notation.

The following proposition decomposes Gn as a double Γ-coset which implies that
Tn is indeed a sum of double coset operators.
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Proposition 10.1. For any n ∈ N,

Gn =
⊔
d2|n

Γ

(
d

n
d

)
Γ,(10.3)

where the union is over all positive d such that d2 | n.

Corollary 10.2. For any n ∈ N we have

Tnf = n
k
2−1

∑
d2|n

f [Γ
(

d
n
d

)
Γ]k.

In particular, Tn maps Mk and Sk to Mk and Sk respectively.

Proof of Proposition 10.1. First note that since Gn is bi-Γ-invariant, the right hand
side of (10.3) is clearly contained in Gn. Next, we show the right hand side is a
disjoint union. Indeed, for any g ∈ Gn, we denote by gcd(g) the GCD of all four

entries of g. Then for any d2 | n and g ∈ Γ
(

d
n
d

)
Γ, gcd(g) = gcd(d, nd ) = d,

implying that each coset in the right hand side of (10.3) can be distinguished by
the GCD of its elements. Hence it is a disjoint union. Finally, we show Gn is
contained in the right hand side of (10.3). Take g ∈ Gn and let d = gcd(g). Then
g′ = d−1g ∈M2(Z) and thus det(g′) = d−2 det(g) = d−2n ∈ Z. Thus d2 | n and the

double coset Γ
(

d
n
d

)
Γ appears in the right hand side of (10.3). We would to show

g ∈ Γ
(

d
n
d

)
Γ, or equivalently, g′ ∈ Γ

(
1

n
d2

)
Γ. This follows from the following

lemma. □

Lemma 10.3. For any n ∈ N, we have

Gpr
n := {g ∈M2(Z) : det(g) = n, gcd(g) = 1} = Γ

(
1

n

)
Γ.

Proof. The double coset is clearly contained in Gpr
n . Take g ∈ Gpr

n , we want to show
g ∈ Γ ( 1 n ) Γ, or equivalently, there exists some γ1, γ2 ∈ Γ such that γ1gγ2 = ( 1 n ).
This amounts to perform row and column operations to g to reduce it to ( 1 n ).
By applying the Euclidean algorithm to the first column11 and switching the first
and second rows if necessary we can reduce g to the upper triangular matrix

(
a b
0 d

)
.

Next, by adding multiples of the first column and row to the second column and

row we can further reduce it to
(

a b+ℓ gcd(a,d)
0 d

)
. We claim (see Exercise 18 below)

that there exists ℓ ∈ Z such that gcd(a, b + ℓ gcd(a, d)) = 1. Taking such a ℓ we
reduce g to

(
a b′

0 d

)
with gcd(a, b′) = 1. Applying the Euclidean algorithm to the

first row and switching the columns if necessary we can reduce it to
(

1 0
c′ d′

)
for some

c′, d′ ∈ Z. Finally, subtracting the c′-multiple of the first row from the second row
we get

(
1 0
0 d′
)
. Since these operations does not change the determinant, we must

have d′ = det(g) = n, finishing the claim, and hence also this lemma. □

Exercise 18. Let (a, b) be a pair of co-prime integers. Show that for any positive
integer c, there exists ℓ ∈ Z such that gcd(a+ℓb, c) = 1. Use this to prove the above
claim.

11This amount to multiplying g from the left by
(
1 n
0 1

)
and

(
1 0
n 1

)
consecutively. (Noting that(

1 n
0 1

) (
a b
c d

)
=

(
a+cn b+dn

c d

)
and

(
1 0
n 1

) (
a b
c d

)
=

(
a b

c+an d+bn

)
.)
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The following lemma gives an explicit coset representatives for the quotient Γ\Gn

from which we get a more explicit formula of the Hecke operators.

Proposition 10.4. The set

∆n =
{(

a b
0 d

)
: ad = n, a, d > 0, 0 ≤ b < d

}
forms a complete set of right coset representatives of Γ\Gn, that is,

Gn =
⊔

ad=n

⊔
0≤b<d

Γ

(
a b
0 d

)
.(10.4)

In particular, we have

Tnf(z) =
1

n

∑
ad=n

ak
∑

0≤b<d

f
(
az+b
d

)
, ∀ f ∈ Mk.(10.5)

Remark 10.6. Since f ∈ Mk is periodic of period 1, the sum over 0 ≤ b < d can be
rewritten as the sum over congruence classes modulo d. We formally write Tn as
following:

Tn =
1

n

∑
ad=n

ak
∑

b (mod d)

[
a b
0 d

]
.(10.7)

Proof of Proposition 10.4. The containment “⊃” is clear. We thus only need to
prove the other containment and that the right side of (10.5) is a disjoint union.
For the first statement, take any g ∈ Gn, as above by applying Euclidean algorithm
to the first column of g we may assume g =

(
a b
0 d

)
. Next, by left multiplying

( 1 n
0 1 ) for suitable n we can make that 0 ≤ b < d. This proves the containment

“⊂”. Next, we show the union is disjoint. Take
(
a b
0 d

)
,
(
a′ b′

0 d′

)
∈ ∆n, suppose

Γ
(
a b
0 d

)
= Γ

(
a′ b′

0 d′

)
, we would like to show

(
a b
0 d

)
=
(
a′ b′

0 d′

)
. By assumption there

exists τ =
(

α β
γ δ

)
∈ Γ such that τ

(
a b
0 d

)
=
(
a′ b′

0 d′

)
. Note that(

α β
γ δ

)(
a b
0 d

)
=

(
∗ ∗
γa ∗

)
.

Hence we have γ = 0, implying that τ = ± ( 1 n
0 1 ). The case τ = − ( 1 n

0 1 ) is impossible

since a, a′ > 0. Hence τ = ( 1 n
0 1 ) and the relation τ

(
a b
0 d

)
=
(
a′ b′

0 d′

)
implies that

a = a′, d = d′ and b ≡ b′ (mod d). But the condition 0 ≤ b, b′ < d forces b = b′.
This finishes the proof.

For the in particular part, use the above coset representatives we have

Tnf(z) = n
k
2−1

∑
ad=n

∑
0≤b<d

n
k
2 d−kf

(
az+b
d

)
=

1

n

∑
ad=n

ak
∑

0≤b<d

f
(
az+b
d

)
as desired. □

10.1. Properties of Hecke operators. In this subsection we prove various prop-
erties of Hecke operators. First we study relations between different Hecke opera-
tors.

Proposition 10.5. We have

(1) TmTn = Tmn whenever (m,n) = 1.
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(2) Tpr+1 = TpTpr − pk−1Tpr−1 for any prime p and r ≥ 1.

Remark 10.8. The two relations can be combined into one that

TmTn =
∑

d|(m,n)

dk−1Tmnd−2 .

In particular, this implies that Hecke operators commute with each other, i.e.

TmTn = TnTm, ∀ m,n ≥ 1.

Proof of Proposition 10.5. We use the formal sum expression (10.7) for Tn. For (1)
we have

mnTmTn =
∑

a1d1=m
a2d2=n

(a1a2)
k

∑
b1 (mod d1)
b2 (mod d2)

[
a1 b1
0 d1

] [
a2 b2
0 d2

]

=
∑

a1d1=m
a2d2=n

(a1a2)
k

∑
b1 (mod d1)
b2 (mod d2)

[
a1a2 a1b2 + b1d2
0 d1d2

]
.

We claim that the map

π : Z/d1Z× Z/d2Z → Z/d1d2Z, (b1, b2) 7→ a1b2 + b1d2 (mod d1d2)

is bijective. Assuming this claim and making changing of variables a = a1a2, d =
d1d2 and b = a1b2 + b1d2 we have

mnTmTn =
∑

ad=mn

ak
∑

b (mod d)

[
a b
0 d

]
= mnTmn

as desired. We now prove the claim. It suffices to show π is injective. Assume
π(b1, b2) = π(b′1, b

′
2) for some b1, b

′
1 ∈ Z/d1Z and b2, b

′
2 ∈ Z/d1Z. We would like

to show b1 ≡ b′1 (mod d1) and b2 ≡ b′2 (mod d2). By assumption, we have a1b2 +
b1d2 ≡ a1b

′
1+ b

′
1d2 (mod d1d2). Reducing to congruence classes modulo d2 we have

a1b2 ≡ a1b
′
2 (mod d2). But since a1 | m, d2 | n and (m,n) = 1, we have (a1, d2) = 1.

Thus the above congruence equation implies that b2 ≡ b′2 (mod d2). Plugging this
relation into the original congruence equation, we get b1d2 ≡ b′1d2 (mod d1d2) which
is equivalent to b1 ≡ b′1 (mod d1). This proves the claim.

For (2) we note that

Tp =
1

p

∑
b (mod p)

[
1 b
0 p

]
+ pk−1

[
p 0
0 1

]
.

More generally, we have

Tpr =

r∑
i=0

pki−r
∑

b (mod pr−i)

[
pi b
0 pr−i

]
, ∀ r ≥ 1.

Thus

TpTpr =

r∑
i=0

pki−r−1
∑
b1(p)

b2(p
r−i)

[
pi b2 + b1p

r−i

0 pr+1−i

]
+

r∑
i=0

pk(i+1)−r−1
∑

b2(pr−i)

[
pi+1 pb2
0 pr−i

]
.
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By similar arguments as above, we can replace the sum
∑

b1(p)

b2(p
r−i)

by the sum∑
b(pr+1−i) after making a change of variable b = b2 + b1p

r−i. We also split the

above second sum into
∑r−1

i=0 and i = r to get

TpTpr =

r∑
i=0

pki−r−1
∑

b(pr+1−i)

[
pi b
0 pr+1−i

]
+ pk(r+1)−r−1

[
pr+1 0
0 1

]

+

r−1∑
i=0

pk(i+1)−r−1
∑

b2(pr−i)

[
pi+1 pb2
0 pr−i

]

= Tpr+1 +

r−1∑
i=0

pk(i+1)−r−1
∑

b2(pr−i)

[
pi b2
0 pr−1−i

]

= Tpr+1 +

r−1∑
i=0

pk(i+1)−r
∑

b2(pr−1−i)

[
pi b2
0 pr−1−i

]
= Tpr+1 + pk−1Tpr−1

as desired. Here for the second equality we used that
(

pi+1 pb2
0 pr−i

)
z =

(
pi b2
0 pr−1−i

)
z

for any z ∈ H. □

Next, we study effects of Hecke operators on Fourier coefficients.

Proposition 10.6. Let f ∈ Mk with a Fourier expansion f(z) =
∑∞

m=0 f̂(m)e(mz).
Then

Tnf =

∞∑
m=0

T̂nf(m)e(mz)

with

T̂nf(m) =
∑

d|(m,n)

dk−1f̂(mnd−2).

Proof. By definition

Tnf(z) =
1

n

∞∑
m=0

f̂(m)
∑
ad=n

ak
∑

b (mod d)

e
(
maz+b

d

)
=

1

n

∞∑
m=0

f̂(m)
∑
ad=n

ake
(
maz
d

) ∑
b (mod d)

e
(
mb
d

)
=

1

n

∞∑
m=0

f̂(m)
∑
ad=n

ake
(
maz
d

)
dI(d | m)

m=dℓ
=

∑
ad=n

ak−1
∞∑
ℓ=0

f̂(dℓ)e(aℓz)

aℓ=m
=

∞∑
m=0

 ∑
a|(m,n)

ak−1f̂(mna−2)

 e(mz),
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finishing the proof. Here for the third equality we used the identity that∑
b (mod d)

e
(
mb
d

)
= dI(d | m)

with (I(d | m) the indicator function of the condition d | m, i.e. I(d | m) equals 1
if d | m and equals 0 otherwise. □

Proposition 10.6 has the following immediate consequences whose proof we omit.

Corollary 10.7. For any n ≥ 1 and f ∈ Mk we have

(1) T̂nf(m) = T̂mf(n) for any m ≥ 1,

(2) T̂nf(0) = σk−1(n)f̂(0),

(3) T̂nf(1) = f̂(n).

Let us now apply Hecke operators to the modular discriminant function ∆ to
see what we can get from them. First since S12 = C∆ is one dimensional, for any
n ≥ 1 there exists λ(n) ∈ C such that Tn∆ = λ(n)∆. This implies that

T̂n∆(1) = λ(n)∆̂(1) = (2π)12λ(n).

On the other hand, by (3) of Corollary 10.7 we have

T̂n∆(1) = ∆̂(n) = (2π)12τ(n).

Equating both equations we get λ(n) = τ(n). This, together with Proposition 10.6
implies that

(2π)12τ(n)τ(m) = λ(n)∆̂(m) = T̂n∆(m) = (2π)12
∑

d|(m,n)

dk−1τ(mnd−2).

Note that this recovers the recursive relation (8.9) for the Ramanujan’s tau function.

10.2. Self-adjointness of Hecke operators. We wish to generalize the above
discussion on Ramanujan’s τ -function to Fourier coefficients of a general weight k
cusp form. The main ingredient of the above discussion is the existence of joint
eigenfunctions for all Hecke operators. While this property is immediate for S12

(since it is of one dimensional), it is no longer the case for larger k. The first
guess for this joint eigenfunction basis is the basis given by Poincaré series. How-
ever, the following proposition shows that they are in general not the desired joint
eigenfunctions. Below we abbreviate the Poincaré series Pm,k by Pm.

Proposition 10.8. For k ≥ 4 even, m ≥ 0 and n ≥ 1 we have

TnPm =
∑

d|(m,n)

(n
d

)k−1

Pmnd−2 .(10.9)

In particular, when m = 0 the Eisenstein series Ek is a joint eigenfunction for all
Hecek operators with

TnEk = σk−1(n)Ek, ∀ n ≥ 1.
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Proof. The in particular part follows easily from (10.9); we thus only prove (10.9).
By definition

TnPm(z) = n
k
2−1

∑
β∈Γ\Gn

Pm[β]k(z)

= nk−1
∑

β∈Γ\Gn

jβ(z)
−k

∑
γ∈Γ∞\Γ

jγ(βz)
−ke(mγβz)

= nk−1
∑

β∈Γ\Gn

∑
γ∈Γ∞\Γ

jγβ(z)
−ke(mγβz).

Now we take ∆n as before to be the fixed set of coset representatives of Γ\Gn. Let
H be a set of coset representatives of Γ∞\Γ. Then clearly H∆n is a set of coset
representatives of Γ∞\Gn. But by Exercise 19 the set ∆nH is also a set of coset
representatives of Γ∞\Gn. Thus we have

TnPm(z) = nk−1
∑

β∈∆n

∑
γ∈Γ∞\Γ

jβγ(z)
−ke(mβγz).

Note that for β =
(
a b
0 d

)
∈ ∆n,

jβγ(z) = jβ(γz)jγ(z) = djγ(z).

Thus

TnPm(z) = nk−1
∑
ad=n

∑
b (mod d)

∑
γ∈Γ∞\Γ

d−kjγ(z)
−ke

(
maγz+b

d

)
= nk−1

∑
γ∈Γ∞\Γ

∑
ad=n

d−kjγ(z)
−ke

(
maγz

d

) ∑
b (mod d)

e
(
mb
d

)
=

∑
γ∈Γ∞\Γ

∑
ad=n
d|m

(n/d)k−1jγ(z)
−ke

(
maγz

d

)
=

∑
d|(m,n)

(n/d)k−1Pmnd−2 . □

Exercise 19. Let ∆n and H be as above. Show that the set ∆nH is a set of coset
representatives of Γ∞\G

In order to produce a joint eigenfunction basis for Hecke operators we apply the
spectral theorem of linear algebra.

Theorem 10.9. A commuting family of normal operators12 on a finite dimensional
Hilbert space can be simultaneously diagonalized, that is, there exists an orthogonal
basis of simultaneous eigenvectors for this family of operators.

To apply this theorem we show that Hecke operators are self-adjoint. Before
stating the main result we record a symmetric identity which follows immediately
from Proposition 10.8

mk−1TnPm = nk−1TmPn, ∀ m,n ≥ 1.(10.10)

12A continuous linear operator T : H → H on a complex Hilbert space H is called normal if
it commutes with its adjoint operator T ∗ which is defined such that ⟨Tv,w⟩ = ⟨v, T ∗w⟩ for any

v, w ∈ H.
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We also need the following symmetric identity regarding the Petersson inner
product.

Proposition 10.10. For any f ∈ Mk and for any m,n ≥ 1,

mk−1⟨Tnf, Pm⟩ = nk−1⟨Tmf, Pn⟩.(10.11)

Proof. By Proposition 8.2 and (1) of Corollary 10.7 we have

mk−1⟨Tnf, Pm⟩ = Γ(k − 1)

(4π)k−1
T̂nf(m) =

Γ(k − 1)

(4π)k−1
T̂mf(n) = nk−1⟨Tmf, Pn⟩. □

Theorem 10.11. For any n ≥ 1, the Hecke operator Tn is self-adjoint, that is,

⟨Tnf, g⟩ = ⟨f, Tng⟩, ∀ f, g ∈ Sk.

Proof. Since the Poincaré series {Pm}m≥1 spans Sk (Corollary 8.3), it suffices to
prove the above identity for f = Pm and g = Pl for some m, l ≥ 1. We then have

⟨TnPm, Pl⟩ =
(
n
m

)k−1 ⟨TmPn, Pl⟩ =
(
n
l

)k−1 ⟨TlPn, Pm⟩ = ⟨TnPl, Pm⟩,
where we applied (10.10) for the first and third identity and (10.11) for the second
identity. Finally we note that

⟨TnPl, Pm⟩ = Γ(k − 1)

(4πm)k−1
T̂nPl(m)

is real since T̂nPl(m) is a R-linear combination of Fourier coefficients of Poincaré
series and the latter is known to be real by its explicit formula derived in Theorem
7.6. Thus

⟨TnPm, Pl⟩ = ⟨TnPl, Pm⟩ = ⟨Pm, TnPl⟩
as desired. □

Combining Theorem 10.9, Theorem 10.11 and the commutativity of Hecke op-
erators (see Remark 10.8) we can now produce a joint eigenfunction basis of Sk for
all Hecke operators.

Corollary 10.12. The space Sk has an orthogonal basis (with respect to the Pe-
tersson inner product) of joint eigenfunctions for all Hecke operators {Tn}n≥1.

Definition 10.12. A joint eigenfunction f ∈ Sk for all Hecke operators is called

normalized if f̂(1) = 1.

Proposition 10.13. Let f ∈ Sk be a normalized joint eigenfunction for all Hecke

operators, that is, Tnf = λ(n)f for some λ(n) ∈ C and f̂(1) = 1. Then we have

(1) f̂(n) = λ(n) for all n ≥ 1.

(2) f̂(m)f̂(n) =
∑

d|(m,n) d
k−1f̂(mnd−2).

(3) (Multiplicity one theorem) If f and g are two normalized joint eigenfunc-
tions with same eigenvalues, then f = g.

Proof. For (1) by (3) of Corollary 10.7 and the relation Tnf = λ(n)f we have

λ(n) = λf̂(1) = T̂nf(1) = f̂(n).

The relation in (2) follows similarly since by (1), Proposition 10.6 and the relation

Tnf = λ(n)f . For (3) by (1) we have λ(n) = f̂(n) = ĝ(n) for all n ≥ 1. Hence
f = g. □
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Remark 10.13. If f ∈ Sk is a joint eigenfunction (not necessarily normalized) with

Tnf = λ(n)f , then using the same argument as above we get that f̂(n) = λ(n)f̂(1),

implying that if f̂(1) = 0 we must have f = 0. Hence a nonzero joint eigenfunction
can always be normalized.

11. Hecke operators for congruence groups

In this section we define the Hecke operators for the congruence subgroup Γ1(N).
We will do so by first decomposing the space Mk(Γ1(N)) into subspaces consisting
of modular forms with respect to Γ0(N) and twisted with a Dirichlet character
(see Proposition 11.3 below) and then define the Hecke operators in each of these
subspaces.

We first give the definition of modular forms twisted with a character.

Definition 11.1. Let Γ be a congruence subgroup and ϑ : Γ → C× a unitary
character13, the space of weight k modular forms twisted with ϑ and with respect
to Γ is defined by

Mk(Γ, ϑ) :=

{
f : H → C :

∣∣∣∣ f is holomorphic on H and at cusps and satisfies
f [γ]k = ϑ(γ)f for any γ ∈ Γ

}
.

Similarly, we denote by Sk(Γ, ϑ) the subspace of Mk(Γ, ϑ) by further requiring f
to be vanishing at all cusps. We will always assume that image of ϑ is finite, that
is ker(ϑ) is also a congruence subgroup.

Since Dirichlet characters will appear naturally in our decomposition, in the next
subsection we give a quick review on these characters.

11.1. Dirichlet characters.

Definition 11.2. Let N be a positive integer. A Dirichlet character of modulus
N is a function χ : Z → C satisfying

(1) χ(n+N) = χ(n) for any n ∈ Z,
(2) χ(n) = 0 if and only if (n,N) > 1,
(3) χ(mn) = χ(m)χ(n) for all m,n ∈ Z.

Remark 11.3. Indeed a Dirichlet character comes from a character χ : (Z/NZ)× →
C× by first viewing it as a function on {n ∈ Z : (n,N) = 1} and then extending it
trivially to Z to satisfy property (2) above.

We denote by ̂(Z/NZ)× the set of all Dirichlet characters of modulus N . Note

that ̂(Z/NZ)× has a group structure with the group law given by multiplication and
identity given by the trivial character 1N defined such that 1N (n) = 1 if (n,N) = 1

and 1N (n) = 0 otherwise. It is called the dual group of ̂(Z/NZ)×.

Proposition 11.1. The dual group ̂(Z/NZ)× is isomorphic to Z/NZ)×. In par-

ticular, # ̂(Z/NZ)× = ϕ(N), where ϕ is the Euler’s totient function as before.

13A character is a group homomorphism from Γ to C× ∼= GL1(C), and it is unitary if its image
lies in the unit disc {z ∈ C : |z| = 1} = U(C). In the terminology of representation, a (unitary)

character is just a one-dimensional complex (unitary) representation of Γ.
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Proof (sketch). First note that if H1, H2 are two finite abelian groups. Then there

is a natural isomorphism from Ĥ1 × Ĥ2 to ̂H1 ×H2 given by

(χ1, χ2) 7→ χ(h1, h2) := χ1(h1)χ2(h2)

with the inverse map given by

χ 7→ (χ1, χ2),

where χi ∈ Ĥi is defined such that χ1(h1) := χ(h1, 1) and χ2(h2) := χ(1, h2).
Moreover, if H = ⟨h⟩ is a finite cyclic group of order n, then there is an isomorphism

from Z/nZ(∼= H) to Ĥ given by

j ∈ Z/nZ 7→ χj(h
i) := ξijn ,

where ξn ∈ C× is a primitive n-th root of unity, that is, ξnn = 1 and ξin ̸= 1
for all 1 ≤ i < n. We now specify to the group (Z/NZ)×. Note that (Z/NZ)×
is isomorphic to a finite product of finite cyclic groups. Indeed, by the Chinese
Remainder theorem we have (Z/NZ)× ∼=

∏
i (Z/p

αi
i Z)× with N =

∏
i p

αi
i written

in the prime decomposition form. Moreover, we know if pi is odd or αi = 1, 2,
(Z/pαi

i Z)× is cyclic, otherwise it is isomorphic to a product of two cyclic groups
with one factor being of order 2. In both cases, (Z/pαi

i Z)× is a finite product of
cyclic groups. Hence so is (Z/NZ)×. Then we have (Z/NZ)× ∼=

∏
iHi with each

Hi finite and cyclic. Thus

̂(Z/NZ)× ∼=
∏̂
i

Hi
∼=
∏
i

Ĥi
∼=
∏
i

Hi
∼= (Z/NZ)×

as desired. □

Proposition 11.2 (Orthogonality relations). We have for any x ∈ (Z/NZ)×∑
χ (mod N)

χ(x) =

{
ϕ(N) if x ≡ 1 (mod N),
0 otherwise,

and for any Dirichlet character χ of modulus N ,∑
x∈(Z/NZ)×

χ(x) =

{
ϕ(N) if χ = 1N ,
0 otherwise.

Proof. We only prove the first equation and the second follows by similar arguments.
The case when x ≡ 1 (mod N) is trivial; we thus assume x ̸≡ 1 (mod N). Then
there exists a Dirichlet character χ0 of modulus N such that χ0(x) ̸= 1. Multiplying
the left hand side by χ0(x) we get

χ0(x)
∑

χ (mod N)

χ(x) =
∑

χ (mod N)

χ0χ(x) =
∑

χ (mod N)

χ(x),

where for the second identity we used the fact that as χ runs through all elements

in ̂(Z/NZ)×, so does χ0χ. Since χ0(x) ̸= 1, the above identity implies that∑
χ (mod N)

χ(x) = 0

as desired. □
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Definition 11.4. For any Dirichlet character χ of modulus N and any ℓ ∈ Z/NZ,
the corresponding Gauss sum is defined by

G(x, χ) :=

N∑
n=1

χ(n)e
(
nℓ
N

)
.

Exercise 20. Let χ be a primitive Dirichlet character of modulus N . Show that

(1) G(χ, ℓ) = χ(ℓ)G(χ) for any ℓ ∈ Z/NZ.
(2) |G(χ)| =

√
N .

Given a Dirichlet character χ : Z → C of modulus N , for later purpose, we
extend χ to a function on M2(Z) (which we still denote by χ) as following

χ :M2(Z) → C, g =
(
a b
c d

)
7→ χ(a).(11.5)

One can check that χ|Γ0(N) : Γ0(N) → C× sending
(
a b
c d

)
∈ Γ0(N) to χ(d) is a

unitary character of Γ0(N).

11.2. Modular forms with character. As mentioned before, the main reason
we study modular forms with character is the following decomposition which we
leave as an exercise.

Proposition 11.3. For any positive integers k,N we have

Mk(Γ1(N)) =
⊕
χ

Mk(Γ0(N), χ)

and

Sk(Γ1(N)) =
⊕
χ

Sk(Γ0(N), χ),

where the direct sum is over all Dirichlet characters of modulus N (viewed as an
unitary character of Γ0(N) defined as in previous subsection).

We now give the definition of Hecke operators with respect to a given Dirichlet
character χ.

Definition 11.6. Let χ be a Dirichlet character of modulus N . The n-th Hecke
operator with character χ is an operator on Mk(Γ0(N), χ) defined by

Tχ
n f := n

k
2−1

∑
ρ∈∆n

χ(ρ)f [ρ]k, ∀ f ∈ Mk(Γ0(N), χ),

where ∆n is the set of coset representatives of Γ(1)\Gn given as in Proposition 10.4
and χ :M2(Z) → C is the extension of χ defined as in (11.5).

Remark 11.7. Using the explicit description of ∆n we can write

Tχ
n f(z) =

1

n

∑
ad=n

χ(a)ak
∑

0≤b<d

f(az+b
d ).

Moreover, since χ(a) = 0 whenever (a,N) > 1, we have

Tχ
n f := n

k
2−1

∑
ρ∈∆N

n

χ(ρ)f [ρ]k,(11.8)

where

∆N
n :=

{(
a b
0 d

)
∈ ∆n : (a,N) = 1

}
.
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The first result regarding Tχ
n is the assertion that Tχ

n sends Mk(Γ0(N), χ) and
Sk(Γ0(N), χ) to themselves respectively.

Proposition 11.4. Keep the notation and assumptions as above. Then we have

Tχ
n : Mk(Γ0(N), χ) → Mk(Γ0(N), χ),

and

Tχ
n : Sk(Γ0(N), χ) → Sk(Γ0(N), χ).

We need the following technical lemma to prove this proposition.

Lemma 11.5. For any (ρ, τ) ∈ ∆N
n × Γ0(N), there exists (ρ′, τ ′) ∈ ∆N

n × Γ0(N)
such that ρτ = τ ′ρ′. Moreover, as ρ runs through ∆N

n , so does ρ′.

Proof. Given (ρ, τ) ∈ ∆N
n × Γ0(N), note that ρτ ∈ Gn =

⊔
ρ′∈∆n

Γ(1)ρ′. Hence

there exists (ρ′, τ ′) ∈ ∆n×Γ(1) such that ρτ = τ ′ρ′. We will show this relation and
the condition (ρ, τ) ∈ ∆N

n ×Γ0(N) force (ρ′, τ ′) to lie in the smaller set ∆N
n ×Γ0(N).

Write ρ =
(
a b
0 d

)
∈ ∆N

n , τ =
(

α β
γ δ

)
∈ Γ0(N) and ρ′ =

(
a′ b′

0 d′

)
∈ ∆n, τ

′ =
(

α′ β′

γ′ δ′

)
∈

Γ(1). We need to show (a′, N) = 1 and N | γ′. By direct computation the relation
ρτ = τ ′ρ′ implies that

αa+ γb = α′a′ and γd = γ′a′.(11.9)

Note that τ ∈ Γ0(N) implies that N | γ and (α,N) = 1. Moreover, ρ ∈ ∆N
n implies

that (a,N) = 1. Hence the first equality in (11.9) implies that α′a′ ≡ αa (mod N)
which then implies that (a′, N) = 1. The second equality in (11.9) then implies that
γ′a′ = γd ≡ 0 (mod N). This together with the condition (a′, N) = 1 implies that
N | γ′. We have thus proved the existence of the desired pair (ρ′, τ ′) ∈ ∆N

n ×Γ0(N).
For the moreover part, we note that for any τ ∈ Γ0(N),

Gn =
⊔

ρ∈∆n

Γ(1)ρ =
⊔

ρ∈∆n

Γ(1)ρτ.

This shows that the set {ρτ}ρ∈∆n
is another set of coset representatives of Γ(1)\Gn.

Hence there exists a bijection g : ∆n → ∆n such that

ρτ = τρg(ρ) for some τρ ∈ Γ(1) and for all ρ ∈ ∆n.

The previous argument then shows that when ρ ∈ ∆N
n , we must have τρ ∈ Γ0(N)

and g(ρ) ∈ ∆N
n . Indeed, (τρ, γ(ρ)) is the pair (τ

′, ρ′) above. We thus have g(∆N
n ) ⊂

∆N
n . Since g itself is a bijection, so is g|∆N

n
. This proves the moreover part. □

We can now give the

Proof of Proposition 11.4. As argued in the proof of Proposition 9.3, for any f ∈
Mk(Γ0(N), χ) (resp. f ∈ Sk(Γ0(N))) and for any ρ ∈ GL+

2 (Q), the function f [ρ]k
is holomorphic on H and holomorphic at cusps (resp. vanishes at cusps). Thus it
suffices to show Tχ

n f satisfies the desired transformation rule. For this we use the
expression (11.8) for Tχ

n . Take any τ ∈ Γ0(N) we have

Tχ
n f [τ ]k = n

k
2−1

∑
ρ∈∆N

n

χ(ρ)f [ρτ ]k.
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Now by Lemma 11.5 we have ρτ = τ ′ρ′ for some τ ′ ∈ Γ0(N) and ρ′ ∈ ∆N
n .

Moreover, from (11.9) we have

χ(ρ)χ(τ ′) = χ(a)χ(α′) = χ(α)χ(a′) = χ(τ)χ(ρ′).(11.10)

Hence

Tχ
n f [τ ]k = n

k
2−1

∑
ρ∈∆N

n

χ(ρ)f [τ ′ρ′]k

= χ(τ)n
k
2−1

∑
ρ∈∆N

n

χ(ρ′)f [ρ′]k

= χ(τ)Tχ
n f,

as desired. Here for the second equality we applied (11.10) and the assumption that
f ∈ Mk(Γ0(N), χ) and for the last equality we used the moreover part of Lemma
11.5. □

We now state some of the properties of the Hecke operators Tχ
n . We note that

the proofs are almost identical to that of Proposition 10.5 and Proposition 10.6
with obvious modifications to accommodate the character χ. We thus omit the
details here.

Proposition 11.6. We have

(1) Tχ
mT

χ
n = Tχ

mn whenever (m,n) = 1.
(2) Tχ

pr+1 = Tχ
p T

χ
pr − χ(p)pk−1Tχ

pr−1 .

To summarize,

Tχ
mT

χ
n =

∑
d|(m,n)

χ(d)dk−1Tχ
mnd−2 , ∀ m,n ≥ 1.

In particular, Tχ
mT

χ
n = Tχ

n T
χ
m for any m,n ≥ 1.

We also have the following proposition describing effects of Tχ
n on Fourier coef-

ficients.

Proposition 11.7. Let f ∈ Mk(Γ0(N), χ) with a Fourier expansion f(z) =∑∞
n=0 f̂(m)e(mz). Then we have for any n ≥ 1, Tχ

n f(z) =
∑∞

m=0 T̂
χ
n f(m)e(mz)

with

T̂χ
n f(m) =

∑
d|(m,n)

χ(d)dk−1f̂(mnd−2).

Similar to the modular group case, there are some direct consequences of this
proposition.

Corollary 11.8. Keep the notation and assumptions as above. We have

(1) T̂χ
n f(m) = T̂χ

mf(n) for any m,n ≥ 1.

(2) T̂χ
n f(0) = σχ

k−1(n)f̂(0) with σ
χ
k−1(n) :=

∑
d|n χ(d)d

k−1.

(3) T̂χ
n f(1) = f̂(n).
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11.3. Normalized Petersson inner product. Our next goal is to show that
the Hecke operators are normal in order to apply the spectral theorem Theorem
10.9. However, in the case the previous strategy of studying the action of Hecke
operators on Poincaré series is no longer enough. Indeed using similar arguments
one can obtain

⟨Tχ
n f, g⟩ = χ(n)⟨f, Tχ

n g⟩, ∀ (n,N) = 1,

but for f, g from the subspace spanned by {Pm}(m,N)=1
14. However, it is not clear

whethter this subspace is the whole Sk(Γ0(N), χ). To overcome this difficulty we
will use the Petersson inner product in a more essential way. We first define the
following normalized Petersson inner product which allows us to compare the “size”
of modular forms of different levels.

Definition 11.11. Let Γ be a congruence subgroup with a unitary character ϑ.
The normalized Petersson inner product is defined on the cusp form space Sk(Γ, ϑ)
by

⟨f, g⟩Γ :=
1

VΓ

∫
Γ\H

ykf(z)g(z) dµ(z), ∀ f, g ∈ Sk(Γ, ϑ).

where VΓ := [SL2(Z) : Γ̃] with Γ̃ := ⟨±I2,Γ⟩.

One can easily check that for f, g ∈ Sk(Γ, ϑ) the function z 7→ ykf(z)g(z) is
left Γ-invariant. Hence the above definition is well-defined. The benefit of adding
the normalizing factor V −1

Γ is that we can now compare norm of cusp forms of
different levels: Let Γ1 < Γ2 be two congruence subgroups with ϑ : Γ2 → C× a
unitary character of Γ2. Then f ∈ Sk(Γ2, ϑ) can also be viewed as an element of
Sk(Γ1, ϑ|Γ1

). Viewing f as elements of these two different vector spaces assigns two
norms to f . We claim that these two norms are indeed the same. Let FΓ2

be a
fundamental domain of Γ2. Then the disjoint union FΓ1

:=
⊔

σ∈Γ̃1\Γ̃2
σFΓ2

forms

a fundamental domain of Γ1. Taking this fundamental domain we have for any
f, g ∈ Sk(Γ, ϑ),

⟨f, g⟩Γ1 =
1

VΓ1

∫
FΓ1

ykf(z)g(z) dµ(z)

=
1

VΓ1

∑
σ∈Γ̃1\Γ̃2

∫
σFΓ2

ykf(z)g(z) dµ(z).

Since the above integrand is left Γ̃2-invariant
15, making a change of variable σz 7→ z

we have

⟨f, g⟩Γ1 =
1

VΓ1

∑
σ∈Γ̃1\Γ̃2

∫
FΓ2

ykf(z)g(z) dµ(z)

=
[Γ̃2 : Γ̃1]

VΓ1

∫
FΓ2

ykf(z)g(z) dµ(z) = ⟨f, g⟩Γ2

14Here the Poincare series is slightly different from the one defined before since we

need to accommodate the character χ. More precisely, for any m ≥ 0, Pm(z) :=∑
γ∈Γ∞\Γ χ(γ)jγ(z)−ke(mγz) with Γ = Γ0(N).
15The assumption that f ∈ Sk(Γ2, ϑ) implies that it is left Γ2-invariant. It is clearly also left

−I2-invariant.
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as claimed. More generally, for any f ∈ Sk(Γ, ϑ) and σ ∈ GL+
2 (Q), the function

f [σ]k ∈ Sk(Γ
′) for some sufficiently small congruence subgroup Γ′ contained in the

intersection σ−1 ker(ϑ)σ∩Γ (cf. Lemma 9.1 and Remark 9.1). The next proposition
shows that the normalized norm of f [σ]k (with respect to Γ′) is the same as that
of f (with respect to Γ).

Proposition 11.9. Let Sk(Γ, ϑ) and σ ∈ GL+
2 (Q) be as above. Let Γ′ be a con-

gruence subgroup contained in σ−1 ker(ϑ)σ ∩ Γ. Then for any f, g ∈ Sk(Γ, ϑ) we
have

⟨f [σ]k, g[σ]k⟩Γ′ = ⟨f, g⟩Γ.

Proof. By definition we have

⟨f [σ]k, g[σ]k⟩Γ′ =
1

VΓ′

∫
FΓ′

ykf [σ]k(z)g[σ]k(z) dµ(z)

=
1

VΓ′

∫
FΓ′

det(σ)kyk|jσ(z)|−2kf(σz)g(σz) dµ(z).

Now making a change of variable σz 7→ z and noting that jσ(z) = jσ−1(σz)−1 we
have

⟨f [σ]k, g[σ]k⟩Γ′ =
1

VΓ′

∫
σFΓ′

det(σ)kIm(σ−1z)k|jσ−1(z)|2kf(z)g(z) dµ(z)

=
1

VΓ′

∫
σFΓ′

ykf(z)g(z) dµ(z) = ⟨f, g⟩σΓ′σ−1 = ⟨f, g⟩Γ,

where for the second equality we used that Im(σ−1z) = det(σ−1)Im(z)
|jσ−1 (z)|2 and for the

last equality we used that σΓ′σ−1 < Γ (since Γ′ < σ−1Γσ ∩ Γ). □

Remark 11.12. We note that the above computation shows that

⟨f [σ]k, g⟩Γ′ = ⟨f, g[σ−1]k⟩σΓ′σ−1 , ∀ f, g ∈ Sk(Γ, ϑ).

In fact by passing to sufficiently small subgroups, we can omit the subscripts.
Moreover, recall that f [λσ]k = f [σ]k for any λ > 0. We have g[σ−1]k = g[σ′]k with
σ′ satisfying σ′σ = det(σ)I2. Thus we have

⟨f [σ]k, g⟩ = ⟨f, g[σ′]k⟩(11.13)

with σ′ as above.

Theorem 11.10. We have for any (n,N) = 1 and for any f, g ∈ Sk(Γ0(N), χ),

⟨Tχ
n f, g⟩ = χ(n)⟨f, Tχ

n g⟩.(11.14)

In particular, Tχ
n is normal on Sk(Γ0(N), χ) with respect to the normalized Peters-

son inner product.

Proof. First note that in view of the relations in Proposition 11.6 it suffices to prove
(11.14) for n = p a prime number. We thus assume n is a prime. By definition and
applying (11.13) we have

⟨Tχ
n f, g⟩ = n

k
2−1

∑
ρ∈∆n

χ(ρ)⟨f [ρ]k, g⟩ = n
k
2−1

∑
ρ∈∆n

χ(n)χ(ρ′)⟨f, g[ρ′]k⟩,
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where for ρ =
(
a b
0 d

)
∈ ∆n, ρ

′ =
(
d −b
0 a

)
satisfying that ρ′ρ = nI2. Since f ∈

Sk(Γ0(N), χ), we have f(z) = χ(τ)f [τ ]k for any τ ∈ Γ0[N ]. We thus have

⟨Tχ
n f, g⟩ = χ(n)n

k
2−1

∑
ρ∈∆n

χ(ρ′)⟨χ(τ)f [τ ]k, χ(τ ′)g[τ ′ρ′]k⟩

= χ(n)n
k
2−1

∑
ρ∈∆n

⟨f, χ(τ ′)χ(ρ′)χ(τ)g[τ ′ρ′τ−1]k⟩.

Setting ρ′′ = τ ′ρ′τ−1 one can show, using the explicit expression of ρ, ρ′ that
χ(τ ′)χ(ρ′)χ(τ) = χ(ρ′′). Hence

⟨Tχ
n f, g⟩ = χ(n)n

k
2−1

∑
ρ∈∆n

⟨f, χ(ρ′′)g[ρ′′]k⟩,

where ρ′′ = τ ′ρ′τ−1 with τ, τ ′ ∈ Γ0(N) to be determined. Now by Exercise 21 we
can choose τ, τ ′ ∈ Γ0(N) such that ρ′′ = ρ. With the choice of these τ, τ ′ we get

⟨Tχ
n f, g⟩ = χ(n)n

k
2−1

∑
ρ∈∆n

⟨f, χ(ρ)g[ρ]k⟩ = χ(n)⟨f, Tχ
n g⟩

as desired.
The in particular part follows easily from (11.14) since it implies that (Tχ

n )
∗ =

χ(n)Tχ
n for any (n,N) = 1 which clearly commutes with Tχ

n . □

Exercise 21. Show that if n is squarefree and co-prime to N . Then there exist
τ, τ ′ ∈ Γ0(N) such that τ ′ρ′τ−1 = ρ with ρ =

(
a b
0 d

)
∈ ∆n and ρ′ =

(
d −b
0 a

)
as above.

As a direct corollary we have the following

Corollary 11.11. The space Sk(Γ0(N), χ) has a basis of joint eigenfunctions of
{Tχ

n : (n,N) = 1}.

Let f ∈ Sk(Γ0(N), χ) be a joint eigenfunction as above, that is, for any (n,N) =
1, Tχ

n f = λ(n)f for some λ(n) ∈ C. Then by (3) of Corollary 11.8 we can conclude
that

f̂(n) = T̂χ
n f(1) = λ(n)f̂(1), ∀ (n,N) = 1.

The next natural question is whether there exists a multiplicity one theorem,
i.e. whether the Hecke eigenvalues determine the eigenfunctions uniquely (up to
scalars)? The following simple lemma gives equivalent characterizations of the
multiplicity one theorem.

Lemma 11.12. Let λ : N → C be such that

Vλ = Vλ(S(Γ0(N), χ)) := {f ∈ S(Γ0(N), χ) : Tχ
n f = λ(n)f, ∀ (n,N) = 1}

is nonzero. The following are equivalent.

(1) dimVλ = 1.
(2) Any f ∈ Vλ is a joint eigenfunction for all Hecke operators.

(3) If f ∈ Vλ with f̂(n) = 0 for all (n,N) = 1, then f = 0.

Proof. We first show (3) ⇒ (1). Let f, g be two nonzero elements in Vλ. By (3) we

have f̂(1) ̸= 0 and ĝ(1) ̸= 0. Then the function h = f̂(1)−1f − ĝ(1)−1g ∈ Vλ with

ĥ(1) = 0 which again by (3) implies that h = 0. Hence f = λg for some λ ̸= 0,
implying that dimVλ = 1.
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Next, we show (1) ⇒ (2). Let f ∈ Vλ be nonzero. For any m ≥ 1 with
(m,N) > 1, consider the function g = Tχ

mf . For any (n,N) = 1, since Tχ
n commutes

with Tχ
m we have

Tχ
n g = Tχ

n T
χ
mf = Tχ

mT
χ
n f = Tχ

m(λ(n)f) = λ(n)g.

This shows that g ∈ Vλ. Hence g = λ(m)f for some λ(m) ∈ C, that is Tχ
mf =

λ(m)f .
Finally, we show that (2) ⇒ (3). Since Tχ

n = λ(n)f for any n ≥ 1, we have by

(3) of Corollary 11.8 that f̂(n) = λ(n)f̂(1) for all n ≥ 1. Hence f̂(1) = 0 implies
that f = 0, proving (3). □

The answer is negative in view of the following proposition.

Proposition 11.13. Let N,N1, N2 ∈ N be such that N1N2 | N and let χ be
a Dirichlet character of modulus N induced from some Dirichlet character χ1 of
modulus N1. Then for any f ∈ Sk(Γ0(N1), χ1), the function g = f [αN2 ]k lies in
Sk(Γ0(N), χ) and satisfies ĝ(n) = 0 for all (n,N) = 1. Here αN2 =

(
N2

1

)
.

Remark 11.15. Since χ1|Γ0(N) = χ|Γ0(N), f ∈ Sk(Γ0(N1), χ1) ⊂ Sk(Γ0(N), χ). If f

is a joint eigenfunction for {Tχ
n : (n,N) = 1}. Then one can show f̃ is also a joint

eigenfunction for {Tχ
n : (n,N) = 1} with the same eigenvalues.

Proof of Proposition 11.13. By definition, for f(z) =
∑∞

n=1 f̂(n)e(nz),

g(z) = N
k
2
2 f(N2z) = N

k
2
2

∞∑
n=1

f̂(n)e(nN2z)

= N
k
2
2

∑
n≥1
N2|n

f̂ (n/N2) e(nz),

implying that ĝ(n) = 0 whenever (n,N) = 1. Next, we show g ∈ Sk(Γ0(N), χ).
Since f ∈ Sk(Γ0(N), χ) is holomorphic on H and vanishes at Q ∪ {∞}, so is g =
f [αN2 ]k. Hence it suffices to prove the desired transformation rule for g. Take any

γ =
(
a b
c d

)
∈ Γ0(N), note that αN2γ = γ′αN2 with γ′ =

(
a N2b

c/N2 d

)
∈ Γ0(N1).

Thus

g[γ]k = f [αN2
γ]k = f [γ′αN2

]k = χ1(γ
′)f [αN2

]k = χ(γ)g.

Here for the last equality we used the assumption that χ is induced from χ1 so that
χ1 and χ agree on the set {n ∈ N : (n,N) = 1} which in particular, implies that
χ1(γ

′) = χ1(d) = χ(d) = χ(γ) (since for γ =
(
a b
c d

)
∈ Γ0(N), (d,N) = 1). □

Definition 11.16. Let Sold
k (Γ0(N), χ) be the linear subspace of Sk(Γ0(N), χ)

spanned by all forms of type f [αN2
]k with f ∈ Sk(Γ0(N1), χ1), N1N2 | N and χ1

a Dirichlet character of modulus N1 such that χ (mod N) is induced from χ1. Let
Snew
k (Γ0(N), χ) be the orthogonal complement of Sold

k (Γ0(N), χ) in Sk(Γ0(N), χ)
with respect to the normalized Petersson inner product.

Proposition 11.14. For any (n,N) = 1, the Hecke operator Tχ
n preserves the

subspaces Sold
k (Γ0(N), χ) and Snew

k (Γ0(N), χ) respectively.
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Proof. Fix n ∈ N such that (n,N) = 1. First we note that it suffices to prove that
Tχ
n preserves Sold

k (Γ0(N), χ). This is true since if Tχ
n preserves Sold

k (Γ0(N), χ), then
for any f ∈ Snew

k (Γ0(N), χ) and g ∈ Sold
k (Γ0(N), χ) we can apply Theorem 11.10

(and noting that by assumption Tχ
n g ∈ Sold

k (Γ0(N), χ)) to get

⟨Tχ
n f, g⟩ = χ(n)⟨f, Tχ

n g⟩ = 0.

Since g is arbitrary, this shows that Tχ
n f ∈ Snew

k (Γ0(N), χ).
Now we show Tχ

n g ∈ Sold
k (Γ0(N), χ) for any g ∈ Sold

k (Γ0(N), χ). Since Tχ
n is lin-

ear, without loss of generality we may assume g = f [αN2
]k with f ∈ Sk(Γ0(N1), χ1)

such that N1N2 | N and χ1 (mod N1) induces χ (mod N). Then one easily sees
that the conditions (n,N) = 1 and χ1 inducing χ imply that Tχ

n = Tχ1
n . Hence

Tχ
n g = Tχ1

n f [αN2
]k = (Tχ1

n f)[αN2
]k. Since Tχ1

n f ∈ Sk(Γ0(N1), χ1), this implies
that Tχ

n g ∈ Sold
k (Γ0(N), χ). □

Theorem 11.15 (Multiplicity one theorem). The eigenfunction space

V new
λ = {f ∈ Snew(Γ0(N), χ) : Tχ

n f = λ(n)f, ∀ (n,N) = 1}

has dimension at most one.

Proof. We only give the proof for two special cases.
Case I: χ is primitive and N is squarefree. Since χ is assumed to be

primitive, Sold
k (Γ0(N), χ) = {0} and Snew

k (Γ0(N), χ) = Sk(Γ0(N), χ). In view of

Lemma 11.12 take for any f ∈ Sk(Γ0(N), χ), it suffices to show that f̂(n) = 0 for

all (n,N) = 1 implies f = 0. We now assume f̂(n) = 0 for all (n,N) = 1 and we
would like to show f = 0. For any d ∈ Z with (d,N) = 1, let γd =

(
a b
N d

)
∈ Γ0(N)

with a, b ∈ Z so that ad− bN = 1. Then we have

χ(d)f(z) = f [γd]k(z) = (Nz + d)−kf
(

az+b
Nz+d

)
= (Nz + d)−kf

(
a
N − 1

N(Nz+d)

)
, ∀ z ∈ H.

Making a change of variable Nz + d 7→ z the above equation is equivalent to

χ(d)f
(
z−d
N

)
= z−kf

(
a
N − 1

Nz

)
, ∀ z ∈ H.

Summing over a ∈ (Z/NZ)× and writing f(z) =
∑∞

n=1 f̂(n)e(nz) in Fourier expan-
sion we get∑

d∈(Z/NZ)×
χ(d)

∞∑
n=1

f̂(n)e
(
n z−d

N

)
=

∑
d∈(Z/NZ)×

z−k
∞∑

n=1

f̂(n)e
(
n
(

a
N − 1

Nz

))
.

Further computing the left hand side we get

LHS =

∞∑
n=1

f̂(n)e
(
nz
N

) ∑
d∈(Z/NZ)×

χ(d)e
(
−nd

N

)
=

∞∑
n=1

f̂(n)e
(
nz
N

)
G(χ,−n),

with G(χ,−n) the Gauss sum defined as before. Since χ is primitive, by Exercise
20 we have

LHS =

∞∑
n=1

f̂(n)e
(
nz
N

)
χ(−n)G(χ) = 0,
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where for the last equality we used the assumption that f̂(n) = 0 for (n,N) = 1
and the fact that χ(−n) = 0 if (n,N) > 1. For the right hand side we have

RHS = z−k
∞∑

n=1

f̂(n)e
(
− 1

Nz

) ∑
a∈(Z/NZ)×

e
(
an
N

)
= z−k

∞∑
n=1

f̂(n)e
(
− 1

Nz

)
S(0, n;N).

By the multiplicity of the Kloosterman sum (cf. (3) of Exercise 12) and the as-
sumption that N is square-free we have

S(0, n,N) =
∏
p|N

S(0, np, p)

with np some integer depending on p and n. Now note that

S(0, np, p) =
∑

a∈(Z/pZ)×
e
(

npa
p

)
=

{
p− 1 p | np,
−1 p ∤ np.

In paritcular, S(0, n;N) never vanishes. Equating left and right hand side we get

f̂(n) = 0 for all n ∈ N, proving that f = 0.
Case II: χ = 1N is trivial and N = p is a prime. We assume f ∈ Snew

k (Γ0(p))

with f̂(n) = 0 for all (n, p) = 1. We would like to show f = 0. To prove this we
show f ∈ Sold

k (Γ0(p)). Since p is a prime by assumption we have

f(z) =

∞∑
n=1

f̂(np)e(npz).

Define

g(z) : =

∞∑
n=1

f̂(np)e(nz)

so that f(z) = g(pz), or equivalently, f = p−
k
2 g[αp]k. To show f ∈ Sold

k (Γ0(p)), it

suffices to show g ∈ Sk(Γ0(1)). First since f ∈ Sk(Γ0(p)) we have g = p
k
2 f [α−1

p ]k ∈
Sk(αpΓ0(p)α

−1
p ). By direct computation we have

αpΓ0(p)α
−1
p = Γ0(p) := {γ ∈ SL2(Z) : γ ≡ ( ∗ 0

∗ ∗ ) (mod p)} .

Moreover, in view of the expression g(z) = we have g(z + 1) = g(z) for any z ∈ H,
or equivalently, g[( 1 1

0 1 )]k = g. Hence g ∈ Sk(Γ) where Γ =
〈
Γ0(p), ( 1 1

0 1 )
〉
. Hence

we can conclude the proof by claiming that Γ = SL2(Z). In view of Theorem 3.1 it
suffices to show

(
0 −1
1 0

)
∈ Γ. This is true since(

0 −1
1 0

)
=

(
1− p −p
1 1

)(
1 −1
0 1

)(
1 0

1− p 0

)
. □

Remark 11.17. For the general case, define the operators on Sk(Γ0(N), χ)

ANf =
1

N

∑
b∈Z/NZ

f [
(

1 b
N

0 1

)
]k and KNf =

∑
d|N

µ(d)Adf.

Then one can check that

ANf(z) =
∑
N |n

f̂(n)e(nz)
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and

KNf(z) =
∑

(n,N)=1

f̂(n)e(nz)

so that

kerKN =
{
f ∈ Sk(Γ0(N), χ) : f̂(n) = 0 ∀ (n,N) = 1

}
.

Then one show kerKN ⊂ Sold
k (Γ0(N), χ). See also [DS05, Section 5.7] for an

algebraic proof which is due to D. Carlton [Car01]

Definition 11.18. A nonzero joint eigenfunction f ∈ Snew
k (Γ0(N), χ) for {Tχ

n :
(n,N) = 1} is called a Hecke new form.

We have the following immediate corollary of Theorem 11.15 and Lemma 11.12.

Corollary 11.16. (1) Any Hecke new form can be normalized.
(2) A normalized Hecke new form f ∈ Snew

k (Γ0(N), χ) is a joint eigenfunction
for all Hecke operators with the n-th Hecke eigenvalue being the n-th Fourier

coefficient of f , i.e. Tχ
n f = λ(n) with λ(n) = f̂(n) for any n ≥ 1. In

particular, n̂ satisfies

f̂(m)f̂(n) =
∑

d|(m,n)

χ(d)dk−1f̂(mnd−2), ∀ m,n ≥ 1.(11.19)

12. Review on Riemann zeta function

In the next section we will study Hecke L-functions. Namely we attach an L-
function to each cusp form via its Fourier coefficients and then study its analytic
properties. Before doing so, we first give a brief review on the classical theory
of Riemann zeta function which our later proof on Hecke L-functions resembles.
Recall that the Riemann zeta function is defined by

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1.

It has an Euler’s product formula

ζ(s) =
∏
p

(1− p−s)−1, Re(s) > 1(12.1)

which follows from the fundamental theorem of arithmetic. We note that based on
this infinite product formula, Euler gave an alternative proof of Euclid’s theorem
on infinitude of primes.

We now sketch a proof of the analytic continuation and functional equation of
ζ(s); see [SS03] for more details. Recall that the Gamma function is defined by the
following integral

Γ(s) =

∫ ∞

0

e−tts−1dt, Re(s) > 0

with an analytic continuation to the whole s-plane. Consider also the theta function

θ(t) =
∑
n∈Z

e−πn2t, t > 0.
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We also define

ψ(t) =

∞∑
n=1

e−πn2t, t > 0

so that θ(t) = 1 + 2ψ(t). Note that ψ(t) ≪ e−πt has exponential decay in t. Then
for Re(s) > 1 we can cmopute∫ ∞

0

ψ(t)t
s
2−1 dt =

∫ ∞

0

∞∑
n=1

e−πn2tt
s
2−1 dt

=

∞∑
n=1

∫ ∞

0

e−πn2tt
s
2−1 dt

πn2t7→t
=

∞∑
n=1

(πn2)−
s
2

∫ ∞

0

e−tt
s
2−1 dt

= π− s
2Γ( s2 )ζ(s) =: ξ(s).

Here ξ(s) is called the completed Riemann zeta function. We split the above integral
into integration over (0, 1) and (1,∞) respectively to get

ξ(s) =

∫ 1

0

ψ(t)t
s
2−1 dt+

∫ ∞

1

ψ(t)t
s
2−1 dt.

Now by the Poisson summation formula one can show θ satisfies the following
inversion formula

θ(t) = t−
1
2 θ( 1t ), t > 0,

which in terms of ψ is equivalent to

ψ(t) = t−
1
2ψ( 1t ) +

1

2t1/2
− 1

2
, t > 0.

Applying this formula to the above first integral and then making a change of
variable 1/t 7→ t we get

ξ(s) = − 1

1− s
− 1

s
+

∫ ∞

1

ψ(t)
(
t
1−s
2 + t

s
2

) dt

t
.(12.2)

Since ψ decays exponentially as t→ ∞, the above integral is absolutely convergent
for any s ∈ C and defines an entire function. We thus get an analytic continuation
of ξ(s) (hence also ζ(s)) to the whole s-plane with two simple poles at s = 0, 1

(while ζ(s) = π
s
2 ξ(s)

Γ(s/2) has only one simple pole at s = 1 with the simple pole coming

from ξ(s) at s = 0 cancelled out by the simple zero of 1/Γ(s/2) at s = 0). Moreover,
inspecting the above expression one sees that it is invariant after changing s to 1−s.
We thus get the following functional equation

ξ(1− s) = ξ(s).

13. Hecke L-functions

For each cusp form we can associate an L-function via its Fourier coefficients.
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Definition 13.1. For any f ∈ Sk(Γ0(N), χ) the associated Hecke L-function is
given by

Lf (s) =

∞∑
n=1

f̂(n)

ns

for s ∈ C as long as the defining series is absolutely convergent. Here f̂(n) is the
n-th Fourier coefficient of f . We also denote by

Λf (s) :=
(√

N
2π

)s
Γ(s)Lf (s), s ∈ C

the completed L-function associated to f .

Remark 13.2. We have shown in Corollary 8.11 that |f̂(n)| ≪ n
k
2 , hence the above

defining series for Lf (s) is absolutely convergent for Re(s) > k
2 + 1.

Below we establish some general analytic properties of Hecke L-functions.

13.1. Analytic continutation. Using similar arguments as for ζ(s) we can prove
the analytic continuation of Lf (s) via an integral representation of it.

Proposition 13.1. For any f ∈ Sk(Γ0(N), χ), Lf (s) has an analytic continuation
to an entire function.

Proof. Consider the integral

If (s) =

∫ ∞

0

f(iy)ys−1 dy, s ∈ C.

Note that since f is a cusp form, it decays exponentially at cusps. More precisely,
the exponential decay at ∞ and 0 means respectively that |f(iy)| ≪ e−cy as y → ∞
and |f(iy)| ≪ e−c/y as y → 0+ for some positive constant c. In particular, this
implies that the defining integral for If (s) is absolutely convergent for any s ∈ C,
thus If (s) is an entire function. Next, we relate this integral with Lf (s). Writing
f(iy) in Fourier expansion we have

If (s) =

∫ ∞

0

∞∑
n=1

f̂(n)e−2πnyys−1 dy

2πny 7→y
=

∞∑
n=1

f̂(n)(2πn)−s

∫ ∞

0

e−yys−1 dy

= (2π)−sΓ(s)Lf (s).

Thus

Lf (s) =
(2π)s

Γ(s)
If (s).

Recall that 1/Γ(s) is entire, see e.g. [SS03, p. 165, Theorem 1.6], thus the above
right hand side is also entire, giving the analytic continuation of Lf (s) to an entire
function. □

Remark 13.3. We can also attach an L-function to a modular form f ∈ Mk(Γ0(N), χ).

It can be shown that its Fourier coefficients also satisfy a bound |f̂(n)| ≪ nα for
some α > 0. Thus Lf (s) is absolutely convergents for Re(s) > α+1. Using similar
argument one can show Lf (s) also has an analytic continuation but potentially
with simple poles (due to the lack of exponential decay of f at cusps).
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Remark 13.4. It is also clear from the above proof that Λf (s) = N
s
2 If (s) has

an analytic continuation to an entire function. Moreover, using the exponential
decay of f(iy) as y → 0+,∞, we see that Λf (s) is bounded on every vertical strip
σ1 < Re(s) < σ2 with the bounding constant depending on σ1 and σ2.

13.2. Functional equation. In this section we prove the functional equation sat-
isfied by Λf (s). We first prove it for the case when N = 1.

Theorem 13.2. For f ∈ Sk(Γ0(1)) the completed L-function Λf (s) satisfies

Λf (s) = ikΛf (k − s).(13.5)

Proof. As before we have for Re(s) > k
2 + 1,

Λf (s) = (2π)−sΓ(s)Lf (s) =

∫ ∞

0

f(iy)ys−1 dy

=

∫ 1

0

f(iy)ys−1 dy +

∫ ∞

1

f(iy)ys−1 dy.

Let S =
(
0 −1
1 0

)
. Since f ∈ Sk(Γ0(1)) we have f [S]k = f which is equivalent to

f(z) = (−z)−kf(−1/z) for any z ∈ H. Taking z = iy we get

f(iy) = (−iy)−kf (−1/iy) = iky−kf(i/y).

Hence

Λf (s) =

∫ 1

0

iky−kf(i/y)ys−1 dy +

∫ ∞

1

f(iy)ys−1 dy

=

∫ ∞

1

f(iy)
(
ys + ikyk−s

) dy

y
,

from which the functional equation (13.5) follows easily. Here in the second line we
made a change of variable 1

y 7→ y in the first integral of the first line. □

The case for general N is slightly more involved since the transformation S =(
0 −1
1 0

)
does not lie in Γ0(N) when N > 1. Instead, we use the transformation

wN :=
(

0 −1
N 0

)
. Note that wN also does not lie in Γ0(N), but it normalizes

Γ0(N), i.e. w−1
N Γ0(N)wN = Γ0(N). We will see later (Lemma 15.1) that for

f ∈ Sk(Γ0(N), χ), g := f [wN ]k ∈ Sk(Γ0(N), χ̄) is also a cusp form. Hence we can
also associate to it an L-function Lg(s) and its completion Λg(s) which both can be
analytically continued to the whole s-plane. We now state the functional equation
for cusp forms of a general level.

Theorem 13.3. Let f ∈ Sk(Γ0(N), χ) and g = f [wN ]k ∈ Sk(Γ0(N), χ̄) be as
above. Then we have

Λf (s) = ikΛg(k − s).(13.6)

Proof. Similar as the N = 1 case we have

Λf (s) = N
s
2

∫ ∞

0

f(iy)ys−1 dy, s ∈ C,

and

Λg(s) = N
s
2

∫ ∞

0

g(iy)ys−1 dy, s ∈ C.
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Moreover, note that wN = −NI2, thus the relation g = f [wN ]k is equivalent to
(−1)kf = f [w2

N ]k = g[wN ]k, or equivalently, f = (−1)kg[wN ]k. For z = iy ∈ H we
have

f(iy) = (−1)kN
k
2 (Niy)−kg

(
i

Ny

)
= ikN− k

2 y−kg
(

i
Ny

)
.

Plugging in this relation into the above expression of Λf (s) we have

Λf (s) = ikN
s−k
2

∫ ∞

0

g
(

i
Ny

)
ys−k−1 dy

1/Ny 7→y
= ikN

k−s
2

∫ ∞

0

g (iy) yk−s−1 dy = ikΛg(k − s).

This finishes the proof. □

13.3. Euler’s product. In this section we prove the Euler product formula of
Lf (s). For this we need to further assume f to be a normalized Hecke new form.
We first give a general criterion on when an L-function has an Euler product.

Proposition 13.4. Let L(s) =
∑∞

n=1
a(n)
ns be absolute convergent for Re(s) > σ

for some σ > 0 and satisfying a(mn) = a(m)a(n) for any (m,n) = 1. Then we
have

L(s) =
∏
p

 ∞∑
j=0

a(pj)

pjs

 , ∀ Re(s) > σ.

Proof. For any integer M ≥ 2 define

PM := {p ∈ N : p is a prime and p ≤M}
and

AM := {pα1
1 · · · pαk

k ∈ N : pi ∈ PM , 0 ≤ αi ≤M} .

Then by the fundamental theorem of arithmetic and the multiplicity of {a(n)}n∈N
we have ∏

p∈PM

 M∑
j=0

a(pj)

pjs

 =
∑

n∈AM

a(n)

ns
.

By Exercise 22 we have {1, 2, . . . ,M} ⊂ AM . Hence for Re(s) > σ∣∣∣∣∣∣L(s)−
∏

p∈PM

 M∑
j=0

a(pj)

pjs

∣∣∣∣∣∣ ≤
∞∑

n=M+1

|a(n)|
nRe(s)

→ 0, as M → ∞.

Similarly, one can show

lim
M→∞

∏
p∈PM

 M∑
j=0

a(pj)

pjs

 =
∏
p

 ∞∑
j=0

a(pj)

pjs

 , ∀ Re(s) > σ.

Combining these two limiting equations we get the desired identity. □

Exercise 22. Let PM and AM be as above. Show that {1, 2, . . . ,M} ⊂ AM .

With this proposition we can now prove the Euler’s product formula for Lf (s)
when f is a normalized Hecke new form.
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Theorem 13.5. Suppose f ∈ Snew
k (Γ0(N), χ) is a normalized Hecke new form.

Then for any Re(s) > k
2 + 1

Lf (s) =
∏
p

(
1− f̂(p)p−s + χ(p)pk−1−2s

)−1

.(13.7)

Proof. Note that since f is a normalized Hecke new form, its Fourier coefficients,
being the Hecke eigenvalues, satisfy the relation (11.19) which is equivalent to the
following two relations

f̂(mn) = f̂(m)f̂(n), ∀ (m,n) = 1

and

f̂(pr+1) = f̂(p)f̂(pr)− χ(p)pk−1f̂(pr−1), p a prime, r ≥ 1.

In view of Remark 13.2, Proposition 13.4 and the above first relation we have for
Re(s) > k

2 + 1,

Lf (s) =
∏
p

ϕp(f, s),

where ϕp(f, s) :=
∑∞

r=0
f̂(pr)
prs . It thus remains to compute ϕp(f, s). For this we

apply the above second relation. We have

ϕp(f, s) = 1 + f̂(p)p−s +

∞∑
r=2

f̂(pr)p−rs

= 1 + f̂(p)p−s +

∞∑
r=1

f̂(pr+1)p−(r+1)s

= 1 + f̂(p)p−s +

∞∑
r=1

(
f̂(p)f̂(pr)− χ(p)pk−1f̂(pr−1)

)
p−(r+1)s

= 1 + f̂(p)p−s + f̂(p)p−s
∞∑
r=1

f̂(pr)p−rs − χ(p)pk−1−2s
∞∑
r=1

f̂(pr−1)p−(r−1)s

= 1 + f̂(p)p−sϕp(f, s)− χ(p)pk−1−2sϕp(f, s).

Solving this equation for ϕp(f, s) one easily gets the desired formula for ϕp(f, s). □

14. Hecke’s converse theorem

The functional equation (13.6) satisfied by Hecke L-functions is a consequence
of the modularity of the corresponding cusp form. The following theorem of Hecke
shows that when N = 1 the converse is also true, that is the functional equation
(13.5) actually also encodes the modularity.

Theorem 14.1 (Hecke). Let L(s) =
∑∞

n=1
an

ns with |an| ≪ nα for some α > 0 (so
that L(s) converges absolutely for Re(s) > α + 1). Assume L(s) has an analytic
continuation to an entire function and Λ(s) := (2π)−sΓ(s)L(s) is bounded on every
vertical strip and satisfies Λ(s) = ikΛ(k − s). Then f(z) :=

∑∞
n=1 ane(nz) ∈

Sk(Γ0(1)).
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To prove this theorem we need some preliminary results. We first recall the
Stirling’s approximation formula for gamma functions (see e.g. Corollary 16 of this
online note) that for any fixed σ ∈ R,

|Γ(σ + it)| ∼
√
2π|t|σ− 1

2 e−π|t|/2, as |t| → ∞.(14.1)

In particular, this implies that |Γ(s)| decays exponentially on any vertical line with
|Im(s)| → ∞. Next, we recall the Phragmén-Lindelöf principle; see e.g. [Lan70, p.
262].

Proposition 14.2. Let f(s) be a function that is holomorphic in a strip σ1 ≤
Re(s) ≤ σ2 and satisfying |f(s)| ≪ e|s|

A

for all σ1 ≤ Re(s) ≤ σ2 and for some
A > 0. Suppose that |f(s)| ≪ |s|M for Re(s) = σ1, σ2 and for some M ∈ R, then
|f(s)| ≪ |s|M uniformly for all σ1 ≤ Re(s) ≤ σ2.

Remark 14.2. Let f be satisfying above conditions. When M = 0 Phragmén-
Lindelöf principle asserts that if f is bounded on the two edges of a vertical strip
then it is also bounded on this strip. This is a generalization of the maximum
modulus principle (see e.g. [SS03, p. 92]) except here the region is no longer assumed
to be bounded. As a compensation of this relax of condition, the growth condition

|f(s)| ≪ e|s|
A

is necessary. For example, consider the function f(s) = ee
is

which
is holomorphic on the strip π

2 ≤ Re(s) ≤ 5π
2 with absolute value bounded by 1 for

Re(s) = π
2 ,

2π
2 but |f(2π + it)| = ee

−t → ∞ as t→ −∞.

Finally, we introduce the Mellin transform of a function defined on the set of
positive real numbers. Given a continuous function ϕ : (0,∞) → C, its Mellin
transform is defined by

M(ϕ)(s) =

∫ ∞

0

ϕ(y)ys
dy

y

whenever this integral is absolutely convergent. One can show that there exist
constants −∞ ≤ σ1 < σ2 ≤ ∞ such that the above integral is absolutely convergent
for any σ1 < Re(s) < σ2 and is divergent for Re(s) < σ1 or Re(s) > σ2. We have
the Mellin inversion formula which states that for any σ ∈ (σ1, σ2)

ϕ(y) =
1

2πi

∫
(σ)

M(ϕ)(s)y−s ds, y > 0.(14.3)

We note that M(ϕ)(s) can be interpreted as a Fourier transform of the function
ψ(r) := ϕ(er) : R → C and Mellin inversion formula follows from the more classical
Fourier inversion formula; see e.g. [Bum97, p. 55-56]. We can now give the

Proof of Theorem 14.1. First we show that f is holomorphic and vanishes at ∞.
For any z = x+ iy ∈ H using the bound |an| ≪ nα we have

|f(x+ iy)| ≪
∞∑

n=1

nαe−2πny ≤
∞∑

n=1

∫ n+1

n

tαe−πty dt

=

∫ ∞

1

tαe−πty dt
ty 7→t
= y−(α+1)

∫ ∞

y

tαe−πt dt≪ y−(α+1).

In particular, this shows that the defining series of f converges absolutely and
uniformly on compact sets, hence f is holomorphic on H. Moreover, f(iy) → 0 as
y → ∞.

https://wiki.math.ntnu.no/_media/ma3001/2014v/analytisktallteori/the_riemann_zeta_function_notes.pdf
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Next, we establish the modularity of f . The relation f(z + 1) = f(z) is clear.
We thus only need to show f [S]k = f with S =

(
0 −1
1 0

)
, i.e. f(z) = (−z)−kf(−1/z)

for any z ∈ H. In view of analytic continuation, it suffices to prove this identity for
z = iy for all y > 0, that is,

f(iy) = (−iy)−kf(i/y) = iky−kf(i/y), ∀ y > 0.(14.4)

For this note that for Re(s) > α + k, using the arguments as in Proposition 13.1
we have

Λ(s) =

∫ ∞

0

f(iy)ys−1 dy.

Note that Λ(s) is the Mellin transform of the function y 7→ f(iy). Moreover, using
the Stirling’s approximation formula for the gamma function (14.1) and the fact
that L(s) is uniformly bounded for Re(s) ≥ α+ k, we have

|Λ(s)| ≪ |s|−2, ∀ Re(s) ≥ α+ k.(14.5)

Hence we can apply the Mellin inversion formula (14.3) to get for any σ > α+ k,

f(iy) =
1

2πi

∫
(σ)

Λ(s)y−s ds, y > 0.

Next, we want to shift the contour from Re(s) = σ to Re(s) = k
2 for which we

need to control the growth of Λ(s) on vertical strips. To achieve this we apply the
Phragmén-Lindelöf principle. By the functional equation and the bound (14.5) we
have

|Λ(s)| = |Λ(k − s)| ≪ |k − s|−2 ≍k |s|−2, ∀ Re(s) ≤ −α.

Thus by the Phragmén-Lindelöf principle we can conclude that for any −α < σ <
k + α,

|Λ(s)| ≪ |s|−2, ∀ Re(s) = σ.

Thus we can shift the contour and apply the functional equation to get that for
any y > 0,

f(iy) =
1

2πi

∫
( k
2 )

Λ(s)y−s ds =
1

2πi

∫
( k
2 )

ikΛ(k − s)y−s ds

k−s7→s
=

1

2πi

∫
( k
2 )

ikΛ(s)y−(k−s) ds =
iky−k

2πi

∫
( k
2 )

Λ(s)(1/y)−s ds

= iky−kf(i/y).

This proves the identity (14.4) and hence also the theorem. □

Remark 14.6. If in Theorem 14.1 we replace the assumption that Λ(s) has an
analytic continuation to an entire function with the weaker assumption that Λ(s)
has a meromorphic continuation with two potential simple poles at s = 0, 1 and
a0 ∈ C is such that

Λ(s) + a0(s
−1 + ik(k − s)−1)

entire, then one can similarly show f(z) :=
∑∞

n=0 a0e(nz) ∈ Mk(Γ0(1)), cf. Theo-
rem 17.1 below.
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15. Fricke involution

In Theorem 13.3 in order to state the functional equation of the L-function of a
cusp form f ∈ Sk(Γ0(N), χ), we need to define a new function g := f [wN ]k with
wN =

(
0 −1
N 0

)
. In this section we study this map more closely which in turn would

give us a more refined functional equation than (13.6) when f is a normalized Hecke
new form.

Definition 15.1. The Fricke involution WN is an operator on Sk(Γ0(N), χ) defined
by

WNf = f [wN ]k, ∀ f ∈ Sk(Γ0(N), χ),

where wN =
(

0 −1
N 0

)
is as above.

Lemma 15.1. For any f ∈ Sk(Γ0(N), χ), WNf ∈ Sk(Γ0(N), χ).

Proof. The proof uses the fact that wN normalizes Γ0(N). Indeed, by direction
computation for any γ =

(
a b
c d

)
∈ Γ0(N), we have

wNγw
−1
N =

(
d c/N

−bN a

)
=: γ′ ∈ Γ0(N),

or equivalently, wNγ = γ′wN . Now take f ∈ Sk(Γ0(N), χ), let g =WNf . Then

g[γ]k = f [wNγ]k = f [γ′wN ]k = χ(a)f [wN ]k = χ̄(γ)g.

The fact that g is holomorphic and vanishes at cusps follows from the same argu-
ments as in Proposition 9.3. □

Next, we explore the relations between WN and Hecke operators. Below when
there is no ambiguity we abbreviate WN and wN by W and w respectively.

Proposition 15.2. For (n,N) = 1 we have

WNT
χ
n = χ(n)T χ̄

nWN .

Proof. Note that by definition for f ∈ Sk(Γ0(N), χ),

WTχ
n f = n

k
2−1

∑
ρ∈∆n

χ̄(ρ)f [ρw]k

and

T χ̄
nWf = n

k
2−1

∑
ρ∈∆n

χ(ρ)f [wρ]k.

Note that for ρ =
(
a b
0 d

)
∈ ∆n, wρw

−1 =
(

d 0
−Nb a

)
/∈ ∆n. To transform it into ∆n

we left multiply an element in Γ0(N) and use the modularity of f with respect to

Γ0(N). More precisely, let τ =
(

α β
γ δ

)
∈ Γ0(N) to be determined, we have by direct

computation

ρ′ := τ−1wρw−1 =

(
δd+ βbN −βa
−γd− αbN αa

)
.

To make ρ′ ∈ ∆n we need −γd−αbN = 0 and 0 ≤ −βa < αa, i.e. −α < β ≤ 0. For
this we take α = d

(b,d) and γ = − bN
(b,d) . One easily sees that N | γ and (α, γ) = 1

(since ad = n and (n,N) = 1). Next, we choose β to make τ ∈ Γ0(N), i.e.
αδ − βγ = 1. One necessary condition is that βγ ≡ −1 (mod α). We choose β to
be the unique integer −α < β ≤ 0 satisfying this congruence condition. Once β is
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chosen we can find the unique δ ∈ Z such that τ ∈ Γ0(N). With the choice of this

τ we have ρ′ =
(

(b,d) −βa
0 n/(b,d)

)
∈ ∆n with −α < β ≤ 0 the unique integer such that

β bN
(b,d) ≡ 1 (mod d

(b,d) ). This map from ρ∆n to ρ′ ∈ ∆n is a bijection as one can

easily write down the inverse map. Thus we have

f [wρ]k = f [τρ′w]k = χ(τ)f [ρ′w]k

and

χ(ρ)χ(τ) = χ(a)χ(α) = χ(n)χ((b, d)) = χ(n)χ(ρ′).

Hence

T χ̄
nWf = n

k
2−1

∑
ρ∈∆n

χ(ρ)χ(τ)f [ρ′w]k

= χ(n)n
k
2−1

∑
ρ′∈∆n

χ(ρ′)f [ρ′w]k = χ(n)WTχ
n f

as desired. □

We also need another operator which brings WNf back to Sk(Γ0(N), χ). Let K

be such that Kf(z) = f(−z). We list some simple properties of K.

Proposition 15.3. Let K be as above. We have

(1) K2 = 1 and Kλf = λ̄Kf .
(2) WK = (−1)kKW .
(3) K : Sk(Γ0(N), χ) → Sk(Γ0(N), χ̄).

(4) Kf(z) =
∑
f̂(n)e(nz).

(5) KTχ
n = T χ̄

nK for all n ≥ 1.

Proof. (1) is clear. For (2) note that by definition Wf(z) = N
k
2 (Nz)−kf(−1/Nz).

Hence

KWf(z) = N
k
2 (−Nz̄)

−k
K(f(−1/Nz)) = (−1)kN

k
2 (Nz)−kf(−1/Nz̄).

Similarly,

WKf(z) = N
k
2 (Nz)−kKf(−1/Nz) = N

k
2 (Nz)−kf(−1/Nz̄).

Then (2) follows by comparing these equations.
For (3), take any f ∈ Sk(Γ0(N), χ) and γ =

(
a b
c d

)
∈ Γ0(N), we have

(Kf)[γ]k = jγ(z)
−kKf(γz) = jγ(z)

−kf(−γz̄).
Note that

−γz̄ = −az̄ + b

cz̄ + d
=

a(−z̄)− b

−c(−z̄) + d
= γ̃(−z̄),

where γ̃ =
(

a −b
−c d

)
∈ Γ0(N). Moreover, one sees that

jγ̃(−z̄) = −c(−z̄) + d = cz + d = jγ(z).

Hence

(Kf)[γ]k = jγ̃(−z̄)
−k
f(γ̃(−z̄)) = f [γ̃]k(−z̄) = χ(γ̃)f(−z̄) = χ(γ)Kf(z),

finishing the proof of (3). Here for the last equality we used the simple identity
χ(γ̃) = χ(γ) = χ(d).



INTRODUCTION TO MODULAR FORMS 81

Property (4) follows easily by noting thatK(e(nz)) = e(nz) which can be checked

easily using the identity e(w) = e2πiw = e−2πiw̄ = e(−w̄) for any w ∈ C.
For (5), note that for any f ∈ Sk(Γ0(N), χ) and n ≥ 1,

KTχ
n f(z) = n

k
2−1

∑
ρ∈∆n

χ(ρ)Kf [ρ]k(z)

= n
k
2−1

∑
ρ∈∆n

χ(ρ)Kf [ρ]k(z) = T χ̄
nKf(z). □

Let W̄ = KW . We have the following properties of W̄ which are direct conse-
quences of above properties of W and K.

Corollary 15.4. We have

(1) W̄ 2 = 1 and W̄λf = λ̄W̄ f .
(2) W̄ : Sk(Γ0(N), χ) → Sk(Γ0(N), χ).
(3) Tχ

n W̄ = χ(n)W̄Tχ
n for any (n,N) = 1.

With these properties we can show that Hecke new forms are eigenfunctions of
W̄ .

Proposition 15.5. Let f ∈ Snew
k (Γ0(N), χ) be a normalized Hecke new form. Then

W̄f = ηf for some η ∈ C with |η| = 1.

Proof. Since f is a Hecke new form, we have Tχ
n f = λ(n)f for any n ≥ 1 with

λ(n) = f̂(n). By Corollary 15.4 we have for any (n,N) = 1,

Tχ
n W̄f = χ(n)W̄Tχ

n f = χ(n)W̄λ(n)f = χ(n)λ(n)W̄f.

We claim that χ(n)λ(n) = λ(n) for (n,N) = 1. This is true since by Theorem 11.10
we have

λ(n)⟨f, f⟩ = ⟨Tχ
n f, f⟩ = χ(n)⟨f, Tχ

n f⟩ = χ(n)λ(n)⟨f, f⟩.

Hence we have

Tχ
n W̄f = λ(n)W̄f, ∀ (n,N) = 1,

i,e. W̄f lies in the same eigenspace (for {Tχ
n : (n,N) = 1}) as f . Thus by the

multiplicity one theorem we have W̄f = ηf for some η ∈ C. Moreover, f = W̄ 2f =
W̄ηf = η̄W̄ f = |η|2f , implying that |η| = 1. □

We now state the functional equation satisfied by eigenfunctions of W̄ which in
particular includes Hecke new forms in view of Proposition 15.5.

Theorem 15.6. If f ∈ Sk(Γ0(N), χ) satisfies W̄f = ηf for some η ∈ C. Then

Λf (s) = ikηΛf (k − s̄).(15.2)

In particular, (15.2) holds for normalized Hecke new forms.

Proof. Let g =Wf so that Λf (s) = ikΛg(k − s) in view of Theorem 13.3. For this
g we also have

ηf = W̄f = KWf = Kg =

∞∑
n=1

ĝ(n)e(nz).
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This shows that ĝ(n) = ηf̂(n), or equivalently, ĝ(n) = ηf̂(n). Hence

Lg(s) =

∞∑
n=1

ĝ(n)

ns
= ηLf (s̄)

which a priori holds for Re(s) > k
2 + 1 and can be extended to the whole s-plane

by analytic continuation. Thus we have

Λf (s) = ikΛg(k − s) = ik
(√

N
2π

)k−s

Γ(k − s)ηLf (k − s̄)

= i−kη
(√

N
2π

)k−s̄

Γ(k − s̄)Lf (k − s̄)

= i−kηΛf (k − s̄).

Here for the last equality we used that Γ(s) = Γ(s̄) which can be easily seen from
its integral representation. □

Remark 15.3. If we further assume χ is real and f has real Fourier coefficients, then

ĝ(n) = η̄f̂(n), implying that

Λg(s) = η̄Λf (s).

Moreover,

Wf = KW̄f = Kηf = η̄Kf = η̄f,

implying that (−1)kf =W 2f = η̄2f . Hence η̄ = ±ik. Thus

Λf (s) = ikΛg(k − s) = ikη̄Λf (k − s) = ±Λf (k − s).

16. Twisting automorphic forms and L-functions

The main goal of this section is to study how modular forms behave under
twisting by characters. This operation produces more cusp forms from a fixed cusp
form and hence also more functional equations associated to this cusp form.

Given f ∈ Mk(Γ0(N), χ) and a primitive Dirichlet character χ1 of modulus N1,
we define

fχ1
(z) :=

∞∑
n=0

f̂(n)χ1(n)e(nz), z ∈ H,

where f̂(n) is the n-th Fourier coefficient of f as usual.

Theorem 16.1. Let f ∈ Mk(Γ0(N), χ) and χ1 (mod N1) be as above. We have
fχ1

∈ Mk(Γ0(NN
2
1 ), χχ

2
1). If f is a cusp form, then so is fχ1

.

To prove this theorem we need the following lemma giving an alternative expres-
sion of fχ1

.

Lemma 16.2. Keep the notation and assumptions as in Theorem 16.1. We have

fχ1
=
G(χ1)

N1

N1∑
ℓ=1

χ1(ℓ)f [αℓ]k,(16.1)

where αℓ =
(

1 − ℓ
N1

0 1

)
.
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Proof. Using the fact that χ1 is a periodic function of period N1 we can rewrite

fχ1(z) =

N1∑
r=1

χ1(r)
∑
n≥0

n≡r (mod N1)

f̂(n)e(nz).

Note that

1

N1

N1∑
ℓ=1

e
(

(r−n)ℓ
N1

)
= I(n ≡ r (mod N1)),

where I(n ≡ r (mod N1)) is the indicator function of the condition n ≡ r (mod N1).
Hence we have

fχ1
(z) =

N1∑
r=1

χ1(r)

∞∑
n=0

1

N1

N1∑
ℓ=1

e
(

(r−n)ℓ
N1

)
f̂(n)e(nz)

=
1

N1

N1∑
ℓ=1

N1∑
r=1

χ1(r)e

(
rℓ

N1

) ∞∑
n=0

f̂(n)e
(
n(z − ℓ

N1
)
)

=
1

N1

N1∑
ℓ=1

G(χ1, ℓ)f
(
z − ℓ

N1

)
=
G(χ1)

N1

∞∑
ℓ=1

χ1(ℓ)f [αℓ]k(z),

finishing the proof, where for the second equality we used the identity G(χ1, ℓ) =
χ1(ℓ)G(χ1) which is where we need the primitivity assumption on χ1. □

We can now give the

Proof of Theorem 16.1. Given any γ =
(
a b
c d

)
∈ Γ0(NN

2
1 ) we need to show fχ1

[γ]k =

χχ2
1(γ)fχ1

. By Lemma 16.2 we have

fχ1
[γ]k =

G(χ1)

N1

N1∑
ℓ=1

χ1(ℓ)f [αℓγ]k

with αℓ =
(

1 − ℓ
N1

0 1

)
as in Lemma 16.2. Let ℓ′ ∈ Z/N1Z to be determined. Then

by direct computation we have

αℓγα
−1
ℓ′ =

(
a− cℓ

N1
b+ aℓ′−dℓ

N1
− cd2ℓ2

N2
1

c d+ cd2ℓ
N1

)
=: τ.

We wish to choose ℓ′ so that τ ∈ Γ0(NN
2
1 ). Since NN

2
1 | c one easily sees that for

this we only need the term aℓ′−dℓ
N1

in the top right entry of τ to be an integer. We

choose ℓ′ = d2ℓ so that

aℓ′ − dℓ

N1
=
ad2ℓ− dℓ

N1
=

(ad− 1)dℓ

N1
=
bcdℓ

N1
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is indeed an integer. With this choice we have τ ∈ Γ0(NN
2
1 ) and τ ≡ ( a ∗

0 d ) (modN).
Thus

fχ1
[γ]k =

G(χ1)

N1

N1∑
ℓ=1

χ1(ℓ)f [ταd2ℓ]k

=
G(χ1)

N1

N1∑
ℓ=1

χ1(ℓ)χ
2
1(d)χ(d)f [αℓ]k

= χχ2
1(γ)fχ1

as desired. Here in the second line we made a change of variable d2ℓ 7→ ℓ which can
be done since (d,N1) = 1. □

Let f and χ1 be as above. Define the L-function and completed L-function
associated to fχ1

by for Re(s) > k
2 + 1

Lf (s, χ1) :=

∞∑
n=1

f̂(n)χ1(n)n
−s

and

Λf (s, χ1) :=

(√
NN2

1

2π

)s

Γ(s)Lf (s, χ1).

We have the following functional equation satisfied Λf (s, χ1).

Theorem 16.3. Assume further f ∈ Sk(Γ0(N), χ) and (N,N1) = 1. Then Λf (s, χ1)
has an analytic continuation to an entire function, is bounded in vertical strips and
satisfies the functional equation

Λf (s, χ1) = ikω(χ1)Λg(k − s, χ̄1),(16.2)

where g = f [wN ]k ∈ Sk(Γ0(N), χ̄) and ω(χ1) := χ(N1)χ1(N)G(χ1)
2N−1

1 .

Proof. Let Ñ = NN2
1 . Since fχ1 ∈ Sk(Γ0(Ñ), χχ2

1) and Λf (s, χ1) = Λfχ1
(s), by

Proposition 13.1 and Remark 13.4 it has the analytic continuation and is bounded
on vertical strips and satisfies the functional equation

Λf (s, χ1) = ikΛfχ1 [wÑ ]k(k − s).

This theorem then follows by the following proposition which asserts fχ1
[wÑ ]k =

ω(χ1)gχ̄1
. Indeed assuming this identity, we have

Λf (s, χ1) = ikω(χ1)Λgχ̄1
(k − s) = ikω(χ1)Λg(s, χ̄1)

as desired. □

Proposition 16.4. Keep the assumptions and notation as in Theorem 16.3. Then
we have

fχ1
[wNN2

1
]k = ω(χ1)gχ̄1

.(16.3)

Proof. Let Ñ = NN2
1 be as above. By Lemma 16.2 and noting that χ1(ℓ) = 0

whenever (ℓ,N1) > 1 we have

fχ1
[wÑ ]k =

G(χ1)

N1

∑
ℓ∈(Z/N1Z)×

χ1(ℓ)f [αℓwÑ ]k,
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where αℓ =
(

1 − ℓ
N1

0 1

)
is above. By direct computation we have for any v ∈ Z

αℓwÑ = N1wN

(
N1 v
ℓN 1+ℓvN

N1

)
αv.

Let τ be the second matrix in the right hand side of the above equation. Take v ∈ Z
so that ℓvN ≡ −1 (mod N1). With this choice of v we have τ ∈ Γ0(N). More-
over, since (N,N1) = 1, this congruence relation gives a one-to-one correspondence
between ℓ ∈ (Z/N1Z)× and v ∈ (Z/N1Z)×. Hence we have

fχ1
[wÑ ]k =

G(χ1)

N1

∑
ℓ∈(Z/N1Z)×

χ̄1(ℓ)f [N1wNταv]k

=
G(χ1)

N1

∑
v∈(Z/N1Z)×

χ1(−vN)g[ταv]k

=
G(χ1)

N1

∑
v∈(Z/N1Z)×

χ1(−vN)χ(N1)g[αv]k

= χ1(−N)χ(N1)
G(χ1)

G(χ̄1)

G(χ̄1)

N1

∑
v∈(Z/N1Z)×

χ1(v)g[αv]k

= χ1(N)χ(N1)G(χ1)
2N−1

1 gχ̄1
.

Here in the last line we used that χ1(−1)G(χ̄1) = G(χ1), |G(χ1)|2 = N1 and applied
Lemma 16.2 for g ∈ Sk(Γ0(N), χ̄). □

17. Weil’s converse theorem

With the new functional equations proved in the previous section via twisting,
we can now state the converse theorem for general levels, generalizing Theorem
14.1.

Theorem 17.1 (Weil). Let {an}n≥0 and {bn}n≥0 be two sequence of complex num-
bers satisfying max{|an|, |bn|} ≪ nα for all n ≥ 1 and for some α > 0. Let
f(z) =

∑∞
n=0 ane(nz) and g(z) =

∑∞
n=0 bne(nz). Let k be a positive integer and let

χ be a Dirichlet character of modulus N ∈ N. Let Lf (s), Lg(s), Λf (s) and Λg(s)
be defined as before. Similarly, for any primitive Dirichlet character χ1 of modulus
N1, let Lf (s, χ1), Lg(s, χ1), Λf (s, χ1) and Λ(g(s, χ1) be given as before. Suppose

(1) Λf (s) and Λg(s) both have meromorphic continuation to the whole s-plane
with

Λf (s) + a0s
−1 + b0i

k(k − s)−1

and

Λg(s) + b0s
−1 + a0i

−k(k − s)−1

both entire and bounded on vertical strips and satisfy the functional equation
(13.6).

(2) Let R be a finite set of primes co-prime to N and attaining every primitive
residue class modulo N . Suppose for any N1 ∈ R and for any primitive
χ1 modulo N1, Λf (s, χ1) and Λg(s, χ̄1) have analytic continuation to en-
tire functions and are bounded on vertical strips and satisfy the functional
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equation (16.2). Then we have f ∈ Mk(Γ0(N), χ) and g = f [wN ]k ∈
Mk(Γ0(N), χ̄).

Below we give a sketch of this theorem. For more details see [Iwa97, Theorem
7.8] or [Bum97, Theorem 1.5.1].

Proof (Sketch). The general idea is to show that assumption (1) implies the relation
g = f [wN ]k while assumption (2) implies the modularity. We first show the above
first assertion. Similar as before we have for Re(s) ≫ 1,

Λf (s) = N
s
2 (2π)−sΓ(s)Lf (s) = N

s
2

∫ ∞

0

(f(iy)− a0)y
s−1 dy.

Then by the Mellin inversion formula we have for σ ≫ 1,

f(iy)− a0 =
1

2πi

∫
(σ)

N− s
2Λf (s)y

−s ds.

Now by the Phragmén-Lindelöf principle we can shift the contour from Re(s) = σ
to Re(s) = k

2 and picking up the simple pole of Λf (s) at s = k to get

f(iy)− a0 =
1

2πi

∫
( k
2 )

N− s
2Λf (s)y

−s ds+ b0i
kN− k

2 y−k.(17.1)

Similarly, we have

g(iy)− b0 =
1

2πi

∫
( k
2 )

N− s
2Λf (s)y

−s ds+ a0i
−kN− k

2 y−k.(17.2)

Starting from (17.1) and applying the functional equation (13.6) we have for any
y > 0,

f(iy)− a0 =
1

2πi

∫
( k
2 )

N− s
2 ikΛg(k − s)y−s ds+ b0i

kN− k
2 y−k

k−s7→s
=

1

2πi

∫
( k
2 )

N− k−s
2 ikΛg(s)y

−(k−s) ds+ b0i
kN− k

2 y−k

=
ikN− k

2 y−k

2πi

∫
( k
2 )

N− s
2Λg(s)(1/Ny)

−s ds+ b0i
kN− k

2 y−k

(17.2)
= ikN− k

2 y−k
(
g(i/Ny)− b0 − a0i

−kN− k
2 (1/Ny)−k

)
+ b0i

kN− k
2 y−k

= ikN− k
2 y−kg(i/Ny)− a0.

This identity, together with an analytic continuation implies the desired identity
g = f [wN ]k.

Now we sketch how assumption (2) implies modularity. First, the condition
max{|an|, |bn|} ≪ nα implies that f, g are holomorphic functions on H (via similar
estimates as in proof of Theorem 14.1). Now using similar arguments as above
one can use assumption (2) to show that relation (16.3) holds for any primitive
Dirichlet character χ1 of modulus N1 wtih N1 ∈ R. Next, use relation (16.3) and
apply identity (16.1) for the pairs (f, χ1) and (g, χ̄1) (wtih χ1 to varying) 16 to

16We proved (16.1) under the assumption that f ∈ Sk(Γ0(N), χ), however inspecting the proof

we see that the only assumption we used for f is the condition that f has a Fourier expansion of

the form f(z) =
∑∞

n=0 f̂(n)e(nz) which is clearly satisfied by the two functions here.
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show g[γ]k = χ̄(γ)g for any

γ =

(
N1 u
Nv N2

)
with N1, N2 ∈ R and u, v ∈ Z such that γ ∈ Γ0(N).(17.3)

Finally, for any γ =
(
a b
c d

)
∈ Γ0(N), there exists N1, N2 ∈ R such that

γ =

(
1 m
0 1

)(
N1 u
Nv N2

)(
1 n
0 1

)
for some m,n ∈ Z and

(
N1 u
Nv N2

)
of the form as in (17.3). From this one can easily

show that g[γ]k = χ̄(γ)g for any γ ∈ Γ0(N). Hence g ∈ Mk(Γ0(N), χ̄). This then
implies that f = (−1)kg[wN ]k ∈ Sk(Γ0(N), χ), finishing the proof □

17.1. An applications of the converse theorem. In this section we illustrate an
application of the converse theorem, namely we construct explicit modular forms
via L-functions. The general strategy is that if for a given L-function L(s) =∑∞

n=1 ann
−s one can verify that it satisfies all the assumptions in the converse

theorem, then one can conclude that the resulting function f(z) :=
∑∞

n=0 ane(nz)
is a modular form with a0 ∈ C determined by the assumption (1) in (17.1).

We first consider the most classical L-function, namely the Riemann zeta func-
tion ζ(s). In view of the Euler’s product formulas (12.1) and (13.7), in order to
construct a Hecke L-function from the Riemann zeta function, one needs two copies
of Riemann zeta functions. More precisely, for a given even integer k ≥ 4, consider
the L-function

L(s) := ζ(s)ζ(s− k + 1),

and its completion

Λ(s) := (2π)−sΓ(s)L(s).

We note that both L(s) and Λ(s) have a moromorphic continuation in view of the
meromorphic continuation of ζ(s). The following proposition confirms that Λ(s)
satisfies the assumptions in Hecke’s converse theorem Theorem 14.1.

Proposition 17.2. The L-function Λ(s) has simple poles at s = 0, k and is holo-
morphic elsewhere. Moreover, it satisfies the functional equation

Λ(s) = ikΛ(k − s).

This proposition follows easily the following lemma which we leave as an exercise.

Exercise 23. Show that

Λ(s) = 2−
k
2−1π− k

2 ξ(s)ξ(s− k + 1)

k/2∏
j=1

(s− 2j + 1),(17.4)

where ξ(s) = π− s
2Γ(s/2)ζ(s) is the completed Riemann zeta function.

We can now give the

Proof of Proposition 17.2. The meoromorphic continuation of Λ(s) follows easily
from the expression (17.4) and the meromorphic continuation of ξ(s). Moreover,
we see from (17.4) that Λ(s) has 4 potential simple poles at s = 0, 1, k − 1, k.
However, the two potential poles s = 1, k − 1 are canceled out by the simple zeros
from the factors s− 1 and s− k + 1 respectively from the product in (17.4). Thus
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Λ(s) only has two simple poles at s = 0 and k as claimed. For the functional
equation we again use (17.4) to get

Λ(k − s) = 2−
k
2−1π− k

2 ξ(k − s)ξ(1− s)

k/2∏
j=1

(k − s− 2j + 1)

= 2−
k
2−1π− k

2 ξ(s− k + 1)ξ(s)(−1)
k
2

k/2∏
i=1

(s− 2i+ 1)

= ikΛ(s),

as desired. Here for the second equality we used the functional equation ξ(1− s) =
ξ(s) and made a change of variable k − 2j + 1 7→ 2i− 1. □

Applying Hecke’s converse theorem Theorem 14.1 (see also Remark 14.6) we
immediately get the following.

Corollary 17.3. Let k ≥ 4 be even and let L(s) and Λ(s) be as above. Let {an}n∈N
be such that L(s) =

∑∞
n=1 ann

−s for Re(s) ≫ 1. Then f(z) :=
∑∞

n=0 ane(nz) ∈
Mk(SL2(Z)), where a0 := −Ress=0 Λ(s).

Remark 17.5. Indeed one can see that the modular form f from the above corollary
is an Eisenstein series: By direct computation we have a0 = −ζ(0)ζ(−k + 1) and
an = σk−1(n) for any n ∈ N. Using the functional equation ξ(s) = ξ(1− s) and the

formula ζ(k) = − (2πi)k

2k! Bk with Bk the k-th Bernoulli number (cf. Homework 1)

one sees that ζ(0) = − 1
2 and ζ(−k + 1) = (−1)k−1Bk

k . Hence a0 = −Bk

2k , implying

that f = −Bk

2k Ek, where Ek is the normalized weight-k Eisenstein series given in
(2.23).

Next, we state (without proof) a theorem constructing modular forms of general
level via Dirichlet L-functions.

Theorem 17.4. For i = 1, 2, let χi be a primitive Dirichlet character of modulus
Ni ∈ N. Let χ = χ1χ2 which is a Dirichlet character of modulus N := N1N2.
Assume N > 1 and let k ∈ N be such that χ(−1) = (−1)k. Consider the L-function

L(s) := L(s, χ1)L(s− k + 1, χ2) =

∞∑
n=1

ann
−s, Re(s) ≫ 1,

where for any n ∈ N, an = an(χ1, χ2) :=
∑

ad=n χ1(a)χ2(d)d
k−1. Let a0 = 0 unless

k = 1 and N2 = 1 in which case we set a0 = 1
2L(0, χ). Define

f(z) = fχ1,χ2
(z) :=

∞∑
n=0

ane(nz).

Then f ∈ Mk(Γ0(N), χ).

18. Rankin-Selberg L-function

In the previous section we have constructed a Hecke L-function (degree two)
from two Riemann zeta functions or Dirichlet L-functions functions (degree one).
In this section, we discuss a construction where one forms a degree four L-function
from two Hecke L-functions and establish some of its analytic properties that one
would expect from an L-function. This construction is due to Rankin [Ran39] and
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Selberg [Sel40] independently, and we mainly follow the treatments in [Bum97,
Chapter 1.6].

18.1. Real analytic Eisenstein series. To describe this construction, we need to
introduce a new object, namely the real analytic Eisenstein series. For simplicity
of presentation throughout this section we assume Γ = SL2(Z). Recall that the
stabilizer subgroup of the cusp ∞ is given by Γ∞ = ⟨± ( 1 1

0 1 )⟩. The real analytic
Eisenstein series is defined by

E(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s, z ∈ H, Re(s) > 1.

Here the assumption Re(s) > 1 is to ensure absolute convergence. Indeed, recall
that there is a bijection between Γ∞\Γ and Z2

pr/± sending Γ∞
(
a b
c d

)
to ±(c, d); see

Lemma 7.1 and Remark 7.1. This implies the following alternative expression of
E(z, s) that

E(z, s) =
1

2

∑
(c,d)∈Z2

pr

ys

|cz + d|2s
,(18.1)

from which one sees that the defining series of E(z, s) is absolutely convergent as
long as Re(s) > 1.

Since left multiplying an element in Γ∞ does change imaginary part of a complex
number, the above definition does not depend on the choice of the coset represen-
tatives of Γ∞\Γ. In particular, we get that E(z, s) is Γ-invariant in the variable
z ∈ H, that is E(γz, s) = E(z, s) for any γ ∈ Γ and z ∈ H. Moreover, unlike the
holomorphic Eisenstein series defined in (2.13), E(z, s) is not holomorphic in z ∈ H,
rather, it is only smooth in the two real variables x, y with z = x+ iy.

The analytic properties of E(z, s) are better described in terms of its completion
which is defined by

E∗(z, s) := ξ(2s)E(z, s) = π−sΓ(s)ζ(2s)E(z, s).

Theorem 18.1. The completed Eisenstein series E∗(z, s) has a meromorphic con-
tinuation to all of s ∈ C which is analytic except with two simple poles at s = 0, 1.
Moreover, it satisfies the functional equation

E∗(z, s) = E∗(z, 1− s)(18.2)

and the growth condition that for any s ̸= 0, 1,

|E∗(z, s)| ≪s y
σ as y → ∞ with σ = max{Re(s), 1−Re(s)}.(18.3)

Proof (sketch). Using similar arguments as in the proof of Theorem 7.6 one can
prove the following Fourier expansion formula for E∗(z, s) that

E∗(z, s) = ξ(2s)ys + ξ(2− 2s)y1−s + 4
√
y

∞∑
n=1

ηs−1/2(n)Ks−1/2(2πny) cos(2πnx),

where ηs−1/2(n) :=
∑

ad=n(
a
d )

s− 1
2 and

Ks(y) :=
1

2

∫ ∞

0

e−y(t+t−1)/2ts
dt

t
, s ∈ C, y > 0

is the K-Bessel function of the second kind; see [Bum97, p. 66-69] for more details.
It is not difficult to see from the definition that both Ks(y) and ηs(n) are invariant
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after chaning s to −s, and Ks(y) has an exponential decay in y in the sense that
for any s ∈ C,

|Ks(y)| ≪s e
−y/2 as y → ∞.

Using this exponential decay we can see that the right hand side of the above
Fourier expansion formula is absolutely convergent for any s ̸= 0, 1. When s = 0, 1
it has a simple pole coming from the terms ξ(2s) and ξ(2 − 2s) respectively. This
proves the meromorphic continuation of E∗(z, s).

Next, using the functional equations ξ(1 − s) = ξ(s), Ks(y) = K−s(y) and
ηs(n) = η−s(n) we see that the right hand side is invariant changing s to 1 − s,
proving (18.2).

The growth condition follows by noting that the contribution of the non constant
terms is uniformly bounded due to the exponential decay of Ks(y). Thus for any
s ̸= 0, 1 we have

|E∗(z, s)| ≪ |ξ(2s)ys|+ |ξ(2− 2s)y1−s|+ 1 ≪s y
σ as y → ∞,

with σ = max{Re(s), 1−Re(s)} as in this theorem. This finishes the proof. □

Remark 18.4. From the above Fourier expansion formula and the integral expression
(12.2) for ξ(s) we see that

Ress=1E
∗(z, s) = Ress=1 ξ(2− 2s) =

1

2
.

Equivalently, we have

Ress=1E(z, s) = Ress=1
1

ξ(2s)
E∗(z, s) =

1

2ξ(2)
=

3

π
=

1

µ(Γ\H)
.

We note that this identity (that Ress=1E(z, s) equals the of the covolume of the
corresponding lattice) is not a coincidence and indeed holds for general lattices17.

18.2. Rankin-Selberg L-function. Assume ϕ : H → C is smooth, Γ-invariant
and has super-polynomial decay at ∞, that is

|ϕ(x+ iy)| ≪ y−M for all M > 0 as y → ∞.(18.5)

Since ϕ is assumed to be Γ-invariant, it has a Fourier expansion

ϕ(x+ iy) =
∑
n∈Z

ϕn(y)e(nx)

with

ϕn(y) :=

∫ 1

0

ϕ(x+ iy)e(−nx) dx.

The 0-th Fourier coefficient ϕ0(y) is usually called the constant term of ϕ. Given ϕ
as above, define

Iϕ(s) := π−sΓ(s)ζ(2s)M(ϕ0)(s− 1),

where M(ϕ0)(s− 1) :=
∫∞
0
ϕ0(y)y

s−1 dy
y is the Mellin transform of ϕ evaluated at

s − 1. Note that since ϕ has super-polynomial decay in y at ∞, so is its constant

17For a general non-uniform lattice Γ < SL2(R), the (real-analytic) Eisenstein series of Γ at a

cusp a is defined by Ea(z, s) :=
∑

γ∈Γa\Γ(Imσ−1
a γz)s, where Γa < Γ is the stabilizer group of a

in Γ and σa is the corresponding scaling matrix defined as before.
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term ϕ0. Thus M(ϕ0)(s − 1) is absolutely convergent as long as Re(s) > 1. We
have the following proposition showing that Iϕ(s) has a meromorphic continuation.

Proposition 18.2. Let ϕ be as above. Then we have for any Re(s) > 1,

Iϕ(s) =

∫
Γ\H

E∗(z, s)ϕ(z) dµ(z),(18.6)

where dµ(z) = dxdy
y2 is the hyperbolic measure (restricted on a fundamental domain

for Γ\H). In particular, Iϕ(s) has a meromorphic continuation to all of s ∈ C with
at most simple poles at s = 0, 1 with

Ress=1 Iϕ(s) =
1

2

∫
Γ\H

ϕ(z) dµ(z).

Moreover, Iϕ(s) satisfies the functional equation Iϕ(1− s) = Iϕ(s).

Proof. The proof uses the unfolding argument which is the essence of the Rankin-
Selberg method. We first note that the in particular parts are easy consequences
of the identity (18.6) together with the properties of the Eisenstein series E∗(z.s)
stated above. For example, assuming (18.6) and using the super-polynomial decay
of ϕ at ∞ and the growth condition (18.3) of E∗(z, s) and taking the standard
fundamental domain (3.3) for Γ\H we see that the integral in (18.6) is absolutely
convergent for any s ̸= 0, 1, proving the meromorphic continuation of Iϕ(s). The
other assertions follow similarly. We thus only prove (18.6). For Re(s) > 1, we can
compute the integral∫

Γ\H
E(z, s)ϕ(z) dµ(z) =

∫
FΓ

∑
γ∈Γ∞\Γ

Im(γz)sϕ(z) dµ(z)

γz 7→z
=

∑
γ∈Γ∞\Γ

∫
γFΓ

Im(z)sϕ(γ−1z) dµ(γ−1z).

Now using the Γ-invariance of ϕ and the hyperbolic measure µ we have∫
Γ\H

E(z, s)ϕ(z) dµ(z) =
∑

γ∈Γ∞\Γ

∫
γFΓ

ysϕ(z) dµ(z)

=

∫
⊔

γ∈Γ∞\Γ γFΓ

ysϕ(x+ iy)
dxdy

y2
.

Here the first equality can be justified by the super-polynomial decay of ϕ in y and
the Γ-invariance of ϕ. The disjoint union

∑
γ∈Γ∞\Γ γFΓ is a fundamental domain

for Γ∞\H which we can take to be {x+ iy ∈ H : 0 ≤ x < 1}. Hence∫
Γ\H

E(z, s)ϕ(z) dµ(z) =

∫ ∞

0

(∫ 1

0

ϕ(x+ iy) dx

)
ys−1 dy

=

∫ ∞

0

ϕ0(y)y
s−2 dy.

Multiplying both sides by ξ(2s) we get (18.6), finishing the proof. □
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Let f, g ∈ Mk with one of them cuspidal. For Re(s) ≫ 1 sufficiently large, the
Rankin-Selberg L-function of f and g is defined by

L(s, f × g) := ζ(2s− 2k + 2)

∞∑
n=1

f̂(n)ĝ(n)n−s,

and its completion is defined by

Λ(s, f × g) := (2π)−sΓ(s)Γ(s− k + 1)L(s, f × g).

We now apply Proposition 18.2 to ϕ(z) := ykf(z)g(z) to deduce the meromorphic
continuation and functional equation of Λ(s, f × g).

Theorem 18.3. Let f, g ∈ Mk with one of them cuspidal. The completed L-
function Λ(s, f × g) has a meromorphic continuation to all of s ∈ C with at most
simple poles at s = k, k − 1. Moreover, it satisfies the functional equation

Λ(s, f × g) = Λ(2k − 1− s, f × g).(18.7)

Proof. Take ϕ(z) = ykf(z)g(z) and as before one can check that ϕ is Γ-invariant.
Since one of f and g is cuspidal, we have ϕ decays exponentially at ∞. Moreover,
writing f and g in Fourier expansion we get

ϕ0(y) =

∞∑
n=0

∞∑
m=0

∫ 1

0

ykf̂(n)ĝ(m)e(nz)e(mz) dx

=

∞∑
n=0

∞∑
m=0

yke−2π(m+n)y f̂(n)ĝ(m)

∫ 1

0

e((n−m)x) dx

=

∞∑
n=1

f̂(n)ĝ(n)yke−4πny,

where for the last equality we used that f̂(0)ĝ(0) = 0. Hence we have for Re(s) > 1,∫ ∞

0

ϕ0(y)y
s−2 dy =

∫ ∞

0

∞∑
n=1

f̂(n)ĝ(n)yk+s−2e−4πny dy

4πny 7→y
=

∞∑
n=1

f̂(n)ĝ(n)

∫ ∞

0

( y

4πn

)k+s−2

e−y dy

4πn

= (4π)−s−k+1Γ(s+ k − 1)

∞∑
n=1

f̂(n)ĝ(n)n−(k+s−1).

Now from the last equation in the proof of Proposition 18.2 we have

Iϕ(s) = ξ(2s)

∫ ∞

0

ϕ0(y)y
s−2 dy

= 4−s−k+1π−2s−k+1Γ(s)Γ(s+ k − 1)ζ(2s)

∞∑
n=1

f̂(n)ĝ(n)n−(k+s−1),

where Iϕ(s) is the meormorphic function defined in (18.6). This shows that

Λ(s, f × g) = π1−kIϕ(s− k + 1),

giving the desired meromorphic continuation of Λ(s, f×g). Moreover, the functional
equation (18.7) also follows from this relation and the functional equation Iϕ(1 −
s) = Iϕ(s) satisfied by Iϕ(s). □
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Remark 18.8. If f and g are further assumed to be normalized Hecke eigen-cusp
forms, the corresponding Rankin-Selberg L-function also has an Euler product for-
mula

L(s, f × g) =
∏
p

2∏
i=1

2∏
j=1

(1− αi(p)βj(p)p
−s)−1, Re(s) ≫ 1.

Here αi(p), βj(p) ∈ C are such that

Lf (s) =
∏
p

(1− α1(p)p
−s)−1(1− α2(p)p

−s)−1,

and

Lg(s) =
∏
p

(1− β1(p)p
−s)−1(1− β2(p)p

−s)−1.

See [Bum97, Theorem 1.6.3] for more details.

19. Quadratic forms, lattices and theta series

A real quadratic form in n variables is a function Q : Rn → R of the form

Q(x) =
∑

1≤i≤j≤n

bijxixj ,

with bij ∈ R. Equivalently, one can use a real symmetric matrix A ∈ Mn(R) to
represent Q. Explicitly, let A = (aij)1≤i,j≤n with

aji = aij =

{
bij if i = j,
1
2bij if 1 ≤ i < j ≤ n.

Then we have Q(x) = xtAx. Here xt denotes the transpose of the column vector
x ∈ Rn. We introduce the following definitions regarding a quadratic form.

Definition 19.1. A quadratic form Q is called

(1) positive definite if Q(x) ≥ 0 for any x ∈ Rn and Q(x) = 0 if and only if
x = 0.

(2) integral if Q(Zn) ⊂ Z.
(3) even if Q(Zn) ⊂ 2Z.

Alternatively, these definitions can be rephrased in terms of the symmetric ma-
trix A. Indeed, a quadratic form Q(x) = xtAx is

(1) positive definite if and only if all eigenvalues of A are positive.
(2) integral if and only if aij ∈ 1

2Z for all 1 ≤ i ̸= j ≤ n and aii ∈ Z for all
1 ≤ i ≤ n.

(3) even if and only if aij ∈ Z for all 1 ≤ i ̸= j ≤ n and aii ∈ 2Z for all
1 ≤ i ≤ n.

Given a positive definite, integral quadratic form Q we are interested in under-
standing what integers that it can represent, that is, for what m ∈ Z there exists
v ∈ Zn such that Q(v) = m. Equivalent, define the counting function

rQ(m) := # {v ∈ Zn : Q(v) = m} ,

then we would like to know when rQ(m) is positive. If such a representation exists,
the next next natural question is to count the number of such representations, i.e.
to find a formula for rQ(m). In the next two sections we study these two questions
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using modular forms. The bridge for this approach is the following theta function
associated to Q

ΘQ(z) :=
∑
v∈Zn

eπiQ(v)z = 1 +

∞∑
m=1

rQ(m)eπimz, z ∈ H.(19.2)

Indeed we will show that ΘQ is a modular form of weight n
2 and the main ingredient

is the Jacobi’s inversion formula (see Theorem 19.4 below). To state this formula,
it is more convenient to represent quadratic forms by lattices.

19.1. Backgrouds on lattices. Quadratic forms can also be defined in terms of
lattices in Rn. A lattice L in Rn is a discrete subgroup with full rank, that is, there
exist w1, . . . , wn ∈ L such that L = Zw1 + · · ·+ Zwn and SpanR(L) = Rn. The set
{w1, . . . , wn} is called a basis of L. Given a lattice L with a basis {w1, . . . , wn},
the Gram matrix of this basis is defined by A = (aij)1≤i,j≤n with aij = wt

iwj , or
equivalently, A = gtg where g = (w1, · · · , wn) is the matrix with the i-th column
given by wi. It is clear that the Gram matrix A is real symmetric and thus defines
a quadratic form

QL(x) = xtAx = xtgtgx = ∥gx∥2.
where ∥ · ∥ is the usual Euclidean norm on Rn. We note that a priori QL also
depends on the choice of a basis of L, however, since we are interested in its values
at integer points and L = gZn, we have

QL(Zn) =
{
∥w∥2 : w ∈ L

}
(19.3)

is independent of the choice of basis, we thus only use the subscript L for this
quadratic form. Moreover, it is easy to see from the definition that QL is positive
definite. On the other hand, the following lemma shows that every positive definite
quadratic form comes from some lattice.

Lemma 19.1. For every positive definite quadratic form Q in n variables, there
exists some lattice L ⊂ Rn such that Q = QL.

Proof of Lemma 19.1. Let A be the real symmetric matrix representing Q, i.e.
Q(x) = xtAx. Since Q is positive definite, the bilinear form ⟨·, ·⟩Q sending (x, y) ∈
Rn ×Rn to xtAy defines an inner product in Rn. Let {u1, . . . , un} be an orthonor-
mal basis of Rn with respect to this inner product, i.e. ⟨ui, uj⟩Q = δij for any
1 ≤ i, j ≤ n. Let g ∈ GLn(R) be such that gui = ei for each 1 ≤ i ≤ n, where
ei ∈ Rn is the vector with the i-th coordinate 1 and 0 elsewhere. Now let L = gZn;
it has a basis w1 = ge1, . . . , wn = gen. Then we have

utiAuj = ⟨ui, uj⟩Q = δij = etiej = (gui)
tguj = utig

tguj , ∀ 1 ≤ i, j ≤ n.

This implies that A = gtg, or equivalently, aij = etig
tgej = wt

iwj for any 1 ≤
i, j ≤ n. Hence A is the Gram matrix of the basis {w1, . . . , wn}, i.e. Q = QL as
desired. □

We introduce several notions regarding a lattice: We say a lattice L ⊂ Rn is

(1) integral (resp. even) if QL is integral (resp. even) as a quadratic form.
(2) unimodular if the volume of its fundamental domain, denoted by vol(Rn/L),

is 1.
(3) self dual if it equals its dual lattice which is defined by

L# :=
{
u ∈ Rn : utw ∈ Z for any w ∈ L

}
.
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Remark 19.4. In view of the relation (19.3), we see that L is even if and only if
∥w∥2 ∈ 2Z for any w ∈ L.

Lemma 19.2. Let L ⊂ Rn be a lattice with a basis {w1, . . . , wn}. Let {u1, . . . , un}
be the dual basis, i.e. utiwj = δij for any 1 ≤ i, j ≤ n. Then L# = Zu1+ · · ·+Zun.
In particular,

vol(Rn/L) vol(Rn/L#) = 1.(19.5)

Proof. Let L′ = Zu1+ · · ·+Zun be the lattice generated by {u1, . . . , un}. We need
to show L′ = L#. The relation L′ ⊂ L# is clear in view of the definition of L#.
For the other containment, take any u ∈ L# and consider the vector

ũ :=

n∑
i=1

(utwi)ui ∈ L′.

Then we have ũtwi = utwi for any 1 ≤ i ≤ n, implying that u = ũ ∈ L′. This proves
that L′ = L#. For the moreover part, let g = (w1, · · · , wn) and g̃ = (u1, · · · , un) so
that L = gZn and L# = g̃Zn. Then the relations utiwj = δij (1 ≤ i, j ≤ n) imply
that g̃g = In, i.e. g̃ = (gt)−1. Thus we have

vol(Rn/L) vol(Rn/L#) = |det(g) det(g̃)| = |det(g) det((gt)−1)| = 1,

finishing the proof. □

In view of the relation (19.5) it is clear that a self dual lattice is also unimodular.
The converse in general is not true. However, when L is even, these two notions
are indeed equivalent.

Lemma 19.3. An even lattice is self dual if and only if it is unimodular.

Proof. One direction is trivial. We only need to show an even, unimodular lattice
is also self dual. Assume L ⊂ Rn is an even, unimodular lattice. Then by (19.3)
we have ∥w∥2 ∈ 2Z for any w ∈ L. In particular, for any u,w ∈ L, we have
∥u∥2, ∥w∥2, ∥u + w∥2 = ∥u∥2 + ∥w∥2 + 2utw are all even, implying that utw ∈ Z.
Since u,w are arbitrarily chosen, by definition of the dual lattice, this implies
L ⊂ L#. But then the assumption that L is unimodular forces L = L#. This
finishes the proof. □

19.2. Jacobi’s inversion formula. Let Q be a positive definite quadratic form
in n variables. In view of Lemma 19.1 we may assume Q = QL for some lattice
L ⊂ Rn. The main goal of this section is to prove Jacobi’s inversion formula for
the theta series ΘQL

defined in (19.2). Below we will use the slightly simplified
notation ΘL for ΘQL

.

Theorem 19.4 (Jacobi). Let L be a lattice in Rn with L# its dual lattice. Then
we have for any z ∈ H,

ΘL(z) =
(−iz)−n

2

vol(Rn/L)
ΘL#(−1/z).(19.6)

Remark 19.7. Here when n is odd, i
n
2 is defined as following: For any nonzero z ∈ C

we choose arg(z) ∈ (−π, π] and define log z := log |z|+ i arg(z) and for any s ∈ C,
define zs := es log z. For instance, following this convention, we have i

1
2 = e

π
4 i while

(−i) 1
2 = e−

π
4 i.
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To prove this theorem, we need the following Poisson summation formula for
lattices.

Proposition 19.5. Let L and L# be as above and let S(Rn) be the space of
Schwartz function on Rn. Then for any f ∈ S(Rn) we have∑

w∈L

f(w) =
1

vol(Rn/L)

∑
u∈L#

f̂(u),(19.8)

where f̂(y) =
∫
Rn f(x)e

−2πixty dx is the Fourier transform of f .

Proof. The case when L = Zn follows from exact same arguments as in section 1.1
(which handle the one dimensional case); we omit the proof. For a general lattice
L = gZn, we have ∑

w∈L

f(w) =
∑
v∈Zn

f(gv) =
∑
v∈Zn

fg(v),

where fg(x) := f(gx) for any x ∈ Rn. By direct computation we have

f̂g(y) =

∫
Rn

fg(x)e
−2πixty dx =

∫
Rn

f(gx)e−2πixty dx(19.9)

gx7→x
=

1

|det(g)|

∫
Rn

f(x)e−2πi(g−1x)ty dx

=
1

vol(Rn/L)

∫
Rn

f(x)e−2πixt(gt)−1y dx

=
1

vol(Rn/L)
f̂((gt)−1y).

Hence applying the Poisson summation formula for the integer lattice and noting
that L# = (gt)−1Zn (see the proof of Lemma 19.2) we get∑

w∈L

f(w) =
∑
v∈Zn

f̂g(v) =
1

vol(Rn/L)

∑
v∈Zn

f̂((gt)−1v)

=
1

vol(Rn/L)

∑
w∈L#

f̂(w),

finishing the proof. □

Remark 19.10. We note that the arguments in section 1.1 indeed imply the following
more general formula that∑

v∈Zn

f(x+ v) =
∑
v∈Zn

f̂(v)e2πiv
tx, ∀ x ∈ Rn,(19.11)

and (19.8) (for the case of L = Zn) follows by taking x = 0.

We can now give the

Proof of Theorem 19.4. First note that in view of the relation (19.3) we have

ΘL(z) =
∑
w∈L

eπi∥w∥2z.

Next, using analytic continuation we may prove (19.6) for z = iy ∈ H. Let f(x) :=

e−π∥x∥2

and for any λ > 0 denote by fλ(x) = f(λx). It is well known that the

Fourier transform of this function equals itself, i.e. f̂ = f . Moreover, applying
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(19.9) (for g = λIn) we have f̂λ(ξ) = λ−nf̂( ξλ ) for any ξ ∈ Rn and λ > 0. Now by
definition

ΘL(iy) =
∑
w∈L

e−π∥w∥2y =
∑
w∈L

f√y(w)
(19.8)
=

1

vol(Rn/L)

∑
w∈L#

f̂√y(w)

=
y−

n
2

vol(Rn/L)

∑
w∈L#

f
(

w√
y

)
=

y−
n
2

vol(Rn/L)

∑
w∈L#

e−π∥w∥2/y

=
(−i× iy)−

n
2

vol(Rn/L)

∑
w∈L#

eπi∥w∥2×(−1/iy) =
(−i× iy)−

n
2

vol(Rn/L)
ΘL#(−1/iy),

finishing the proof. Here for the fourth equality we used the identities that

f̂√y(w) = y−
n
2 f̂
(

w√
y

)
= y−

n
2 f
(

w√
y

)
. □

19.3. Even unimodular lattices. A direct consequence of Jacobi’s inversion for-
mula is that the theta series of an even, unimodular lattice is a modular form with
respect to the modular group.

Corollary 19.6. Suppose L is an even unimodular lattice in Rn and further assume
n ≡ 0 (mod 8), then ΘL ∈ Mn/2(SL2(Z)).

Proof. Using the expression

ΘL(x+ iy) = 1 +
∑

w∈L\{0}

eπi∥w∥2xe−π∥w∥2y,

it is easy to see that the above defining series is absolutely convergent for any
x + iy ∈ H and uniformly convergent on any compact sets in H. Hence it defines
a holomorphic function. Moreover, one can also show that ΘL(∞) = 1. It thus
remains to show that ΘL[T ]k = ΘL and ΘL[S]k = ΘL, where T = ( 1 1

0 1 ) and
S =

(
0 −1
1 0

)
are the two generators of SL2(Z) as before. The first equation is

equivalent to ΘL(z + 1) = ΘL(z) for any z ∈ H which follows easily from the
assumption that L is even. The second equation is just Jacobi’s inversion formula
(19.6) after noting that (−i)n

2 = 1 since n ≡ 0 (mod 8). □

The next proposition shows that the assumption that n ≡ 0 (mod 8) is in fact
redundant.

Proposition 19.7. Suppose L is an even unimodular lattice in Rn, then n ≡
0 (mod 8).

Proof. Let U = TS = ( 1 1
0 1 )

(
0 −1
1 0

)
=
(
1 −1
1 0

)
with T, S as above. Note that U2 =(

0 −1
1 −1

)
and U3 =

(−1 0
0 −1

)
. By Lemma 19.3 L is also self dual. Since L is even we

have ΘL(z + 1) = ΘL(z) for any z ∈ H. Thus

ΘL(Uz) = ΘL(TSz) = ΘL(Sz + 1) = ΘL(Sz) = (−iz)n
2 ΘL(z),

where the last equality is just Jacobi’s inversion formula (19.6). From this and
noting that U3 = −I2 we have for any z ∈ H,

ΘL(z) = ΘL(U
3z) = (−iU2z)

n
2 ΘL(U

2z) = (−iU2z)
n
2 (−iUz)n

2 ΘL(Uz)

= (−iU2z)
n
2 (−iUz)n

2 (−iz)n
2 ΘL(z).
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This implies that

(−iU2z)
n
2 (−iUz)n

2 (−iz)n
2 = 1 ∀ z ∈ H.

By direct computation we have

(−iU2z)
n
2 (−iUz)n

2 (−iz)n
2 = (−i) 3n

2

(
U2z × Uz × z

)n
2

= (−i) 3n
2 ×

(
−1

z − 1
× z − 1

z
× z

)n
2

= i
3n
2 ,

implying that i
3n
2 = 1 which further implies that n ≡ 0 (mod 8). □

The next proposition shows that n ≡ 0 (mod 8) is not just a necessary condition
for the existence of even unimodular lattices, it is also sufficient.

Proposition 19.8. There exists an even unimodular lattice in Rn if and only if
n ≡ 0 (mod 8).

Proof. The direction “⇒” is just Proposition 19.7. For the other direction, we
assume n ≡ 0 (mod 8) and we construct an even unimodular lattice as following:
Let

Fn :=

{
v ∈ Zn :

n∑
i=1

vi ≡ 0 (mod 2)

}
be the set consisting of integer vectors with sum of its entries even. Next, let
δ = ( 12 , · · · ,

1
2 ) ∈ Rn and let En = ⟨δ, Fn⟩ be the group generated by δ and Fn. We

claim that En is an even unimodular lattice. First, note that Fn is kernel of the
group homomorphism form Zn to Z/2Z sending v to

∑n
i=1 vi (mod 2). Hence Fn

is an index 2 subgroup of Zn. Next, using the fact that 2δ ∈ Fn (since n is even)
we see that En is also a lattice in Rn containing Fn as an index 2 subgroup. Hence
vol(Rn/En) = vol(Rn/Zn) = 1, i.e. En is unimodular. Next we show En is even. It
suffices to show ∥w∥2 ∈ 2Z for any w ∈ En. By definition we can write w = v + kδ
for some v ∈ Fn and k ∈ Z. Then we have (noting that x2 ≡ x (mod 2) for any
x ∈ Z)

∥w∥2 = ∥v∥2 + kvt(2δ) + k2∥δ∥2 ≡ (k + 1)
∑
i

vi +
k2n

4
≡ 0 (mod 2),

where for the second congruence equation we used the assumptions that v ∈ Fn

and n ≡ 0 (mod 8) (so that n
4 is even). This finishes the proof. □

We have the following direct corollary regarding the counting function rQ(m) for
quadratic forms coming from an even, unimodular lattice.

Corollary 19.9. Let L be an even unimodular lattice in Rn and let Q = QL be the
quadratic form coming from L. Then we have for any m ∈ N,

rQ(2m) = − 2k

Bk
σk−1(m) +Oϵ(m

k−1
2 +ϵ),

where k = n
2 , Bk is the k-th Bernoulli number and σs(m) =

∑
d|m ds is the s-divisor

function. Moreover, for n = 8 or 16 the above error term does not exist.
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Remark 19.12. For n = 8, one can check that {δ, e1−e2, e2−e3, · · · , e6−e7, e6+e7}
is a basis for E8. The Gram matrix of this basis is

A =



2 0 0 0 0 0 0 1
0 2 −1 0 0 0 0 2
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
1 2 0 0 0 0 −1 2


,

which corresponds to the quadratic form

Q(x) = 2

8∑
i=1

x2i − 2

7∑
i=1

xixi+1 + 2x1x8.

For this quadratic form Corollary 19.9 implies that rQ(2m) = 240σ3(m) (noting
that B4 = − 1

30 .) Similarly, since B8 = − 1
30 we have rQ(2m) = 480σ7(m) for any

quadratic form coming from an even unimodular lattice in dimension 16.

Proof. By Corollary 19.6 we have ΘL ∈ Mk(SL2(Z)) = CEk ⊕ Sk(SL2(Z)) where
Ek is the normalized weight-k Eisenstein series. Hence ΘL = λEk + f for some
λ ∈ C and f ∈ Sk(SL2(Z)). By comparing the constant term in both sides we get
that λ = 1. Noting that rQ(2m) is the m-th Fourier coefficients of ΘL (cf. (19.2))
and using the Fourier expansion of Ek (see (2.23)) we get that

rQ(2m) = − 2k

Bk
σk−1(m) +R(m),

where R(m) is the m-th Fourier coefficient of the cusp form f . The formula then

follows from Deligne’s bound that |R(m)| ≪ϵ m
k−1
2 +ϵ on the Ramanujan’s conjec-

ture. The moreover part is true since for n = 8 or 16, Sk(SL2(Z)) = {0} by the
dimension formula (4.1). □

Finally, we mention that in general even unimodular lattices are not unique.
Indeed, there are 1 (E8), 2 (E16 and E8 ⊕ E8

18) and 24 even unimodular lattices
in dimension 8, 16 and 24 respectively, and the number grows rapidly after di-
mension 24. For instance there are more than 1 billion even unimodular lattices
in dimensional 32; see [Kin03, Corollary 17] and the references therein for more
details.

In the next section we study quadratic forms whose theta series are no longer
modular forms with respect to the modular group. For simplicity of presentation
we do not treat the most general case, instead we consider the most classical case,
namely the sum-of-squares quadratic form.

20. Sum of squares functions

Let n ∈ N and let

Qn(x) = x21 + · · ·+ x2n(20.1)

be the sum-of-n-squares quadratic form. It is a classical question to represent a pos-
itive integer by Qn. For small n it is not always the case that such a representation

18This is the direct sum of two E8 lattices given by E8 ⊕ E8 :=
{
(u, v) ∈ R16 : u, v ∈ E8

}
.
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exists. Indeed, a positive integer m is a sum of two squares if and only if m has the
prime decomposition m = pα1

1 · · · pαk

k with αi even whenever pi ≡ 3 (mod 4) (see
e.g. [HW08, Theorem 366]), while Legendre’s theorem (see e.g. [Shi20]) states that
m is a sum of three squares if and only if m ̸= 4a(8b+7) for some non-negative inte-
gers a, b. Finally, Lagrange’s four-square theorem (see e.g. [HW08, Theorem 369])
confirms that every positive integer is a sum of four squares. This, in particular,
also implies that every positive integer is a sum of n ≥ 4 squares.

In this section we derive explicit formulas for the number of such representations,
(i.e. for the counting function rQn

(m)) for the special case when n ≡ 0 (mod 4). We
note that the other cases are similar but slightly more involved. For simplicity of
notation we abbreviate rQn

(m) and ΘQn
by rn(m) and Θn respectively. As before

we use modular forms and the main ingredient for our approach is the Jacobi’s
inversion formula (19.6).

Proposition 20.1. Assume n ≡ 0 (mod 4) and let k = n
2 . We have Θn ∈ Mk(Γθ)

if n ≡ 0 (mod 8) and Θn ∈ Mk(Γ(2)) if n ≡ 4 (mod 8), where Γθ = ⟨T 2, S⟩ is the
congruence subgroup generated by T 2 and S as discussed in Exercise 6.8.

Proof. The facts that Θn is holomorphic on H and at cusps follow from similar
arguments as in Corollary 19.6. Next, note that Θn(z + 2) = Θn(z) for any z ∈ H,
i.e. Θn[T

2]k = Θn. Moreover, applying Jacobi’s inversion formula (19.6) to L = Zn

we get

Θn(Sz) = (−iz)kΘn(z), ∀ z ∈ H.

When n ≡ 0 (mod 8), k = n
2 ≡ 0 (mod 4) and (−i)k = 1, thus Θn(Sz) = zkΘn(z),

i.e. Θn[S]k = Θn. This implies that Θn ∈ Mk(Γθ).
When n ≡ 4 (mod 8) we have Θn[Sz] = −Θn(z) for any z ∈ H, i.e. Θn[S]k =

−Θn. Then let U = ( 1 0
2 1 ) and note that U = −ST 2S. Thus

Θn[U ]k = Θn[−ST 2S] = −Θn[T
2S]k = −Θn[S]k = Θn.

This shows that Θn is weakly modular with respect to ⟨±I2, T 2, U⟩, which by
Exercise 24 below is the principle congruence subgroup Γ(2). This finishes the
proof. □

Exercise 24. Show that Γ(2) = ⟨±I2, ( 1 2
0 1 ) , (

1 0
2 1 )⟩.

As before we will proceed by writing Θn as a linear combination of functions
from Mk(Γθ) or Mk(Γ(2)) and then compare the Fourier coefficients in both sides.
The main term would come from Eisenstein series. In the next two sections we
first study the Eisenstein series of a principle congruence subgroup Γ(N) and then
specify to the special case when N = 2 where certain things can be simplified.

20.1. Eisenstein series of principle congruence subgroups. Let N ∈ N. Re-
call from Lemma 6.10 that the cusps of Γ(N) are in one-one-one correspondence
with order N elements in (Z/NZ)2. For any integer k ≥ 3 and and any order N
element v ∈ (Z/NZ)2 the weight-k Eisenstein series associated with v is defined by

Gv
k(z) :=

∑
m∈Z2\{0}

m≡v (mod N)

1

(m1z +m2)k
, z ∈ H.(20.2)

The following lemma shows that Gv
k is indeed a weight-k modular form with respect

to Γ(N).
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Lemma 20.2. For any γ ∈ SL2(Z) we have Gv
k[γ]k = Gvγ

k . In particular, Gv
k ∈

Mk(Γ(N)).

Proof. The in particular part follows from the first statement and the fact that
Γ(N) acts trivially on the group (Z/NZ)2. We thus only need to prove the first
statement. For this take γ =

(
a b
c d

)
∈ SL2(Z), we have by definition

Gv
k[γ]k(z) = (cz + d)−k

∑
m∈Z2\{0}

m≡v (mod N)

1

(m1
az+b
cz+d +m2)k

=
∑

m∈Z2\{0}
m≡v (mod N)

1

((m1a+m2c)z + (m1b+m2d))k
.

Making a change of variable n = (n1, n2) := (m1a +m2c,m1b +m2d) and noting
that n = mγ runs over all nonzero integer pairs satisfying n ≡ vγ (mod N) we get

Gv
k[γ]k(z) =

∑
n∈Z2\{0}

n≡vγ (mod N)

1

(n1z + n2)k
= Gvγ

k (z),

as desired. □

Next, we compute the values of Gv
k at cusps. First, using similar computation

as in Lemma 20.2 one can easily compute

Gv
k(∞) := lim

y→∞
Gv

k(iy) =
∑

0=m1≡v1 (mod N)
0̸=m2≡v2 (mod N)

1

mk
2

is exactly the contribution of the terms with m1 = 0. For a general cusp r = γ∞ ∈
Q ∪ {∞} we can use Lemma 20.2 to compute

Gv
k(r) := Gv

k[γ]k(∞) =

{
0 if (vγ)1 ̸≡ 0 (mod N),∑

m≡(vγ)2 (mod N)
1

mk if (vγ)1 ≡ 0 (mod N).

Next, we compute its Fourier expansion (at the cusp ∞). Note that since Γ(N)∞ =
⟨“± ” ( 1 N

0 1 )⟩, Gv
k has the following Fourier expansion

Gv
k(z) =

∞∑
n=0

ck,v(n)e
(
nz
N

)
for some ck,v(n) ∈ C. Since e(nzN ) decays exponentially in Im(z) as Im(z) → ∞,

we see that the constant term ck,v(0) is exactly limy→∞Gv
k(iy) which by defini-

tion is Gv
k(∞). Non-constant Fourier coefficients are computed in the following

proposition.

Proposition 20.3. We have for any n ≥ 1,

ck,v(n) = N−kCk

 ∑
d|n

n
d ≡v1 (mod N)

dk−1e
(
dv2
N

)
+ (−1)k

∑
d|n

n
d ≡−v1 (mod N)

dk−1e
(−dv2

N

) ,

where Ck = (−2πi)k

(k−1)! .
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Proof. As mentioned above ck,v(0) = Gv
k(∞) is the sum over all terms withm1 = 0.

Thus we have

Gv
k(z) = ck,v(0) +

∑
m1>0

m≡v (mod N)

1

(m1z +m2)k
+

∑
m1<0

m≡v (mod N)

1

(m1z +m2)k

= ck,v(0) +
∑
m1>0

m≡v (mod N)

1

(m1z +m2)k
+ (−1)k

∑
m1>0

m≡−v (mod N)

1

(m1z +m2)k

=: ck,v(0) + I + II.

Here for the second equality we made a change of variable m 7→ −m. Now to
compute I we rewrite m2 as m2 = v2+ ℓN with ℓ ∈ Z and apply the identity (2.19)
to get that

∑
m2≡v2 (mod N)

1

(m1z +m2)k
=
∑
ℓ∈Z

1

Nk(m1z+v2
N + ℓ)k

= N−kCk

∞∑
d=1

dk−1e

(
d
m1z + v2

N

)
.

Hence

I = N−kCk

∑
m1≥1

m1≡v1 (mod N)

∞∑
d=1

dk−1e

(
d
m1z + v2

N

)

dm1 7→n
= N−kCk

∞∑
n=1

∑
d|n

n
d ≡v1 (mod N)

dk−1e

(
dv2
N

)
e
(nz
N

)
.

The formula for II is identical except with −v in place of v. Plugging these formulas
for I and II into the previous expression for Gv

k we get the desired formula for
ck,v(n). □

20.2. Specifying to N = 2. We now specify our discussion to the case when
N = 2 where the formulas can be further simplified mainly due to the simple
fact that x ≡ −x (mod 2) for any x ∈ Z. First note that since −I2 ∈ Γ(2),
Mk(Γ(2)) = {0} if k is odd, we thus assume k ≥ 4 is even. Note that there
are three vectors in (Z/2Z)2 with order 2, namely (1, 0), (0, 1) and (1, 1). They
correspond to cusps ∞, 0 = S∞ and 1 = TS∞ respectively. For the values at

cusps we have G
(1,0)
k (∞) = 0,

G
(1,0)
k (0) = G

(1,0)
k [S]k(∞) = G

(1,0)S
k (∞) = G

(0,1)
k (∞)

=
∑

m odd

1

mk
= 2(1− 2−k)ζ(k),
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and G
(1,0)
k (1) = G

(1,0)TS
k (∞) = G

(1,1)
k (∞) = 0. The computations for the other two

Eisenstein series are similar and are summarized in the following chart.

∞ 0 1

E
(1,0)
k 0 1 0

E
(0,1)
k 1 0 0

E
(1,1)
k 0 0 1

(20.3)

Here Ev
k := 1

2(1−2−k)ζ(k)
Gv

k is the normalized Eisenstein series at v.

Next, for the non-constant Fourier coefficients, since v1 ≡ −v1 (mod 2), k is even
and e

(
dv2

N

)
= e

(−dv2
N

)
= (−1)dv2 we have for n ̸= 0,

ck,v(n) = 21−kCk

∑
d|n

n
d ≡v1 (mod N)

(−1)dv2dk−1 =: 21−kCkσ
v
k−1(n).

Explicitly, we have

σ
(1,0)
k−1 (n) =

∑
d|n

n
d odd

dk−1, σ
(0,1)
k−1 (n) =

∑
d|n

n
d even

(−1)ddk−1,

and

σ
(1,1)
k−1 (n) =

∑
d|n

n
d odd

(−1)ddk−1.

Remark 20.4. For later reference we note that σ
(1,0)
k−1 (n) and σ

(0,1)
k−1 (n) have the

following alternative expressions which can be checked directly:

σ
(1,0)
k−1 (n) =

∑
d|n

n
d odd

(−1)n+ddk−1 and σ
(0,1)
k−1 (n) =

∑
d|n

n
d even

(−1)n+ddk−1.(20.5)

20.3. Explicit formulas for rn(m). With the results on Eisenstein series for Γ(2)
obtained in the previous two sections, we derive in this section explicit formulas
for the counting function rn(m). We first treat the case when n ≡ 0 (mod 8).
Recall that Θn ∈ Mk(Γθ) with k = n

2 and Γθ = ⟨T 2, S⟩. Recall Γθ has two cusps
represented by ∞ and 1 (see Example 6.8 and case (2) of Example 6.11) and thus
Mk(Γθ) contains two linearly independent Eisenstein series. We can use Eisenstein
series of Γ(2) to represent these two Eisenstein series.

Lemma 20.4. Assume n ≡ 0 (mod 8) and let k = n
2 . Then we have G

(1,1)
k , G

(1,0)
k +

G
(0,1)
k ∈ Mk(Γθ).

Proof. It suffices to verify F [S]k = F for F = G
(1,1)
k or G

(1,0)
k + G

(0,1)
k . For F =

G
(1,1)
k we have

G
(1,1)
k [S]k = G

(1,1)S
k = G

(1,1)
k ,

as desired. Here for the first equality we applied Lemma 20.2 and for last equality

we used that (1, 1)S = (1,−1) ≡ (1, 1) (mod 2). Similarly, for F = G
(1,0)
k +G

(0,1)
k
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we have (
G

(1,0)
k +G

(0,1)
k

)
[S]k = G

(1,0)S
k +G

(0,1)S
k = G

(0,1)
k +G

(1,0)
k ,

as desired. This finishes the proof. □

Now in view of this lemma and Proposition 20.1 we have that for n ≡ 0 (mod 8),

Θn = λ1G
(1,1)
k + λ2

(
G

(1,0)
k +G

(0,1)
k

)
+ f

for some λ1, λ2 ∈ C and f ∈ Sk(Γθ). The next goal is to determine the coefficients
λ1 and λ2. Since we have computed the values of these Eisenstein series at cusps,
it suffices to compute the values of Θn at cusps. For the cusp ∞, it is easy to see
that

Θn(∞) = lim
y→∞

Θn(iy) = 1.

We thus only need to compute Θn(1).

Lemma 20.5. Assume n ≡ 0 (mod 4) we have Θn(1) = 0.

Proof. Since 1 = TS∞, by definition Θn(1) = Θn[TS]k(∞) and (noting that TS =(
1 −1
1 0

)
)

Θn[TS]k(z) = z−kΘn

(
1− 1

z

)
= z−k

∑
v∈Zn

eπi∥v∥
2(1− 1

z )

= z−k
∑
v∈Zn

e−
πi∥v∥2

z +2πivtδ

where δ = ( 12 , · · · ,
1
2 ) ∈ Rn and for the last equality we used that ∥v∥2 ≡

∑n
i=1 vi =

2vtδ (mod 2) for any v ∈ Zn. Plugging in z = iy we get

Θn[TS]k(iy) = (iy)−k
∑
v∈Zn

e−
π∥v∥2

y +2πivtδ.

Let f(x) = e−π∥x∥2

and apply the generalized Poisson summation formula (19.11)
for f√y we get for any x ∈ Rn,∑

v∈Zn

f√y(x+ v) =
∑
v∈Zn

f̂√y(v)e
2πivtx

= y−k
∑
v∈Zn

f
(

v√
y

)
e2πiv

tx

= y−k
∑
v∈Zn

e−
π∥v∥2

y +2πivtx,

where for the second equality we used that f̂√y(x) = y−kf̂( x√
y ) = y−kf( x√

y ). Hence

taking x = δ we get

Θn[TS]k(iy) = i−k
∑
v∈Zn

f√y(δ + v) = i−k
∑
v∈Zn

e−π∥δ+v∥2y.

Taking y → ∞ one can show that the above rightmost sum vanishes, implying that
Θn(1) = 0. This concludes the proof. □

We can now determine the coefficients λ1 and λ2 to compute rn(m).
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Theorem 20.6. Assume n ≡ 0 (mod 8). Then for any m ∈ N,

rn(m) =
−2k

(2k − 1)Bk

∑
d|m

(−1)m+ddk−1 +O(m
k
2 ),(20.6)

where Bk is the k-th Bernoulli number.

Proof. In view of the chart (20.3) and the computations that Θn(∞) = 1 and
Θn(1) = 0 we see that

Θn =
1

2(1− 2−k)ζ(k)

(
G

(1,0)
k +G

(0,1)
k

)
+ f

for some f ∈ Sk(Γθ). Taking the m-th Fourier coefficient in both sides we get

rn(m) =
21−kCk

2(1− 2−k)ζ(k)

(
σ
(1,0)
k−1 (m) + σ

(0,1)
k−1 (m)

)
+R(m)

where Ck = (−2πi)k

(k−1)! and R(m) is the m-th Fourier coefficient of the cusp form f .

Using the formula ζ(k) = − (2πi)k

2k! Bk (cf. Homework 1) we get

21−kCk

2(1− 2−k)ζ(k)
=

−2k

(2k − 1)Bk
for even k ≥ 2.(20.7)

Moreover, using the alternative expression (20.5) for σ
(1,0)
k−1 (m) and σ

(0,1)
k−1 (m) we get

σ
(1,0)
k−1 (m) + σ

(0,1)
k−1 (m) =

∑
d|m

(−1)m+ddk−1.

Finally we can finish the proof by plugging all these terms into the above expression
for rn(m) and applying Hecke’s bound Proposition 8.10 on Fourier coefficients of

cusp forms to get |R(m)| ≪ m
k
2 . □

Remark 20.8. When n = 8 one can show using the pole/zero theorem Theorem 4.3
that S4(Γθ) = {0}. This implies that (using also that B4 = − 1

30 )

r8(m) = 16
∑
d|m

(−1)m+dd3.

Next, we treat the case when n ≡ 4 (mod 8). Recall from Proposition 20.1 that
in this case Θn ∈ Mk(Γ(2)) with k = n

2 as before. The case when n = 4 (i.e. when
k = 2) is a little different since the construction of Eisenstein series discussed in
the previous section is no longer valid. (Recall that we need the weight parameter
k to be greater than 2 to ensure absolute convergence.) We thus treat this case
separately later. For now we assume n ≥ 12 and in this case we similarly have

Θn = λ1G
(1,1)
k + λ2G

(1,0)
k + λ3G

(0,1)
k + f

for some λ1, λ2, λ3 ∈ C and f ∈ Sk(Γ(2)). To determine these coefficients we need
to evaluate values of Θn at the three cusps of Γ(2) which can be represented by
∞, 0, 1 respectively. We similarly have Θn(∞) = 1 and Θn(1) = 0 (cf. Proposition
20.5). It thus remains to compute Θn(0). For this we note that Jacobi’s inversion
formula implies that in this case (noting that ik = −1) Θn[S]k = −Θn and hence

Θn(0) = Θn[S]k(∞) = −Θn(∞) = −1.

We can then determine these coefficients to give the following formula for rn(m).
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Theorem 20.7. Assume n ≡ 4 (mod 8) with n ≥ 12. Then we have

rn(m) =
2k

(2k − 1)Bk
(−1)m−1

∑
d|m

(−1)d+
m
d dk−1 +O(m

k
2 ).

Proof. Comparing the chart (20.3) and the above values of Θn at cusps, we get
that

Θn =
1

2(1− 2−k)ζ(k)

(
G

(0,1)
k −G

(1,0)
k

)
+ f

with f ∈ Sk(Γ(2)). Taking the m-th Fourier coefficient and applying Hecke’s bound
on the Fourier coefficient of f and the identity (20.7) we get

rn(m) =
−2k

(2k − 1)Bk

(
σ
(0,1)
k−1 (m)− σ

(1,0)
k−1 (m)

)
+O(m

k
2 ).

Finally we can apply (20.5) to get

σ
(0,1)
k−1 (m)− σ

(1,0)
k−1 (m) =

∑
d|m

m
d even

(−1)m+ddk−1 −
∑
d|m

m
d odd

(−1)m+ddk−1

= (−1)m
∑
d|m

m
d even

(−1)d+
m
d dk−1 +

∑
d|m

m
d odd

(−1)d+
m
d dk−1

= (−1)m
∑
d|m

(−1)d+
m
d dk−1.

This finishes the proof. □

Finally we treat the case when n = 4. In this case Θn ∈ M2(Γ(2)). For this
we need more backgrounds on weight-2 Eisenstein series. We refer the reader to
[DS05, Chapter 4.6] for more details and here we only give a sketch of the necessary
ingredients to compute r4(m). As mentioned before the problem is that the defining
series for k = 2 in (20.2) is no longer absolutely convergent. Instead we define Gv̄

2

with v̄ ∈ (Z/NZ)2 of order N by fixing the order of summation as following:

Gv̄
2(z) :=

∑
m1∈Z

m1≡v1 (mod N)

∑
m2≡v2 (mod N)
m2 ̸=0 if m1 = 0

1

(m1z +m2)2
, z ∈ H.

Then inspecting the proof of the Fourier expansion in sections 20.1 and 20.2 we see
that Gv

2 shares the same Fourier expansion formula as Gv
k for k ≥ 3. However, due

the the lack of absolute convergence Gv
2 no longer satisfies the conclusion in Lemma

20.2, instead it satisfies the following transformation rule that

F [γ]2 = F, ∀ γ ∈ Γ(N),

where F (z) := Gv
2(z) − π

N2Imz . This function F is however not holomorphic any-
more, to resolve this problem we consider differences of Eisenstein series. Indeed,
for any two v, v′ ∈ (Z/NZ)2 of order N , the difference

Gv
2(z)−Gv′

2 (z) =
(
Gv

2(z)−
π

N2Imz

)
−
(
Gv′

2 (z)− π

N2Imz

)
satisfies the same transformation rule as F , while is still holomorphic. Specifying
to N = 2 we have the following more explicit description of the space M2(Γ(2));
see [DS05, p. 108 and Theorem 4.6.1].
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Theorem 20.8. We have M2(Γ(2)) = SpanC

{
G

(0,1)
2 −G

(1,0)
2 , G

(1,0)
2 −G

(1,1)
2

}
.

This, together with our previous computations of values of Θn and Eisenstein
series at cusps implies that

Θ4 =
1

2(1− 2−k)ζ(k)

(
G

(0,1)
k −G

(1,0)
k

)
from which we can derive the famous Jacobi’s four-squares formula.

Theorem 20.9 (Jacobi). We have for any m ∈ N,

r4(m) = 8
∑
d|m
4∤d

d.

Proof. By the same arguments as above and using Theorem 20.8 we have

Θ4 =
1

2(1− 2−2)ζ(2)

(
G

(0,1)
2 −G

(1,0)
2

)
,

which implies that (noting also that B2 = 1
6 )

r4(m) = 8(−1)m−1
∑
d|m

(−1)d+
m
d d.

If m ̸≡ 0 (mod 4) (so that the condition 4 ∤ d for any divisor d | m is automatically
satisfied) one can easily check that

r4(m) = 8(−1)m−1
∑
d|m

(−1)d+
m
d d = 8

∑
d|m

d = 8
∑
d|m
4∤d

d.

We thus assume m ≡ 0 (mod 4). For such m we can write it as m = 2αm0 with
α ≥ 2 andm0 odd. Then every divisor d | m is of the form d = 2βd0 with 0 ≤ β ≤ α
and d0 | m0. We then have

r4(m) = −8

−
∑
d0|m0

d0 +

α−1∑
β=1

∑
d0|m0

2βd0 −
∑
d0|m0

2αd0


= 8 (2α − (2α − 2) + 1)

∑
d0|m0

d0 = 24
∑
d0|m0

d0,

while

8
∑
d|m
4∤d

d = 8

1∑
β=0

∑
d0|m0

2βd0 = 24
∑
d0|m0

d0,

showing that

r4(m) = 8
∑
d|m
4∤d

d,

as desired. □
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21. Distribution of integral points on spheres

In view of the counting formula (20.6) we know that when n ≡ 0 (mod 8) the
number of integral points on the sphere {x ∈ Rn : ∥x∥2 = m} increases to ∞ as
m → ∞. In this section we study the distribution of these integral points. More
precisely, we project these points onto the unit sphere Sn−1 := {x ∈ Rn : ∥x∥ = 1}
and then study the distribution of these projected points on Sn−1. For this, for
any m ∈ N define

Am :=
{

v√
m

: v ∈ Zn, ∥v∥2 = m
}
⊂ Sn−1.(21.1)

We will show that {Am}m∈N become equidistributed on Sn−1 as m → ∞, which
roughly speaking says that these point sets become more and more evenly dis-
tributed on Sn−1. To state the main result, we need to introduce some more
definitions.

Definition 21.2. Let (X,B, µ) be a probability space with X a topological space,
B the σ-algebra of Borel sets and µ a probability Borel measure on X. Let Cc(X) be
the space of compactly supported continuous functions on X. Given a sequence of
finite point sets {Am}m∈N of X, we say {Am}m∈N equidistribute on X with respect
to µ if for any f ∈ Cc(X),

1

#Am

∑
x∈Am

f(x) −→
∫
X

f dµ as m→ ∞.(21.3)

Remark 21.4. Note that if f = χB is the indicator function of some Borel set
B ⊂ X with finite measure, we have∑

x∈Am

f(x) = #(Am ∩B).

Using an approximation argument one can replace the above continuous test func-
tions by indicator functions to show that {Am}m∈N equidistribute onX with respect
to µ if and only if for any Borel set B ⊂ X with boundary of measure zero

#(Am ∩B)

#Am
−→ µ(B) as m→ ∞.

So intuitively equidistribution means that asymptotically the number of points of
Am inside any fixed “nice” set is proportional to the measure (or mass) of this
set. In practice in order to prove equidistribution one usually uses the following
equivalent statement which also follows from an approximation argument: The sets
{Am}m∈N equidistribute on X with respect to µ if and only if (21.3) holds for any
f from a dense subset of Cc(X).

As can be seen from the above definition, in order to talk about equidistribution
one needs a measure on Sn−1 to begin with. There is a natural probability measure
(called spherical measure) on Sn−1 which is characterized by the property of beign
rotation-invariant.

Definition 21.5. Let η : R≥0 → R be a smooth, compactly supported non-negative
function satisfying

∫
Rn η(∥x∥2) dx = 1. Let σn be the measure on Sn−1 defined

such that for any f ∈ C(Sn−1),∫
Sn−1

f(x) dσn(x) :=

∫
Rn

η(∥x∥2)f
(

x
∥x∥

)
dx.
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Lemma 21.1. The measure σn is a rotation-invariant probability measure on Sn−1.

Proof. The fact that σn is a probability measure comes from the assumption that∫
Rn η(∥x∥2) dx = 1. We thus only need to show it is rotation-invariant. Note
that rotations in Rn (with respect to the origin) are parameterized by the special
orthogonal group

SOn(R) :=
{
g ∈ SLn(R) : gtg = In

}
.

We thus need to show∫
Sn−1

f(gx) dσn(x) =

∫
Sn−1

f(x) dσn(x)

for any f ∈ C(Sn−1) and any g ∈ SOn(R). For this by definition∫
Sn−1

f(gx) dσn(x) =

∫
Rn

η(∥x∥2)f
(
( gx
∥gx∥

)
dx

=

∫
Rn

η(∥x∥2)f
(

x
∥x∥

)
dx

=

∫
Sn−1

f(x) dσn(x),

as desired. Here for the second equality we made a change of variable gx 7→ x and
used the facts that g ∈ SOn(R) preserves ∥ · ∥ and the Lebesgue measure. □

Remark 21.6. Although our definition of σn depends on the choice of the function
η, the defining properties of σn that it being rotation-invariant and a probabil-
ity measure uniquely determine σn. Indeed, we have the following more intrinsic
description of σn that for any Borel set A ⊂ Sn−1,

σn(A) =
Leb(Ã)

Leb(B1)
,

where Leb is the usual Lebesgue measure on Rn, B1 ⊂ Rn is the unit ball centered
at origin and Ã := {tx : 0 ≤ x ≤ 1, x ∈ A}. Note also that σn naturally gives an
inner product on the function space C(Sn−1), namely, for any f, g ∈ C(Sn−1) we
can define ⟨f, g⟩ :=

∫
Sn−1 fg dσn.

We can now state the main result of this section.

Theorem 21.2. Assume n ≡ 0 (mod 8). The point sets {Am}m∈N with Am ⊂ Sn−1

given as in (21.1) become equidistributed on Sn−1 with respect to σn as m→ ∞.

The remaining of this section is devoted to proving this theorem.

21.1. Harmonic analysis on spheres. In this section we collect some results
from spherical harmonic analysis which are necessary for our proof to Theorem
21.2. The main reference is the online note by Garrett [Gar14]. Let

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n

be the usual Laplace operator on Rn. A function f on Rn is called harmonic
if it is twice continuously differentiable in all variables and is annihilated by the
Laplace operator, that is, ∆f = 0. Let C[x] be the polynomial ring in variables x =
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(x1, . . . , xn), and for any d ≥ 0 let C(d)[x] :=
{
f ∈ C[x] : f(λx) = λdf(x) ∀ λ ∈ C

}
be the subspace of homogeneous polynomials of degree d. Let

Hd :=
{
f ∈ C(d)[x] : ∆f = 0

}
be the subspace of harmonic homogeneous polynomials of degree d and let

Hd := {f |Sn−1 : f ∈ Hd}

be the restriction of functions in Hd to Sn−1. Elements in Hd are usually called
spherical harmonics. The main goal of this section is to prove the following theorem
regarding Hd.

Theorem 21.3. The subspace ⊕d≥0Hd is dense in C(Sn−1). Moreover, ⟨Hd,Hd′⟩ =
0 whenever d ̸= d′.

We first prove the first statement of this theorem. Define a pairing

C[x]× C[x] → C, (P,Q) 7→
(
Q(∂)P (x)

) ∣∣
x=0

,

where Q(∂) is Q(x) but with x = (x1, · · · , xn) replaced by ( ∂
∂x1

, · · · , ∂
∂xn

) and

Q(∂) is its complex conjugate. For instance, if Q(x) = x21 + 2x1x2 − 3x23, then

Q(∂) = ∂2

∂x2
1
+ 2 ∂

∂x1

∂
∂x2

− 3 ∂2

∂x2
3
. We list a few properties of this pairing.

Proposition 21.4. Let (·, ·) be the paring as above.

(1) (·, ·) is a Hermitian form, that is for any λ1, λ2 ∈ C, P1, P2, Q1, Q2 ∈ C[x],
(λ1P1 + λ2P2, Q) = λ1(P1, Q) + λ2(P2, Q)

and
(P, λ1Q1 + λ2Q2) = λ1(P,Q1) + λ2(P,Q2).

(2) For any P,Q ∈ C[x]

(∆P,Q) = (P, ∥x∥2Q).

(3) (P,Q) = 0 whenever P,Q are two homogeneous polynomials of different
degrees.

(4) For any (a1, · · · , an), (b1, · · · , bn) ∈ Z≥0 with
∑n

i=1 ai =
∑n

i=1 bi we have

(xa1
1 · · ·xan

n , xb11 · · ·xbnn ) =

{
a1! · · · an! if (a1, . . . , an) = (b1, . . . , bn),
0 otherwise.

In particular, (·, ·) is positive definite on the subspace C(d)[x].

Proof. (1) can be checked directly. (2) is true since by definition

(P, ∥x∥2Q) = ∥x∥2Q(∂)P (x)
∣∣
x=0

= ∆Q(∂)P (x)
∣∣
x=0

= Q(∂)∆P (x)
∣∣
x=0

= (∆P,Q).

For (3), suppose deg(P ) > deg(Q), then Q(∂)P (x) is a homogeneous polynomial
of degree deg(P ) − deg(Q) and thus its evaluation at 0 vanishes. On the other
hand if deg(P ) < deg(Q), then Q(∂)P (x) = 0. In particular its evaluation at 0
also vanishes. For (4) the case when (a1, . . . , an) = (b1, . . . , bn) follows from direct
computation. If (a1, . . . , an) ̸= (b1, . . . , bn), since

∑n
i=1 ai =

∑n
i=1 bi, there exists

some 1 ≤ i ≤ n such that bi > ai. Then by direct computation ∂bi

∂x
bi
i

(xa1
1 · · ·xan

n ) = 0

implying that (xa1
1 · · ·xan

n , xb11 · · ·xbnn ) = 0. The in particular part follows since the
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above assertion implies that {xa1
1 · · ·xan

n : ai ≥ 0,
∑

i ai = d} is an orthogonal basis
with respect to (·, ·) and (v, v) > 0 for any element v from this basis. □

Corollary 21.5. For any d ≥ 2, the map ∆ : C(d)[x] → C(d−2)[x] is surjective.
Moreover, (f, ∥x∥2h) = 0 for any f ∈ Hd and h ∈ C(d−2)[x].

Proof. For the first half, since (·, ·) is positive definite on C(d)[x], it suffices to prove
the statement that for any h ∈ C(d−2)[x], (∆f, h) = 0 for any f ∈ C(d)[x] implies
that h = 0. This is true since by (2) of Proposition 21.4 we have

(f, ∥x∥2h) = (∆f, h) = 0, ∀ f ∈ C(d)[x].

Since (·, ·) is positive definite on C(d)[x], the above condition implies that ∥x∥2h = 0
which then implies that h = 0. This proves the first half of this corollary. The sec-
ond half follows since for for f ∈ Hd and h ∈ C(d−2)[x], again by (2) of Proposition
21.4 (f, ∥x∥2h) = (∆f, h) = (0, h) = 0. □

Corollary 21.6. For any d ≥ 0, if d is even then C(d)[x] = Hd ⊕ ∥x∥2Hd−2 ⊕
· · ·⊕ ∥x∥dH0, while if d is odd then C(d)[x] = Hd⊕∥x∥2Hd−2⊕ · · ·⊕ ∥x∥d−1H1. In
particular,

C[x]
∣∣
Sn−1 =

⊕
d≥0

Hd.(21.7)

Proof. For the first half, by Corollary 21.5 we have (Hd, ∥x∥2C(d−2)[x]) = 0 and
dimHd + dimC(d−2)[x] = dimC(d)[x] (since ∆ : C(d)[x] → C(d−2)[x] is surjective
with kernel being Hd). These two conditions together with the fact that (·, ·) is
positive definite on C(d)[x] imply that

C(d)[x] = Hd ⊕ ∥x∥2C(d−2)[x].(21.8)

Then the desired decomposition of C(d)[x] follows by applying (21.8) repeatedly. For
the in particular part we need to show for any polynomial P , there exists fl ∈ Hl

for finitely many l ≥ 0 such that P |Sn−1 =
∑

l fl. Without loss of generality we
may assume f is homogeneous of degree d for some d ≥ 0. Then by the first half
we have

P = Pd + ∥x∥2Pd−2 + · · ·

with Pl ∈ Hl. Restricting to Sn−1 and noting that ∥x∥2 = 1 for x ∈ Sn−1 we get

P |Sn−1 = fd + fd−2 + · · · ,

where fl := Pl|Sn−1 ∈ Hl. This finishes the proof. □

Remark 21.9. From the above proof we see that dimHd = dimC(d)[x]−dimC(d−2)[x]
where the latter two can be easily computed. Indeed one can show dimC(d)[x] =(
n+d−1
n−1

)
implying that dimHd =

(
n+d−1
n−1

)
−
(
n+d−3
n−1

)
.

Remark 21.10. Finally we give a more precise description of functions in Hd. First
H0 = C is just the space of constant functions, and H1 = C(1)[x] is the whole
su bspace of linear polynomials (since ∆ annihilates any linear polynomials). For
d ≥ 2, we state without proof that Hd is spanned by functions of the form Pu(x) :=
(utx)d with u ∈ Cn such that ∥u∥2 = 0. It is easy to see that any function of this
form is an element in Hd. However the other direction is nontrivial and we refer
the reader to [Iwa97, Theorem 9.1].
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We can now prove the first half of Theorem 21.3.

(Sketch). By the Weierstrauss approximation theorem (see e.g. [Gar14, Appendix])
C[x]|Sn−1 is dense in the function space C(Sn−1), but the former set is just ⊕d≥0Hd

by Corollary 21.6. □

Next, we prove the the second half of (21.3). For this we introduce the Laplace
operator on Sn−1. To define this operator, it suffices to define its action on smooth
functions.

Definition 21.11. The spherical Laplace operator on Sn−1, denoted by ∆S , is
defined such that for any f ∈ C∞(Sn−1),

∆Sf := (∆F )
∣∣
Sn−1 ,

where F (x) := f
(

x
∥x∥

)
for any x ∈ Rn \ {0}.

Recall from Remark 21.6 that we have introduced an inner product structure on
C∞(Sn−1), the space of smooth functions on Sn−1, that for any f, g ∈ C∞(Sn−1),
⟨f, g⟩ =

∫
Sn−1 fg dσn. The following proposition shows that ∆S is self-adjoint and

non-positive with respect to this inner product.

Proposition 21.7. For any f, g ∈ C∞(Sn−1) we have

⟨∆Sf, g⟩ = ⟨f,∆Sg⟩,(21.12)

and

⟨∆Sf, f⟩ ≤ 0(21.13)

with the equality holds if and only if f is a constant.

Proof. Let F (x) := f(x/∥x∥) and G(x) := g(x/∥x∥). Abbreviate r := ∥x∥ then by
definition

⟨∆Sf, g⟩ =
∫
Rn

η(r2)(∆F ) (x/r)G (x/r) dx,

where η is the function as fixed in Definition 21.5. Note that F (tx) = F (x) and
G(tx) = G(x) for any t > 0. Applying ∆ to both sides of the equation F (tx) = F (x)
we get

t2(∆F )(tx) = ∆F (x).

Taking t = 1/r we get (∆F ) (x/r) = r2∆F (x), implying that

⟨∆Sf, g⟩ =
∫
Rn

η(r2)r2(∆F )(x)G(x) dx.

Now by integration by parts and noting that η is compactly supported we get (with
δ(r2) := r2η(r2))

⟨∆Sf, g⟩ = −
∫
Rn

n∑
j=1

Fj(x)
∂

∂xj

(
δ(r2)G(x)

)
dx

= −
∫
Rn

n∑
j=1

Fj(x)
(
2xjδ

′(r2)G(x) + δ(r2)Gj(x)
)
dx.
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Since F (tx) = F (x) for any t > 0 and x ∈ Rn \ {0}, differentiating both sides with
respect to t gives

n∑
j=1

xjFj(tx) = 0, ∀ t > 0.

Plugging this identity (with t = 1) to the previous expression for ⟨∆Sf, g⟩ we get

⟨∆Sf, g⟩ = −
∫
Rn

n∑
j=1

Fj(x)δ(r
2)Gj(x) dx.

The above expression for ⟨∆Sf, g⟩ is symmetric in F and G, giving (21.12). For
(21.13) taking g = f (so that F = G) and we see from the above equation that

⟨∆Sf, f⟩ = −
∫
Rn

n∑
j=1

|Fj(x)|2δ(r2) dx ≤ 0

with the equality holds if and only if Fj = 0 for all 1 ≤ j ≤ n. The latter condition
implies that F is a constant, or equivalently f is a constant. □

We have the following direct corollary stating that eigenfunctions of ∆S of dis-
tinct eigenvalues are mutually orthogonal with respect to ⟨·, ·⟩.

Corollary 21.8. (1) For any f ∈ C∞(Sn−1), suppose ∆Sf = λf for some
λ ∈ C, then λ ≤ 0.

(2) For any f1, f2 ∈ C∞(Sn−1), suppose ∆Sfi = λifi with λ1 ̸= λ2, then
⟨f1, f2⟩ = 0.

Proof. For (1) we have by (21.13),

λ⟨f, f⟩ = ⟨∆Sf, f⟩ ≤ 0.

If ⟨f, f⟩ > 0, we then have λ < 0. If ⟨f, f⟩ = 0, then f = 0 implying that ∆Sf = 0,
i.e. λ = 0. In both cases we have λ ≤ 0. This proves (1). For (2) by (21.12) we
have

λ1⟨f1, f2⟩ = ⟨∆Sf1, f2⟩ = ⟨f1,∆Sf2⟩ = λ2⟨f1, f2⟩,

where for the last equality we used that λ2 ≤ 0 is real. This implies that (λ1 −
λ2)⟨f1, f2⟩ = 0. Since λ1 ̸= λ2, we must have ⟨f1, f2⟩ = 0 as desired. □

We now give the proof of the second half of Theorem 21.3.

Proof. In view of (2) of Corollary 21.8 it suffices to prove the following claim that

∆Sf = −d(d+ n− 2)f, ∀ f ∈ Hd.(21.14)

Take any f ∈ Hd, by definition f = P |Sn−1 for some P ∈ Hd, and

∆Sf = (∆F )|Sn−1

with F (x) = f( x
∥x∥ ). Since f agrees with P on Sn−1 and P is homogeneous of

degree d we have F (x) = P ( x
∥x∥ ) = ∥x∥−dP (x). By direct computation we have for

any 1 ≤ j ≤ n,

∂

∂xj
F (x) = −d∥x∥−d−2xjP (x) + ∥x∥−dPj(x),
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and

∂2

∂x2j
F (x) =

∂

∂xj

(
−d∥x∥−d−2xjP (x) + ∥x∥−dPj(x)

)
=
(
d(d+ 2)∥x∥−d−4x2j − d∥x∥−d−2

)
P (x)− 2d∥x∥−d−2xjPj(x) + ∥x∥−dPjj(x),

where Pj :=
∂

∂xj
P and Pjj :=

∂2

∂x2
j
P . Thus we have

∆F (x) = (d(d+ 2)− nd)∥x∥−d−2P (x)− 2d∥x∥−d−2
n∑

j=1

xjPj(x) + ∥x∥−d∆P (x).

Since P ∈ Hd, ∆P = 0. Moreover note that for any homogeneous polynomial Q of
degree d,

n∑
j=1

xjQj = dQ.(21.15)

This identity can be directly checked for monomials and then extended to a general
homogenous polynomial by linearity. Now applying (21.15) to the above expression
for ∆F we get

∆F (x) = (d(d+ 2)− nd)∥x∥−d−2P (x)− 2d2∥x∥−d−2P (x)

= −d(d+ n− 2)∥x∥−d−2P (x).

Finally restricting to Sn−1 gives the desired formula for ∆Sf (noting that (∆F )|Sn−1 =
∆Sf and ∥x∥−d−2P |Sn−1 = f). □

21.2. Theta series revisited. Another main ingredient for our proof to Theorem
21.2 is to realize certain sum that appears naturally when proving equidistribution
as Fourier coefficients of a cusp form. For this we need to study generalized theta
series associated to harmonic polynomials that we now introduce.

Definition 21.16. Let d be a non-negative integer and let P ∈ Hd. The theta
series associated to the quadratic form Qn (cf. (20.1)) and P is defined by

Θn(z;P ) :=
∑
v∈Zn

P (v)eπi∥v∥
2z, z ∈ H.

Note that Θn(z; 1) agrees with the theta series defined in (19.2) (with Q = Qn).
The connection between Θn(z;P ) and the equidistribution problem is from the
following simple identity which generalizes (19.2):

Θ(z;P ) = P (0) +
∑

v∈Zn\{0}

P (v)eπi∥v∥
2z = δd0 +

∞∑
m=1

∑
v∈Zn

∥v∥2=m

P (v)eπimz.(21.17)

Here for the second equality we used that P (0) = 0 if d ≥ 1. The main goal of
this section is to prove the following theorem stating that when n ≡ 0 (mod 8) and
d > 0 the theta series Θn(z;P ) is a cusp form of weight n

2 + d.

Theorem 21.9. Assume n ≡ 0 (mod 8) and d > 0. Then for any P ∈ Hd,
Θn(z;P ) ∈ Sk+d(Γθ) with k = n

2 and Γθ = ⟨T 2, S⟩ as before.

The main tool for our proof to Theorem 21.9 is an inversion formula for Θn(z;P )
which generalizes Theorem 19.4.
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Theorem 21.10. Let n ∈ N, d ≥ 0 and k = n
2 . For any x ∈ Rn, P ∈ Hd and for

any z ∈ H we have∑
v∈Zn

P (v + x)eπi∥v+x∥2z = ikz−k−d
∑
v∈Zn

P (v)eπi(−∥v∥2/z+2vtx).(21.18)

In particular, taking x = 0 we get

Θn(z;P ) = ikz−k−dΘn(−1/z;P ).(21.19)

Proof. First note that when d = 0, H0 = C is the space of constant functions and
we may assume f = 1 in which case (21.18) reads as∑

v∈Zn

eπi∥v+x∥2z = ikz−k
∑
v∈Zn

eπi(−∥v∥2/z+2vtx).(21.20)

Note that Jacobi’s inversion formula (19.6) (with L = Zn) is the special case of
this identity when x = 0. Using the same arguments as in the proof of Theorem
19.4 but with the generalzied Poisson summation formula (19.11) in place of (19.8)
(with L = Zn) we can prove (21.19), i.e. the d = 0 case of (21.18). Next for d ≥ 1,
in view of Remark 21.10 we may assume P (x) = (utx)d where u ∈ Cn and satisfies
∥u∥2 = 0 if d ≥ 2. Define a differential operator

D :=

n∑
j=1

uj
∂

∂xj
.

Applying D to the left hand side of (21.20) and by direct computation we get

D(LHS) = (2πiz)
∑
v∈Zn

ut(v + x)eπi∥v+x∥2z.

More generally applying D d times to the left hand side of (21.20) we get

Dd(LHS) = (2πiz)d
∑
v∈Zn

(ut(v + x))deπi∥v+x∥2z

= (2πiz)d
∑
v∈Zn

P (v + x)eπi∥v+x∥2z.

Here when d ≥ 2 we need to use the assumption that ∥u∥2 = 0. Similarly, applying
D d times to the right hand side of (21.20) we get

Dd(RHS) = (2πi)dikz−k
∑
v∈Zn

P (v)eπi(−∥v∥2/z+2vtx).

Equating Dd(LHS) with Dd(RHS) gives (21.18). □

With this inversion formula we can now give the

Proof of Theorem 21.9. Using similar arguments as before we see Θn(z;P ) is a
holomorphic function on H and vanishes at ∞ in view of the second equality in
(21.17). Thus it suffices to show F [T 2]k+d = F and F [S]k+d = F with F (z) :=
Θn(z;P ). The first equation is clear in view of the second equality in (21.17) while
the second equation is just (21.19). This finishes the proof. □
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21.3. Proof of main result. In this section we collect all the results from the
previous sections to give the proof of Theorem 21.2.

Proof. Since ⊕d≥0Hd is dense in C(Sn−1) (see Theorem 21.3) and in view of the
alternative criterion for equidistribution described in Remark 21.6, it suffices to
show

lim
m→∞

1

#Am

∑
x∈Am

f(x) =

∫
Sn−1

f dσn(21.21)

for any d ≥ 0 and any f ∈ Hd. If d = 0, then f is a constant function and the
above limit equation holds trivially. We thus assume d > 0 and note that in this
case by the second half of Theorem 21.3 the right hand side of (21.21) vanishes
(since

∫
Sn−1 f dσn = ⟨f, 1⟩). Thus it suffices to show

lim
m→∞

1

#Am

∑
x∈Am

f(x) = 0.(21.22)

Now by definition, there exists some P ∈ Hd such that f = P |Sn−1 . Using the
definition (21.1) of Am we have∑

x∈Am

f(x) =
∑
v∈Zn

∥v∥2=m

f
(

v√
m

)
= m− d

2

∑
v∈Zn

∥v∥2=m

P (v) .

Now by (21.17) the sum
∑

v∈Zn

∥v∥2=m

P (v) is the m-th Fourier coefficient of the theta

series Θn(z;P ) which by Theorem 21.9 is contained in Sk+d(Γθ) with k = n
2 . Then

by Hecke’s bound (8.18) we have∣∣∣∣∣∣∣∣
∑
v∈Zn

∥v∥2=m

P (v)

∣∣∣∣∣∣∣∣≪ m
k+d
2 .

On the other hand #Am = rn(m) which by the asymptotic formula (20.6) can
be seen to satisfy the grwoth condition that #Am ≍ mk−1. Combining all these
estimates we get ∣∣∣∣∣ 1

#Am

∑
x∈Am

f(x)

∣∣∣∣∣≪ m1−k− d
2+

k+d
2 = m1− k

2 .

With this estimate we can take m → ∞ to prove (21.22) (since k = n
2 ≥ 4). This

finishes the proof. □

Remark 21.23. Similar arguments also hold for other n’s. Indeed with more involved
analysis we can use Hecke’s bound to establish the same equidistribution result for
any n ≥ 5, while for n = 4 Deligne’s bound on Ramanujan’s conjecture (for integral
weight modular forms) is sufficient. However, for ternary form Q3 Deligne’s bound
just falls short for equidistribution. Indeed we know in this case by Legendre’s
theorem not every positive integer m is representable as a sum of three squares,
i.e. Am could be empty for m along an unbounded subsequence of N. Nevertheless,
using ergodic arguments Linnik [Lin68] proved equidistribution of Am ⊂ S2 along
a subsequence admissible to Legendre’s theorem and a certain splitting condition
called Linnik’s condition. This splitting condition was finally removed by Duke
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[Duk88] using analytic methods which ultimately rely on Iwaniec’s improvements
to Hecke’s bound for half integral modular forms; see [Iwa87].
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