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Prefae
This book presents my researh in the past four years during my stay in the Computational Physis Groupof the Faulty of Applied Sienes (the �rst two years) and later in the Theoretial Physis Group at thesame Faulty. It overs a number of subjets in the �eld of ritial phenomena, inluding 1), a systematitest of the three-dimensional (3D) Ising universality lass, 2), luster simulations of quantum transverseq-state Potts models, 3), simulations in urved geometries and onformal symmetries in d > 2 dimensions,4), onstrained ritial and triritial phenomena, 5), spontaneous edge order of the 2D Potts model, 6),Monte Carlo investigations of bakbone exponents, and 7), geometri properties of 2D and 3D Potts models,et.During this researh, several novel omputer algorithms were developed and applied. Even though theomputer power has inreased rapidly over the past deades, eÆient algorithms still play an important rolein the numerial study of phase transitions. On the other hand, I feel that numerial work is an eÆientapproah to solve physial problems only if it is ombined with theoretial knowledge. Subjets 5) and 7),whih arose from my uriosity in preditions by the Coulomb gas theory and onformal �eld theory, serveas two good examples. Naturally, my insight in the renormalization group theory and in ritial phenomenahas inreased over time and by the researh ativities.These sienti� ativities and ahievements make my life full of joy and happiness.

Youjin Deng
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1Introdution and outline
1.1 Examples of phase transitionsNature is full of phase transitions. Well-known examples are ontained in the phase diagram in the materialH2O, as skethed in Fig. 1.1(a). The material H2O an be a solid (ie), a liquid, or a vapor; transitionsbetween di�erent phases an be indued by hanging the temperature T or the pressure P . From our every-day experiene, the liquid and the vapor phase oexist at T = 373oK and P = 1 atm. Thus, at this point,the density � of H2O is not �xed but an have a high value (liquid) or a low value (vapor). The transitionis said to be �rst-order, beause �, whih an be expressed as the �rst derivative of the free energy density,has a disontinuity. However, as T inreases, this density di�erene beomes smaller along the transitionline, and at some point it vanishes ompletely. This point is named the ritial point, and the assoiatedphenomena are referred to as ritial phenomena. Another example is the ferromagneti state of materialslike iron and nikel, of whih the phase diagram is skethed in Fig. 1.1(b). At low temperature, the materialis in the ferromagneti state: a spontaneous magnetization m exists. The magnetization m an point indi�erent diretions when the external magneti �eld h is zero. As T inreases, the magnitude of m beomessmaller, and vanishes at the Curie temperature T. For T > T, the material beomes paramagneti: m = 0for h = 0. The Curie point is the ferromagneti ritial point.
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Figure 1.1: (a) The liquid-vapor ritial point of H2O: T = 647oK and P = 218 atm. (b). The ferromagnetipoint of Fe: T = 1044oK, h = 0.There are many other kinds of ritial points, suh as the antiferromagneti ritial point of Cs3CoCl5,the superuid ritial point of liquid helium, and the superondutivity ritial points of many metals andalloys. It turns out that the asymptoti behavior near a ritial point an be desribed by a limited number1



of ritial indies. For instane, at the ferromagneti ritial point, the magnetization m, referred to as theorder parameter, vanishes algebraially asjmj / (T � T )� ; (T " T; h = 0) ; and m / h1=Æ ; (T = T) : (1.1)The magneti suseptibility � = (�m=�h)T and the spei� heat C diverge with a power law� / (T � T )� and C / (T � T )�� (h = 0) : (1.2)The ritial exponents, �, �, , and Æ, are generally not integers, i.e., ritial behavior is singular. Moreover,it turns out that these exponents are universal: various kinds of ritial models an share a ommon set ofritial exponents. For instane, the ritial points in Fig. 1.1 (a) and (b) are believed to belong to the sameuniversality lass.The universal properties of the transitions in Fig. 1.1 (a) and (b) are named after the Ising model, andthose of the superuid transitions are said to be desribed by the XY model.1.2 The renormalization group theoryFor the simpli�ed models suh as the aforementioned Ising and the XY model, typially, there are twoapproahes:(1), diret solution approah. This means alulation of physial quantities of interest in terms of pa-rameters, i.e., solving the model. The alulation may be done analytially or numerially, exatly orapproximately.(2), exploiting symmetries and/or approximations. This approah tries to dedue some harateristis ofphysial quantities from various symmetry operations, e.g., reetions, translations, and rotations.The approah (1) is often a very diÆult task. While (2) is not a substitute for (1), a great deal an belearned from (2) even without attempting (1). Onsager's solution of the two-dimensional Ising model is anexample of (1), and the mean-�eld theory is an example of (2).The ontemporary physis of ritial phenomena started with the invention of the renormalization group(RG) theory. This tehnique also takes approah (2): the renormalization group is a set of symmetrytransformations. The essene of the RG is the hypothesis of the sale invariane at a ritial point. This anbe phenomenologially understood as follows. Consider a sample of magneti material. At low temperature,a large fration of magneti spins points in the same diretion. As T inreases, this fration is redued, andit vanishes at the ritial temperature T. However, for T = T, there are large pathes (muh larger thanrystal unit ells) in whih a net fration of spins are lined up. The distribution of the sizes of these patheshas a diverse range, suh that, in priniple, all length sales our. Suppose that we look at this materialthrough a mirosope, and that our eyes an see spin variations down to a size b. If the sample is shrunk bya fator s, we shall not see any hange at ritiality if the sample is suÆiently large.In other words, ritial utuations our at all length sales, and the orrelation length, whih measuresthe size of the largest utuations, diverges. In the momentum spae, the RG deals with one length sale atone time: the short-distane utuations are integrated out, and then the remaining part of the Hamiltonianis resaled. Upon iteration, this Hamiltonian approahes a �xed point, and universality emerges from theexistene of suh �xed points in the spae of Hamiltonians.Sine the invention of the RG, enormous progress has been ahieved in the understanding of phasetransitions. In two dimensions, an important appliation is the Coulomb gas theory. This theory transformsa number of two-dimensional models into an eletromagneti Coulomb gas model. Then, a hierarhy ofritial exponents an be expressed in terms of a single parameter. These models inlude the q-state Pottsmodel, the anti-ferromagneti Potts model, the O(n) model, and frustrated Ising models, et.1.3 Conformal �eld theoryBesides RG transformations, a larger group of symmetry operations, the onformal transformations, anbe applied to ritial phenomena. Roughly speaking, a onformal mapping is a generalization of a sale2



transformation in whih the length-resaling fator depends ontinuously on position; it an be furtherunderstood as a ombination of the loal sale and rotation transformations. The onnetion between saleand onformal invariane has been known to �eld theorists for a long time. In two dimensions, the onformalgroup algebra had been studied in the late 1960s by partile theorists in the ontext of the dual string model,where it was known as the Virasoro algebra. The onnetion of suh quantum �eld theories and statistialmehanis lose to a ritial point has been proved to be very fruitful. It was shown, by Belavin, Polyakov, andZamolodhikov, that eah `primary' saling operator of a two-dimensional system at ritiality orrespondsto a representation of the Virasoro algebra. If these representations are of a partiularly simple kind,orresponding to the vanishing of a ertain quantity alled the Ka determinant, then not only the ritialexponents but all the multi-point orrelation funtions at ritiality an be obtained. Further, Friedan, Qiu,and Shenker showed that these representations are indeed allowed, if the theory is to be unitary and ifa ertain quantity  alled the onformal anomaly satis�es  < 1. In two dimensions, the onformal �eldtheory has already predited a series of exat values, listed in the so-alled Ka table, for a number of ritialsystems.Despite of their great suess, the renormalization group approah and the onformal �eld theory stilllak a �rm mathematial foundation. There has been a lot of work reently by mathematiians in theontext of the so-alled Stohasti Loewner Evolution (SLE). The basi idea is to try to prove the physiists'preditions for the ritial exponents.Naturally, neither the RG tehnique, the Coulomb gas theory, or the onformal �eld theory ould supplythe immediate solution of all outstanding problems in the �eld of ritial phenomena. In the �rst plae, theRG theory relies on several nontrivial assumptions, and the formalism is thus not rigorously justi�ed, asmentioned above. Seond, in general, these theories do not provide information on nonuniversal aspets ofritial phenomena. Third, although the basi abstrat ideas of the RG are easy to understand, to arry outthese ideas and verify them turns out to be diÆult. Furthermore, although these theories have yielded alarge amount of exat information for two-dimensional ritial systems, exat information is still very sarefor spatial dimensionality d > 2. An alternative tool is provided by omputer simulations, of whih theappliation has been greatly stimulated by the rapid development of the omputer tehnology. It is evenonsidered that, together with theoretial and experimental physis, omputational physis form a triangularframework in the researh of modern physis.However, sine numerial investigations are restrited to systems with �nite extent, the diverging or-relation length at a ritial point is trunated, suh that ritial singularities are rounded o�. Due to thesale invariane at ritiality, the linear size of a �nite system an be simply regarded as a saling �eld inthe RG approah. The orresponding theory is alled the �nite-size saling theory, in whih the �nite-sizedependene of physial quantities is derived at and near a ritial point.1.4 OutlineThis thesis is organized on the basis of a number of drafts whih have been published or are intended forpubliation. As a onsequene, there exists some redundany in related hapters.In Chapter 2, the universality hypothesis is systematially tested for eleven three-dimensional lattiemodels believed to be in the Ising universality lass by means of Monte Carlo methods and �nite-size saling.After veri�ation of this hypothesis within narrow numerial margins, we assume that universality holdsexatly. Then, we an analyze the numerial data near the ritial points of these systems simultaneouslysuh that the universal parameters our only one. As an example, we onsider the dimensionless ratioQ = hm2i2=hm4i, where m is the pro�le of order parameter. The �nite-size dependene of this ratio nearritiality an be expressed asQ(t; v; L) = Q(0;0) +Q(1;0)tLyt +Q(2;0)t2L2yt +Q(0;1)vLyi + � � � ; (1.3)where L is the linear system size, and t and v are the relevant and irrelevant thermal �elds, respetively.The renormalization exponents of t and v are denoted as yt and yi, respetively. The saling �elds, t and v,are analytial funtions of physial parameters, and the amplitudes an assume di�erent values in di�erent3



systems. The symbol Q(i;j) represents i and j di�erentiations of Q with respet to t and v, respetively.In addition to the ritial exponents yt and yi, the numbers Q(i;j) are also universal. Thus, they ouronly one in the simultaneous �t of the Monte Carlo data. The 11 systems inluded in this hapter arehosen suh that they reet a wide range of positions on the ritial surfae in the language of the Landau-Ginzburg-Wilson desription of the Ising model. This partiular hoie, together with the simultaneous�tting tehnique, yields the thermal, magneti, and irrelevant exponents as yt = 1:5868(3), yh = 2:4816(1),and yi = �0:821(5), respetively.In Chapter 3 we formulate a luster Monte Carlo simulations of the quantum transverse Ising model(TIM), whih is believed to be relevant to the superondutivity phase transitions. It is known that the d-dimensional quantum TIM is equivalent with the anisotropi limit of a (d+1)-dimensional lattie Ising model.This equivalene was displayed by Shultz and Mattis in 1964, and later was shown in a reverse path by Suzukiusing the Trotter formula. However, the numerial appliation of this equivalene leads to pratial diÆultiesdue to singular behavior in the anisotropi limit of the lassial Ising model. When the Hamiltonian limit isapproahed, the oupling onstant and the orrelation length diverge in one diretion, while the ouplingsin other diretions vanish. In this Chapter, we inrease the number of spins in the strong-oupling diretionand meanwhile resale it by a divergent number. This resaling renders this diretion ontinuous, whilethe weak-oupling dimensions remain disrete. A ontinuous luster algorithm is then developed, and theeÆieny is omparable to the Swendsen-Wang and the Wol� method for disrete latties. Appliations ofthis algorithm yield the ritial points of the TIMs on several two- and three-dimensional latties with thestatistial unertainties in the �fth deimal plae.Chapter 4 investigates the ritial properties of the Ising model in urved geometries by applying on-formal transformations. In partiular, the onformal invariane of the Ising model is on�rmed in threedimensions. In two dimensions, the onsequenes of onformal invariane in ritial systems have been stud-ied extensively, and a large amount of results has been ahieved. A well-known example is Cardy's mappingbetween an in�nite plane and the surfae of an in�nitely long ylinder, whih ovariantly transforms, at rit-iality, the algebrai deay of orrelations in the plane into an exponential deay along the ylinder. Sine aylinder pseudo-one-dimensional, its numerial investigation is simpler than that of a two-dimensional plane.For spatial dimensionality d > 2, however, onformal transformations generally lead to urved geometriesor geometries with urved boundaries. For instane, in three dimensions, Cardy's mapping transforms thein�nite spae R3 into a pseudo-one-dimensional geometry S2 � R1 . This geometry an be obtained by ex-tending the surfae of a sphere S2 into another dimension R1 , and is referred to as the spheroylinder inthis hapter. Another example is the onformal mapping between the semi-in�nite spae R(d�1) � R+ andthe interiors of a unit d-dimensional sphere. This mapping an be expressed as~r 0=r02 = ~r=r2 + Î=2 ; (1.4)where Î is an arbitrary �xed unit vetor in d dimensions. This formula maps spheres onto spheres, so thatthe d-dimensional spae Rd is transformed into itself. Under the mapping (1.4), the (d � 1)-dimensionalplane Î � ~r = 0, whih orresponds to a spherial surfae of an in�nite radius, is onformally mapped ontothe surfae of a unit d-dimensional sphere with the enter at Î . Meanwhile, the half spaes Î � ~r > 0 andÎ � ~r < 0 are transformed respetively into the interior and exterior of this unit sphere, whih redues to aunit irle for d = 2.For the geometries like the spheroylinder or the unit sphere, the nonzero net urvature poses a seriousobstale for numerial investigations: a sequene of regular latties annot be readily aommodated. Fordisrete spin models, this problem an be solved by using the Hamiltonian limit of the lattie model andthe ontinuous luster Monte Carlo algorithm developed in Chapter 2. The key ingredient of this in�nitelyanisotropi model is that one of its dimensions is ontinuous, so that the problem of disretization for oneof the lattie dimensions is avoided.In Se. 4.1, we desribe a onformal mapping of an in�nite plane in two dimensions onto a spheroid. Byrotating an ellipse about the minor or the major axis, one obtains an oblate or prolate spheroid, respetively.The speial ases inlude the surfae of an in�nitely long ylinder, of a sphere, and of a two-sided at dis.The latter ase is obtained when the polar diameter of the spheroid approahes zero, so that one has theinteriors of two irles onneted at their perimeters. Thus, this transformation inludes Cardy's mapping as4



a speial ase. From the known two- and four-point orrelation funtions in the plane, and the assumption ofovariane of the multipoint orrelations under onformal mappings, the ritial value of the dimensionlessratio Q is alulated for the Ising model on the sphere and on the at dis. Further, luster Monte Carlosimulations are performed, and the numerial estimations of Q, determined from the �nite-size saling, agreepreisely with the above exat alulations. At ritiality, we also sampled two- and one-point orrelationfuntions on spheroids and half spheroids, respetively. The thermal and magneti exponents, as obtainedfrom the numerial data and the predition of onformal invariane, are in good agreement with the exatresults.In Se. 4.2, we simulate the Hamiltonian limit of the ritial three-dimensional Ising model. First, fromthe ratio of the magneti orrelations in the strong- and weak-oupling diretions, we numerially determinedthe length ratio relating the isotropi Ising model and the anisotropi limit. On this basis, we simulate theritial Ising model on a spheroylinder S2 � R1 . From the predition of onformal invariane and thesampled orrelation lengths along the spheroylinder, we determine the magneti and thermal exponents asyh = 2:4818(6) and yt = 1:581(7), respetively. Then, free boundary onditions are imposed on the equatorsof the spheroylinder, and we obtain the surfae magneti exponent y(o)hs = 0:737(5), with the supersript (o)for the ordinary phase transition. The preision of these results reveals that, as in two dimensions, onformalmappings provide a powerful tool to investigate three-dimensional ritial phenomena.Chapter 5 investigates the anisotropi limit of the bond-perolation model in two and three dimensions,in whih the ritial bond-oupation probability pk in one of the diretions (longitudinal) approahes 1,and the probability p? in the other (d� 1) dimensions (transverse) vanishes. Thus, near ritiality, one haspk = 1�� and p? = �=t, where �! 0 is an in�nitely small onstant and t is a temperature-like parameter. Inthe same way as for the Hamiltonian limit of the Ising model, we resale the system with an in�nite fator inthe longitudinal diretion, so that a ontinuous perolation model is obtained. It an be simply reformulatedas follows. Suppose that a sequene of lines originate from the verties of a (d � 1)-dimensional lattie,through whih a urrent an ow. For eah pair of nearest-neighboring lines, they are onneted through aset of onduting `bridges', whih are uniformly distributed; moreover, a fration of `barriers', whih havein�nite resistane, is uniformly distributed on these lines. Thus, if a potential di�erene is applied to a pairof points with a large distane r, the probability P (r) that a urrent an ow between these two pointsis determined by the relative abundane of the bridges and the barriers. For t >> 1, there are so `many'barriers that P (r) ! 0 as r !1; for t << 1, one has a nonzero probability P (r) as r !1. A ontinuousphase transition ours at some point t. This transition is referred to as the ritial point of the transverseperolation model. It an be shown that a d-dimensional version is equivalent with the limit q ! 1 of thequantum q-state Potts model in (d� 1) dimensions.We formulate an eÆient Monte Carlo method for this model, and its appliation on�rms that it �tswell in the perolation universality lass of the isotropi ase. In two dimensions, the dual symmetryyields the ritial point as t = 1. For the three-dimensional retangular geometry, we numerially obtaint = 8:6429(4).Next, we simulate ritial systems in several two- and three-dimensional urved geometries inludinga spheroid and a spheroylinder. Using �nite-size saling and the preditions of onformal invariane, wedetermine the bulk and surfae magneti exponents, in agreement with the existing results.Chapter 6 summarizes the inuene of two types of annealed onstraints on a number of ritial andtriritial systems. The �rst type of onstraint is energy-like and �xes the total number of vaanies orpartiles. We �nd that these onstraints a�et the leading �nite-size behavior of energy-like quantities,while the e�et on magneti quantities is restrited to orretion terms. The seond type applies to themagnetization, and appears to suppresses the �nite-size divergenes of a quantity that normally sales asthe magneti suseptibility.In an attempt to explain the observed �nite-size saling properties, we make use of the well-known Fisherrenormalization mehanism. However, we do not always �nd a satisfatory agreement with our numerial re-sults for onstrained ritial systems. For instane, for most energy-like onstraints, the exponents desribingthe �nite-size dependene of the spei� heat are twie the expeted values.We also sample spei�-heat-like and suseptibility-like quantities, whih aount for large-sale spa-tial inhomogeneities of energy and magnetization utuations. The �nite-size behavior of these quantities5



resembles that of the spei� heat and the suseptibility of unonstrained systems.In Chapter 7, we investigate the three-dimensional triritial Blume-Capel model under an energy-likeonstraint. Sine three is the upper triritial dimensionality of the Ising model, we expet that the mean-�eld theory orretly predits a number of universal parameters inluding the ritial exponents and theBinder ratio. Therefore, we alulate the partition sum of the mean-�eld triritial Blume-Capel model, andaordingly obtain the exat value of the Binder ratio. Further, we show that, under the onstraint, thismean-�eld triritial system redues to the mean-�eld ritial Ising model. However, our three-dimensionaldata do not agree with this mean-�eld predition. Instead, they are suessfully explained by the Fisherrenormalization mehanism generalized to inlude the e�et of the subleading thermal �eld.Chapter 8 systematially investigates the onstrained phenomena of the triritial Potts model in twodimensions. Some of the results have been inluded in Chapter 6. Near a d-dimensional triritial point, weshow that the leading thermal exponent yt1 is renormalized to d � yt1, while the subleading exponent yt2remains unhanged.Chapter 9 determines the bakbone exponents of several ritial and triritial q-state Potts models intwo dimensions and the perolation and the Ising model in three dimensions. For the general q-state Pottsmodel, the nature of the bulk ritial singularities is well established in two dimensions. Nevertheless, thePotts model ontinues to be a subjet of muh researh interest. There is still a number of ritial exponents,of whih the exat values have not been obtained even in two dimensions. These exponents haraterizegeometri properties of the Potts model at ritiality, and seem to have no analog in the thermodynamis.One of them is the fratal dimension of \bakbones", whose de�nition an be illustrated as follows. Considerthe random-luster representation of a Potts model, the probability that a pair of points with distane rbelongs to the same Kasteleyn-Fortuin luster, denoted as P1(r), behaves asymptotially as P1(r) / r�2Xh atritiality, where Xh = d�yh is the magneti saling dimension. In other words, P1(r) an be understood asthe probability that these two points are onneted by at least one path whih onsists of oupied bonds inthe random-luster model. Analogously, one an ask the question what is the asymptoti ritial behavior ofthe probability Pk(r) that these two points are onneted via at least k independent paths without any bondin ommon. At ritiality, the behavior of Pk(r) is governed by a family of exponents Xk, of whih X2 is theso-alled bakbone saling dimension Xb. In perolation theory the bakbone problem is onsidered to be ofsome physial relevane. In the past deades, this subjet has attrated muh researh attention. Numeroustheoretial attempts have been arried out to predit the exat values of Xb for the two-dimensional Pottsmodel, partiularly for the perolation model. In parallel, several numerial tehniques have been developedfor the determination of Xb, inluding Monte Carlo simulations and transfer-matrix methods.In this hapter, we formulate an eÆient numerial proedure to sample the probability P2(r), and thus todetermine the bakbone dimension Xb for several two- and three-dimensional models from a �nite-size salinganalysis of P2(r). The preision of these results is favorable in omparison with the existing determinations.Moreover, from a saling argument, we derive that, for two-dimensional triritial Potts models, Xb reduesto the magneti exponent Xh. This is on�rmed by the numerial results.In Chapter 10, we investigate geometri properties of several systems. It is known that a seond-orderphase transition is generally aompanied by diverging orrelation lengths both in time and spae. It hasbeen suspeted long time ago that, near a ritial point, thermodynami singularities an be represented bysome sort of `geometri' lusters. Consider a Potts model with ferromagneti interations between nearest-neighboring (NN) Potts variables, for eah pair of NN sites in the same Potts state, one plaes a bondwith probability 0 � p � 1. Thus, the whole lattie is deomposed into groups of spins onneted via theoupied bonds, to whih we refer as the geometri lusters. For the speial ase p = pr = 1 � exp(�K)with the Potts interation strength K these geometri lusters redue to the well-known Kasteleyn-Fortuin(KF) lusters. The ritial Potts singularities an be orretly represented by the size distribution of theKF lusters (the so-alled random-luster model). For instane, the fratal dimension of KF lusters at theritial point K is just the magneti saling dimension Xh of the Potts model. In the parameter spae(p;K), the point (pr;K), pr = 1� exp(�K), an be generally regarded as a �xed point, whih is referredto as the random-luster �xed point. For K = K, renormalization ows in the p diretion are governed bythe bond-dilution �eld, whose exponent is alled the red-bond exponent yr.Setion 10.1 investigates the general q-state Potts model in two dimensions. We �nd that, in addition6



to the random-luster �xed point (K; pr), there exists another �xed point on the ritial line K = K, towhih we refer as the geometri luster �xed point pg. For the ritial branh, the �xed point pr is unstable(yr > 0) and the point pg > pr is stable. In ontrast, for the triritial Potts model, the �xed points pr andpg are stable and unstable, respetively. In this ase, one has pg < pr, so that the perolation thresholdof the geometri lusters does not oinide with the KF lusters. We onjeture that the �xed point pg ofa ritial and a triritial q-state Potts model an be regarded to orrespond to pr of a triritial and aritial q0-state Potts model, respetively. In terms of the oupling onstant g of the Coulomb gas partile,these two models are related as gg0 = 16. This onjeture is on�rmed by the numerial results.Along similar lines, Se. 10.2 investigates the ritial Ising and the triritial Ising model in three dimen-sions. For the ritial Ising model, exat information is sare. Nevertheless, many numerial tehniqueshave been developed, and a onsiderable amount of results has been obtained. Sine the upper triritialdimensionality of Ising systems is three, many universal parameters an be exatly obtained. However, thenumber of researh ativities arried out thus far for the geometri properties of both models is rather limited.By means of Monte Carlo simulations, we observe that, unlike two-dimensional triritial Potts systems, theperolation threshold of geometri lusters oinides with KF lusters in three dimensions. We determine theorresponding red-bond exponents as yr = 0:757(2) and 0:501(5) for the ritial Ising and the triritial Isingmodel, respetively. On this basis, we onjeture yt = 1=2 for the latter model, whih is further on�rmedby the numerial determination of yr for the mean-�eld version of the triritial Blume-Capel model (notreported in this setion).Chapter 11 investigates ritial and triritial surfae phenomena of the general q-state Potts model intwo dimensions. Near a ritial point, the e�et of a surfae an be drasti, sine the bulk orrelationlengths beome long-ranged. For instane, for the Ising model in a semi-in�nite three-dimensional spae,as the surfae oupling Ks is varied, the bulk transition K = K an our in the absene or the preseneof a spontaneous surfae magnetization: the `ordinary' or the `extraordinary' transition, respetively. Fordisordered bulkK < K, there is a ritial line of `surfae' transitions terminating atK = K in a multiritialpoint, the so-alled `speial' transition.In two dimensions, the `surfaes' are just one-dimensional edges, it may then seem natural that surfaeritial phenomena are less rih than those in three dimensions. In partiular, for systems with short-rangeinterations only, it may seem plausible that spontaneous edge order annot exist. However, our numerialresults show otherwise. Using suitable Monte Carlo methods and �nite-size saling, we show that, for thetwo-dimensional triritial Potts model, appliation of a suÆiently strong surfae oupling or a surfaemagneti �eld an indue a ontinuous phase transition. At even larger surfae ouplings, pseudo-one-dimensional order ours on the edges. We determine several ritial exponents desribing these edgestransitions. On the basis of these results and onformal �eld theory, we onjeture exat expressions of theseexponents.List of publiations� Published:1. L.Y. Liu and Y. Deng,Sienti� knowledge for the Youth (in Chinese),(China International Broadast Press, Beijing, 1999).2. Y. Deng and H.W.J. Bl�ote,`Conformal Invariane of the Ising Model in Three Dimensions',Phys. Rev. Lett. 88 190602, p.1-4, (2002).3. H.W.J. Bl�ote and Y.Deng,`Cluster Monte Carlo simulation of the transverse Ising model',Phys. Rev. E 66 066110, p.1-8, (2002). 7
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2Simultaneous analysis of three-dimensional Ising models
We investigate several three-dimensional lattie models believed to be in the Ising universality lass, bymeans of Monte Carlo methods and �nite-size saling. These models inlude spin- 12 models with nearest-neighbor interations on the simple-ubi and on the diamond lattie. For the simple-ubi lattie, we alsoinlude models with third-neighbor interations of varying strength, and some 'equivalent-neighbor' models.Also inluded are a spin-1 model and a hard-ore lattie gas. Separate analyses of the numerial dataon�rm the Ising-like universal ritial behavior of all these systems. On this basis, we analyze all these datasimultaneously suh that the universal parameters our only one. This leads to an improved auray.The thermal, magneti, and irrelevant exponents are determined as yt = 1:5868(3), yh = 2:4816(1), andyi = �0:821(5), respetively. The Binder ratio is estimated as Q = hm2i2=hm4i = 0:62341(4).2.1 IntrodutionThe Ising model has been investigated extensively, and thus serves as a testing ground for theories of phasetransitions. Many physial systems an be desribed by this simple but nontrivial model. It is believed thatontinuous phase transitions in systems with short-range interations and a salar order parameter belong tothe Ising universality lass. These inlude a variety of magneti systems, alloys, gas-liquid systems, and liquidmixtures. For instane, magneti systems an be desribed by a spin- 12 or spin-1 Ising model depending onthe nature of the elementary magneti moments; gas-liquid systems an be modeled by means of hard-orepartiles, whih exlude one another within a non-zero range. Furthermore, the partile oordinates may berestrited to the verties of regular latties.In two dimensions, the evidene supporting the universality hypothesis is rather solid. One underlyingreason is that exat results are available. For instane, exat analysis of Onsager's spin- 12 model [1℄ andrelated models yields the thermal and magneti saling exponents as yt = 1 and yh = 15=8 [2℄, respetively.In three dimensions, however, suh exat results are absent. Therefore, investigation of ritial behaviorhas to depend on approximations. These inlude tehniques suh as �- and series expansions, the oherent-anomaly method, and Monte Carlo methods et. Extensive studies have been arried out [3{14℄, and thereis some onsensus that the values of yt and yh are, respetively, 1:587 and 2:482, with di�erenes only in thelast deimal plae. Compared to the ase of two dimensions, the three-dimensional results are indeed lesssatisfatory. Apart from the limited auray, the absene of exat results leaves, at least in priniple, someroom for severe disagreements. For instane, a very reent investigation by Gar��a and oworkers [15℄ laimsthat yt = 1:600(2) and yh = 2:501(5).Many fators are responsible for this unsatisfatory situation. First, due to the restrition of urrentomputer apaity, one an only explore rather limited system sizes in three dimensions. Seond, orretions-to-saling are muh more serious than that in two dimensions. For the two-dimensional Ising model, theexponent of the leading irrelevant thermal �eld is yi = �2, while in three dimensions yi ' �0:82. Moreover,11



the determination of yi is not very aurate so far. A better estimation of yi thus seems justi�ed and is oneof the purposes of the present work.In the language of renormalization group tehnique, the ritial behavior of systems within a universalitylass is governed by a ommon �xed point. In terms of saling �elds, the funtion of the free energy, and thusof physial observables, is universal near the ritial points. By means of �nite-size saling, suh universalfuntions are extended to �nite systems. As an example, we onern the dimensionless ratioQ = hm2i2=hm4i,where m is the pro�le of order parameter. The quantity Q is related to Binder umulant [16℄, and has beenreported [11℄ to be a good hoie to estimate yi and loate ritiality. Near the ritial points Q behaves asQ(t; v; L) = Q(tLyt ; vLyi ; 1) + � � � ; (2.1)where L is the linear system size, t is the thermal saling �eld, and the irrelevant �eld v reets the distaneof ritiality of orresponding systems and the �xed point. Here, we have not yet spei�ed ontributions dueto the analyti part of the free energy. Taylor-expansion of the right-hand-side of Eq. (2.1) yieldsQ(t; v; L) = Q(0) +Q(1;0)tLyt +Q(2;0)t2L2yt +Q(0;1)vLyi + � � � ; (2.2)where the derivatives of the universal funtion Q with respet to t and v are denoted as Q(i;j). Apartfrom the saling exponents yt and yi, the amplitudes of Q(0) and Q(i;j) are equal for systems in the sameuniversality lass.However, from the Monte Carlo data of a single model only, the estimation of yi is rather diÆult. Thereason is as follows. In Eq. (2.2), the amplitude v is oupled to the exponent yi, and thus a reasonableestimation of yi requires systems with a large value of v. However, the large value of v exludes an auratedetermination of Q(0), so that the auray of yi is also limited. On the other hand, although a system witha small amplitude v helps to estimate Q(0), it does not allow a good determination of yi either. This is oneof the reasons why, in many numerial investigations, the exponent yi is �xed at a onstant taken from othersoures.This problem an be avoided by a simultaneous analysis of several systems with a diversity of the irrelevant�elds v. Given a reasonable value of yi, Monte Carlo data of systems with a small irrelevant �eld v determineQ(0) with a narrow margin; this information, together with models with a signi�ant amplitude v, greatlyhelps the estimation of yi, whih in return improves the determination of Q(0).In the present work, we investigate eleven Ising-like lattie models in three dimensions, of whih theamplitudes v have a wide range of values. These models inlude the spin- 12 Ising model with nearest-neighbor interations Knn on the simple-ubi and on the diamond lattie. On the simple ubi lattie,models with further-neighbor interations are also investigated. In partiular, third-neighbor interationsK3n are inluded in several models with various ratios K3n=Knn. Further, we study some 'equivalent-neighbor' models, originally introdued by Domb and Dalton [17{19℄. In suh systems, eah spin interatsequally strongly with all its neighbors within a ertain distane. The model with the interations till therth shell of neighbors is referred to as the equivalent-neighbor model of order r. Also inluded are a spin-1model [20℄ and a hard-ore lattie gas with nearest-neighbor exlusion.For these models, we analyze the numerial data both separately and simultaneously. The separate anal-yses are in a good agreement with the Ising universality hypothesis for all these systems. This provides thebasis of the simultaneous analysis, in whih we assume that universality is exatly satis�ed so that universalparameters our only one. This feature of the simultaneous analysis, ombined with the aforementioneddisussion in Se. 2.1, leads to a signi�antly improved estimation of the ritial points of these systems andthe universal quantities inluding saling exponents and the Binder ratio Q(0).A diÆulty is that suh a simultaneous analysis requires a large amount of aurate Monte Carlo data.Fortunately, some numerial data are already available and were published elsewhere [9{11,21{24℄. The datagenerated by the Cluster Proessor [11℄ are not inluded and will be published elsewhere. Our new MonteCarlo simulations mainly fous on larger system sizes, and were performed on a luster of 6 PCs with afrequeny of 2100 MHz. 12



Table 2.1: De�nitions of the models.Model K2nKnn K3nKnn K4nKnn D Lattie Desription of models1 0 0 0 �1 d. Spin- 12 with nn ouplings2 0 0 0 �1 s.. Spin- 12 with nn ouplings3 0 0:1 0 �1 s.. Spin- 12 with nn and 3n ouplings4 0 0:2 0 �1 s.. Spin- 12 with nn and 3n ouplings5 0 0:3 0 �1 s.. Spin- 12 with nn and 3n ouplings6 0 0:4 0 �1 s.. Spin- 12 with nn and 3n ouplings7 1 0 0 �1 s.. Equivalent-neighbor of order two8 1 1 0 �1 s.. Equivalent-neighbor of order three9 1 1 1 �1 s.. Equivalent-neighbor of order four10 0 0 0 ln 2 s.. Spin-1 with nn ouplings11 { { { { s.. Lattie gas with nn exlusiond. { diamond lattie; s.. { simple-ubi lattie.2.2 Models and algorithmsAs mentioned earlier, the present Monte Carlo analyses inlude eleven Ising-like models. Exept the hard-ore lattie gas, these models an be represented in terms of a spin-1 HamiltonianH=kBT = �Knn Xhnni�i�j �K2nX(2n)�i�j �K3nX[3n℄ �i�j �K4n Xf4ng�i�j +DXi �2i ; (2.3)where the sums hnni, (2n), [3n℄, and f4ng are respetively over nearest-, seond-, third-, and fourth-neighborpairs, and the assoiated ouplings are denoted as Knn, K2n, K3n, and K4n, respetively. The spins anassume three disrete values si = 0;�1, where spins s = 0 may be referred to as vaanies. The detailedde�nitions are spei�ed in Tab. 2.1, where ten models are de�ned on the simple ubi lattie, and one onthe diamond lattie. We de�ne the �nite-size parameter L by its relation with the total number N of lattiesites as N = L3. Thus, the linear size of the 8-site elementary ell of the diamond lattie is taken to beL = 2. Periodi boundary onditions are applied. The systems sizes were taken in the range 4 � L � 128.For D = �1, the vaanies are exluded, so that the model redues to the spin- 12 model. This applies tothe �rst nine models in Tab. 2.1. Models 1 and 2 have nearest-neighbor interations Knn only. Models 3-6inlude, in addition, third-neighbor interations K3n. Various ratios are applied: K3n=Knn = 0:1; 0:2; 0:3,and 0:4. Models 7-9 are the equivalent-neighbor models [17{19℄ of order two, three, and four, respetively.We hoose these models beause they over a wide range of amplitudes of the irrelevant �eld v in Eq. (2.2).In partiular, v is positive for models 1-4 and negative for models 5-9. This reets that the ritial pointsof these systems lie on opposite sides of the Ising �xed point in the diretion of v on the ritial surfae.Moreover, the absolute value of v is relatively large for models 1, 2, 8, and 9, and relatively small for models4, 5 and 7. This will be shown later in the numerial analysis.During the Monte Carlo simulations, one an in priniple apply the standard form of the Swendsen-Wangor of the Wol� luster algorithm. However, the eÆieny of these methods dereases rapidly as the numberof interating neighbors inreases. This diÆulty is avoided by an algorithm desribed in Ref. [9℄. Here, wesummarize the essential points. During the formation of a luster, a bond between equal spins oupled withstrength K is frozen with probability p = 1�exp(�2K), or broken with probability 1�p. Sites onneted byfrozen bonds belong to the same luster. The distribution P (k) = p(1� p)k�1 expresses the probability that(k� 1) subsequent bonds are broken while the kth bond is frozen. The algorithm generates this distributionfrom a uniformly distributed random number 0 < r < 1 as followsk = 1 + [ln(r)= ln(1� p)℄ ; (2.4)where the square brakets denote the integer part. By repeated evaluation of k, one may set up a ompletelist of frozen bonds, and thus a luster is formed. The eÆieny of this proedure is almost independent of13



the range of the interations. An example was shown in Ref. [21℄ by simulating the mean-�eld Ising model,in whih eah spin is interating with every other spin.We also inlude a spin-1 model with D = ln 2, whih is important to our purposes due to its very smallamplitude of v [9℄. However, for a general spin-1 model, it is not obvious how luster algorithms an produetransitions between vaanies and non-vaanies. One an in priniple follow a hybrid algorithm in whihMetropolis sweeps alternate with luster steps. As long as the spin-1 model is not lose to the triritialpoint where the ordered Ising phases meet the phase dominated by vaanies, serious ritial slowing downis not expeted.Here, due to the speial hoie D = ln 2 (model 10), a full luster algorithm [9,11, 21℄ beomes possible.First, the spin-1 model is mapped onto a spin- 12 model with two variables, of whih the Hamiltonian isH=kBT = �M1Xhiji(ti + ui)(tj + uj)�M2Xm tmum ; (2.5)where two s = 12 spins ti = �1 and ui = �1 sit on eah site i of the simple-ubi lattie. Using thetransformations �i = (ti+ui)=2 and vi = (1+ ti)(1�ui)=4, it has been shown [9℄ that the partition funtionis, up to a onstant fator, Z =X�k exp244M1Xhiji �i�j + (2M2 � ln 2)Xm �2m35 : (2.6)This is preisely the partition funtion of the spin-1 model. The speial hoie D = ln 2 leads to M2 = 0so that there are no interations between variables on the same site. On this basis, the Wol� algorithmis applied to ip the variables ti and/or ui. This osts a little prie, i.e., two arrays have to be stored inomputer memory for the variables ti and ui. In the present work, we improve this algorithm by using onevariable only. This improvement is based on the equivalene of the variables ti and ui. Beause of thissymmetry, only the sum of ti and ui on the same site needs to be stored. This leads to a luster algorithmfor D = ln 2, whih allows ips between nonzero and zero spins.Another model (model 11) investigated in the present work is the hard-ore lattie gas on the simple-ubilattie, of whih the Hamiltonian isH=kBT = �KXhnni�i�j � �Xm �m : (2.7)Here, the variable �i = 1; 0 represents the presene and the absene of a partile, respetively. The nearest-neighbor ouplingK ! �1 implies that no nearest-neighbor sites are allowed to be oupied simultaneously.The hemial potential of the partiles is denoted as �. This lattie gas was Monte Carlo simulated bymeans of a ombination of the Metropolis and a geometri luster method. This luster algorithm is basedon geometri symmetries, suh as the spatial inversion symmetry of the simple-ubi lattie. The fulldesription of this algorithm is given in Refs. [22{24℄.As mentioned in Se. 2.1, the ritial behavior of the hard-ore lattie gas is expeted to belong tothe Ising universality lass. Surprisingly, signi�ant di�erenes have been reported. The investigationsby Yamagata [25, 26℄ yielded ritial exponents �= = 0:311(8) and =� = 2:38(2), whih would implyyh = 2:689(8). These results, however, ould not be on�rmed by later investigations whih did reveal arelatively large irrelevant �eld, but no deviations from the Ising universality lass [22, 23℄.2.3 Dimensionless ratio QFor the aforementioned eleven systems, Monte Carlo simulations took plae very lose to ritial points forL > 20, while ranges of temperature-like parameters are wider for smaller systems. Table 2.2 presents thenumber of ten millions of samples taken per system size and the number of simulation sweeps before takingeah sample. 14



Table 2.2: Number of samples (in ten millions) and simulation steps per sample. We use the notationM�Nto indiate that 107M samples have been taken at intervals of N Monte Carlo steps. Smallersystem sizes L < 20 are also inluded in the analysis. For the lattie gas, simulations steps inludeone Metropolis sweep for eah sample.ModelnL 20 22 24 28 321 50� 10 50� 10 50� 10 50� 10 40� 102 10� 10 10� 10 10� 10 12� 10 20� 103 10� 10 10� 10 10� 10 10� 10 10� 104 10� 10 10� 10 10� 10 10� 10 10� 105 10� 10 10� 10 10� 10 10� 10 10� 106 10� 10 10� 10 10� 10 10� 10 10� 107 20� 20 15� 22 17� 24 15� 28 12� 328 20� 20 15� 22 12� 24 10� 28 8� 329 20� 20 17� 22 12� 24 10� 28 7� 3210 128� 6 92� 6 92� 6 92� 6 87� 811 150� 7 20� 8 52� 10 50� 10 30� 1240 48 64 1281 40� 10 20� 20 10� 20 5� 402 10� 10 5� 20 5� 32 1:8� 643 10� 10 5� 20 5� 32 2� 644 10� 10 5� 20 5� 32 2� 645 10� 10 5� 20 5� 32 2� 646 10� 10 5� 20 5� 32 2� 647 8� 40 6� 48 5� 64 3� 1288 6� 40 4� 48 3� 64 2� 1289 6� 40 4� 48 3� 64 1:5� 12810 55� 10 22� 12 2� 16 5:4� 2511 15� 14 12� 16 15� 64 4:4� 128

15



During the simulations, the universal ratioQ = hm2i2=hm4i was sampled, wherem is the order parameter.For the spin systems (models 1 - 10) and the lattie gas (model 11), the magnetization density and thestaggered partile density assume this role, respetively. Near the ritial points, we analyzed Q bothseparately and simultaneously.I. Separate analysesThe �nite-size behavior of Q near the ritial points is desribed by Eq. (2.2). Here, the thermal saling�eld t depends on temperature-like parameters. For the spin- 12 models (models 1-9), these are the spin-spininterations Knn, K2n, K3n, and K4n. Sine �xed ratios apply between these ouplings, it is suÆient toselet Knn as the only temperature parameter Ki for the ith model. For the spin-1 model (model 10),both the nearest-neighbor ouplings Knn and the hemial potential D are temperature-like parameters.In this work, D is �xed at ln 2 so that Ki is again represented by Knn. For the hard-ore lattie gas(model 11), the hemial potential � of the partiles assumes this role. For later onveniene, near theritial points, we express the dependene of the saling �eld t on the physial temperature parameter Kias t = ai(Ki �Ki) + bi(Ki �Ki)2 + � � � . The amplitudes of the quantities with the subsript i depend onspei� models. On this basis, Eq. (2.2) beomesQ = Q(0) +Q(1)ai(Ki �Ki)Lyt +Q(2)a2i (Ki �Ki)2t2L2yt +Q(3)a3i (Ki �Ki)3t3L3yt +Q(4)a4i (Ki �Ki)4t4L4yt +i(Ki �Ki)2Lyt + b1iLy1 + b2iLy2 + b3iLy3 + � � � : (2.8)Here, we have written Q(i;0) as Q(i) for simpliity. The term with the oeÆient i reets the nonlineardependene of t on Ki. The exponents of the orretion terms, as obtained in earlier analyses of Q inRefs. [9, 11℄, are y1 = yi = �0:82(3), y2 = d � 2yh = �1:963(3), and y3 = yt � 2yh = �3:375(3). Theorretion with the exponent y2 is due to the �eld dependene of the analyti part of the free energy. Thelast term arises from nonlinear dependene of the temperature saling �eld on the physial magneti �eld.Finite-size saling also predits further ontributions. For a single model, sine both the quantities Q(i) andother parameters suh as ai and Ki are unknown, we may simplify Eq. (2.8) asQ = Q0 + q1i(Ki �Ki)Lyt + q2i(Ki �Ki)2L2yt + q3i(Ki �Ki)2L3yt +q4i(Ki �Ki)2L4yt + i(Ki �Ki)2Lyt + b1iLy1 + b2iLy2 + b3iLy3 : (2.9)where qij is the produt of Q(j) and aji .Aording to the least-squares riterion, Eq. (2.9) was �tted to the Monte Carlo data separately for theaforementioned eleven models. First, we �xed y1, y2, and y3 at the aforementioned values with the errormargins negleted, and yt was taken as 1:587 [3{13℄. We applied a uto� for small system sizes L < 10 formodel 8, L < 12 for model 9, and L < 8 for the rest. For the equivalent-neighbor model of order three andfour, the Monte Carlo data for small system sizes may be a�eted by rossover e�ets due to the proximityof the mean-�eld �xed point [21℄. This is the reason why we applied di�erent uto�s at small systemsizes for models 8 and 9. The results are shown in Tab. 2.3. The numerial unertainties quoted betweenparenthesis represent one standard deviation. The exellent agreement of the universal quantity Q(0) inthe third olumn on�rms that these eleven systems belong to the Ising universality lass. Furthermore,aording to Eqs. (2.8) and (2.9), the quantity q21=q2 = [Q(1)℄2=Q(2) is the same for all Ising-like models.This is on�rmed by the last olumn of Tab. 2.3, whih reveals that the values q21=q2 are onsistent witheah other within two standard deviations.The amplitudes of the irrelevant �eld for these models are shown, up to a onstant fator, in the sixtholumn of Tab. 2.3. As mentioned in Se. 2.1, they reet the positions of the ritial points of these systemson the ritial surfae. For larity, we start from the Landau-Ginzburg-Wilson desription [27℄ of the Isingmodel: �H(�)=kBT = Z d r[r�2(r) + v�4(r) +r2�(r) + h�(r℄ ; (2.10)where the square-gradient term represents short-range interations, r and v together determine the temperature-like and irrelevant parameters, and h is the magneti �eld. For spatial dimensionality d < 4, a renormalization16



Table 2.3: Separate �ts of the dimensionless ratio Q with y1 �xed.K Q(0) q1 q2 b1 q21=q21 :36973976(16) :62338(8) 0:4906(5) 0:19(1) 0:1150(10) 1:26(7)2 :22165452(8) :62327(10) 0:885(10) 0:58(5) 0:097(2) 1:35(15)3 :18562459(10) :62351(10) 0:995(1) 0:80(3) 0:051(2) 1:24(4)4 :16073242(15) :62364(15) 1:128(13) 1:07(4) 0:0118(20) 1:19(5)5 :14230189(10) :62355(14) 1:250(13) 1:26(5) �0:018(2) 1:24(5)6 :12800424(12) :62350(16) 1:385(30) 1:85(18) �0:048(2) 1:03(15)7 :06442225(5) :62338(10) 2:854(40) 7:5(2) �0:019(2) 1:08(19)8 :04303818(3) :62324(15) 4:02(30) 15:1(9) �0:107(2) 1:07(16)9 :03432687(4) :62337(26) 4:99(40) 23:2(15) �0:212(4) 1:08(23)10 :3934222(2) :62344(5) 0:6617(8) 0:360(2) �0:0015(7) 1:21(6)11 :0544853(20) :62316(20) 0:0593(1) :0027(4) 0:212(4) 1:29(12){ the �rst olumn is the number of the modelsTable 2.4: Some results of separate �ts of Q with y1 as a free parameter.Model 1 2 8 9 11K 0:3697399(4) 0:2216545(2) 0:0430382(7) 0:0343268(1) 0:05449(3)Q0 0:6238(7) 0:6231(8) 0:625(1) 0:623(2) 0:625(3)yi �0:87(6) �0:800(15) �0:68(16) �0:80(2) �1:0(3)analysis [28℄ shows that there are two �xed points, i.e., the mean-�eld (0; 0) and the Ising �xed points (r�; v�)(Fig. 2.1). The rossover behavior of the Binder ratio Q(0) is displayed by a data ollapse in Fig. 10 inRef. [29℄. This provides a sale for the irrelevant Ising �eld v on the whole range from the Ising to themean-�eld �xed point. Using this sale and the value of b1i for the ith model (Tab. 2.3), we shematiallyillustrate the positions of the ritial point of the eleven systems in the present work (Fig. 2.1).
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Figure 2.1: Shemati illustration of positions of models 1-11 in the parameter spae (r; v), where r is atemperature-like parameter and u reets the amplitude of the irrelevant �eld. The mean-�eldand Ising �xed points, denoted as , sit at (0; 0) and (r�; v�), respetively.The results in Tab. 2.3 rely on the hoie that the irrelevant exponent yi was �xed at �0:82. As disussedin Se. 2.1, without suh an assumption of the value of yi, the auray of Q(0) and yi will be very limited.As a test, we left the exponent y1 as a free parameter. We �nd that the unertainties of y1 are then almostas big as the absolute value of y1 itself for models with relatively small amplitude b1. For the rest, the resultsin Tab. 2.3 are also a�eted in the sense that the auray dereases signi�antly, as shown in Tab. 2.4.II. Simultaneous analysis 17



Table 2.5: Simultaneous �t of the ratio Q.Q(0) Q(1) Q(2) Q(3) Q(4)0:62342(3) 1 (�xed) 0:826(6) �3:32(9) �9:4(14)yi K(1) K(2) K(3) K(4)�0:821(5) 0:36973981(8) 0:22165455(5) 0:18562452(6) 0:16073229(5)K(5) K(6) K(7) K(8) K(9)0:14230186(5) 0:12800417(5) 0:06442222(2) 0:04303821(2) 0:03432687(2)K(10) K(11) a1 a2 a30:39342225(9) 0:0544876(8) 0:5203(8) 0:853(1) 0:9930(12)a4 a5 a6 a7 a81:132(2) 1:261(3) 1:390(3) 2:77(3) 4:031(14)a9 a10 a11 b1 1 b1 24:92(3) 0:6603(3) 0:05944(4) 0:114(2) 0:094(2)b1 3 b1 4 b1 5 b1 6 b1 70:052(1) 0:0147(7) �0:016(1) �0:046(1) �0:014(1)b1 8 b1 9 b1 10 b1 11�0:113(2) �0:219(4) �0:0012(5) 0:207(4)On the basis of the universality hypothesis, we analyze the Monte Carlo data of these systems simul-taneously. The data were �tted, instead of to Eq. (2.9), to Eq. (2.8). As a result, eah of the amplitudesqji is deomposed in a universal fator Q(j) and a nonuniversal fator ai. Sine the Q(j) are shared by allthe systems, the number of unknown parameters dereases signi�antly, in omparison of the total numberin the separate �ts. This deomposition also leads to an additional free parameter sine numerial dataan only determine the produt of Q(1) and ai, so that one of the parameters Q(j) (j 6= 0) and ai has tobe �xed as an arbitrary onstant. Here, we simply set Q(1) = 1. Together with the mehanism disussedin Se. 2.1, this e�et leads to a substantially improved auray of the unknown parameters, despite thatyi was left as a free parameter. This inludes the determination of the ritial points, the universal ratioQ(0), the irrelevant exponent yi, and the amplitudes b1i. The results are shown in Tab. 2.5. The amplitude[Q(1)℄2=Q(2) = 1=0:826(6) = 1:211(9) is in good agreement with those in the separate �ts (Tab. 2.3).2.4 Other quantitiesThe Monte Carlo simulations also yielded the suseptibility as � = L3hm2i. Furthermore, we sampled theenergy density and its ross produts with hm2i and hm4i. Thus, we obtained derivative of Q, denoted as Qp.Analysis of � and Qp yields an estimation of the magneti and thermal exponents, yt and yh, respetively.I. Simultaneous analysis of �Aording to �nite-size saling, the magneti suseptibility � behaves as�(t; v; L) = x(t) + L2yh�d� �h�H�2 �(Lytt; Lyiv; 1) ; (2.11)where x(t) arises from the di�erentiation of the analytial part of the free energy density, h is the magnetisaling �eld, and H is the physial magneti �eld. The dependene of h onH is not universal and is linearizedas h = pwiH . Taking into aount that t = ai(Ki�Ki)+bi(Ki�Ki)2+� � � , Taylor-expansion of Eq. (2.11)yields � = xi + si(Ki �Ki) + L2yh�d wi[�(0) + �(1)ai(Ki �Ki)Lyt +�(2)a2i (Ki �Ki)2L2yt + �(3)a3i (Ki �Ki)3L3yt +�(4)a4i (Ki �Ki)4L4yt + biLyi + i(Ki �Ki)Lyt+yi ℄ : (2.12)18



Table 2.6: Simultaneous �t of the magneti suseptibility �.�(0) �(1) �(2) �(3) �(4)1 (�xed) 1 (�xed) 0:409(2) �0:043(1) �0:075(2)yh K(1) K(2) K(3) K(4)2:4816(1) 0:3697398(1) 0:22165457(3) 0:18562459(7) 0:16073233(6)K(5) K(6) K(7) K(8) K(9)0:14230183(12) 0:12800422(5) 0:06442225(3) 0:04303821(2) 0:03432690(3)K(10) K(11) w1 w2 w30:3934221(1) 0:054487(1) 1:75(2) 1:55(2) 1:38(2)w4 w5 w6 w7 w81:266(2) 1:187(2) 1:127(2) 1:156(2) 0:989(2)w9 w10 w11 a1 a20:875(1) 0:933(1) 0:2192(4) 2:00(4) 3:32(2)a3 a4 a5 a6 a73:87(2) 4:45(4) 4:96(6) 5:63(6) 10:64(4)a8 a9 a10 a1116:16(3) 19:7(2) 2:65(8) 0:2236(2)Table 2.7: Results for the ratio ri.Model 1 2 3 4 5r 0:259(5) 0:258(5) 0:257(6) 0:256(6) 0:254(7)6 7 8 9 10 110:253(8) 0:259(7) 0:252(8) 0:252(8) 0:259(6) 0:258(6)Here, the jth thermal derivative of � at ritiality is denoted as �(j). For the ith model, the amplitude ai isthe same as in Eq. (2.8). This will be on�rmed later. Equation (2.12) was �tted to the Monte Carlo data,and the result is shown in Tab. 2.6. Aording to similar arguments as mentioned above, there are two extrafree parameters in Eq. (2.12) during the �t. Here, we simply �xed �(0) and �(1) equal to 1. The magnetirenormalization exponent is estimated as yh = 2:4816(1). This is in exellent agreement with most availableresults [3{13℄, and its preision is omparable with the best known value yh = 2:48180(15), obtained from a25th-order high-temperature expansion [30℄. The ritial points are onsistent with those in Tab. 2.5. Wealso alulated the ratio ri = (ai)(Q) = (ai)(�), where the supersripts Q and � represent that the value of aiis taken from Tabs. 2.5 and 2.6, respetively. The result is shown in Tab. 2.7. The onsisteny of ri amongthese eleven models on�rms that the funtion of t of K is independent of the type of physial observable.II. Simultaneous analysis of QpDuring the Monte Carlo simulations, the energy density e was sampled as the nearest-neighbor sum formodels 1-10: e = hSnni = Xhnnih�i�ji : (2.13)For the hard-ore lattie gas (model 11), the nearest-neighbor ouplings are in�nitely repulsive, and thequantity e is thus de�ned, instead, as a sum over the next-nearest-neighbor pairs. On this basis, we sampleda quantity Qp whih orrelates the magnetization distribution with the energy density:Qp = 2 hm2Snnihm2i � hm4Snnihm4i � hSnni = 1Q �Q�t �t�Knn : (2.14)Little additional e�ort is required for this task sine m2 and e are already sampled during the Monte Carlo19



Table 2.8: Result of simultaneous �t of Qp.Lmin Q(0)p Q(1)p Q(2)p Q(3)p Q(4)p8 1 (�xed) 0:1 (�xed) �4:4(5) �1:2(2) 9:3(23)yt p1 p2 p3 p4 p51:58684(14) 0:825(5) 1:355(2) 1:335(2) 1:334(2) 1:343(2)p6 p7 p8 p9 p10 p111:351(2) 1:422(1) 1:428(1) 1:441(2) 1:058(1) 0:662(1)simulations. The quantity Qp has been reported [9{11℄ to be a good hoie in determining the thermal salingdimension. The reason will be disussed later on the basis of its saling behavior. For models 3-10, apartfrom nearest neighbors, the spin-spin interations our between seond-, third- and fourth-neighbor pairs.In those ases, the amplitude of �t=�Knn is di�erent from the value of ai in the funtion t = ai(Ki �Ki).Aording to Eq. (2.1), near the ritial point the quantity Qp behaves asQp(t; v; L) = Lyt �t�KnnQp(Lytt; Lyiv; 1) : (2.15)Taking into aount ontributions of diLy2 due to the analyti part of the free energy, we Taylor-expand thisequation as Qp = Lyt pi[Q(0)p +Q(1)p ai(Ki �Ki)Lyt +Q(2)p a2i (Ki �Ki)2L2yt +Q(3)p a3i (Ki �Ki)3L3yt +Q(4)p a4i (Ki �Ki)4L4yt +biLyi + diLy2 + i(Ki �Ki)℄ ; (2.16)where the parameters Q(j)p are universal, and �t=�Knn is denoted as pi for the ith model. Compared tothe spei� heat, the divergene of Qp with respet to the system size L at ritiality is muh stronger.Aording to �nite-size saling, the ritial spei� heat C behaves approximately as C � C0 / L2yt�3,where C0 arises from the analytial part of free energy. The exponent 2yt � 3 ' 0:174 is so small that theterm with this exponent is normally diÆult to separate from the bakground ontribution C0 in numerialanalyses. Therefore, the quantity Qp serves as a better hoie than C to estimate the thermal exponent yt.We �tted Eq. (2.16) to the Monte Carlo data, using the ritial points as taken from Tab. 2.5. This is in linewith the relatively weak dependene of Qp on the temperature-like parameters K. The results are shown inTab. 2.8. As possible alternatives, we have inluded more terms suh as Lyt+yi(Ki �Ki) within the squarebrakets of Eq. (2.16). However, this does not improve the residual �2 of the �t. The dependene on theuto� at small system sizes in the �t was also determined. Taking into aount these dependenes and theunertainties of the ritial points, we estimate the thermal exponent as yt = 1:5868(3).2.5 DisussionWe have performed extensive Monte Carlo simulations of several Ising-like models in three dimensions. Thesemodels were seleted suh that they span a wide range of the irrelevant �eld, as illustrated in Fig. 1. In orderto enable a meaningful test of universality, the models are also hosen aording to quite di�erent mirosopiHamiltonians. On the basis of �nite-size saling, we analyze the Monte Carlo data both separately andsimultaneously. These systems are on�rmed to be within the Ising universality lass. Compared to othermethods, our simultaneous analyses yield more aurate estimations for the ritial points, renormalizationexponents, and the Binder umulant. In partiular, we determine the irrelevant exponent as yi = �0:821(5).Tables 2.9 and 2.10 show a omparison between some existing results and our estimations.In order to interpret numerial data orretly, it is neessary to inlude appropriate orretions to saling.We �nd that, normally, a single power-law orretion is not suÆient to aount for all �nite-size orretions.20



Table 2.9: Summary of results of the saling exponents and the universal quantity Q(0) for the three-dimensional Ising universality lass.Year yt yh yi Q(0) Method[5℄ 1980 1:587(4) 2:485(2) �0:79(3) RG[31℄ 1990 1:587(4) 2:4821(4) �0:83(5) HTE[32℄ 1991 1:587 2:4823 �0:84 HTE[33℄ 1992 1:602(5) 2:4870(15) �0:8 MCRG[34℄ 1994 1:590(2) 2:482(7) MC[7℄ 1995 1:586(4) 2:482(4) CAM[9℄ 1995 1:587(2) 2:4815(15) �0:82(6) 0:6233(4) MC[11℄ 1996 1:585(2) 2:4810(10) MCRG[14℄ 1998 1:586(3) 2:483(2) �0:799(11) HTE[10℄ 1999 1:5865(14) 2:4814(5) �0:82(3) 0:62358(15) MC[30℄ 2002 1:5869(4) 2:48180(15) �0:82(5) HTENow 2003 1:5868(3) 2:4816(1) �0:821(5) 0:62341(3) MCRG { renormalization of �4 model; HTE { high-temperature series expansion; MC { Monte Carlo and�nite-size saling; MCRG { Monte Carlo renormalization; CAM { oherent-anomaly method.For instane, if one neglets the term b3Ly3 in Eq. (2.9), whih is deaying relatively fast, one �nds aonsiderable inrease of the residual �2 both in the separate and simultaneous �ts. In three dimensions,Monte Carlo simulations are restrited to linear system sizes L in the order of 100. Even for L � 100,orretions-to-saling are still signi�ant. For instane, we onsider the ontribution of b1Lyi in Eq. (2.9) forthe spin- 12 model on the simple-ubi lattie (model 2). From Tab. 2.3 ( b1 � 0:094), we �nd that the termb1Lyi ontributes about 0:002 to Q for L = 90. Compared to the auray 0:00003 of Q(0) in Tab. 2.5, thisontribution is huge and may not be negleted. Another example of orretions due to the irrelevant �eldis provided in Ref. [8℄, where the spontaneous magnetization density M was analyzed as M(t) = f(t)t� forthe Ising model on simple-ubi latties with linear sizes up to L = 256. Here, t is the redued temperaturet = (K �K)=K, the exponent � is equal to (3 � yh)=yt, and f(t) is some funtion of t that ontains theorretions to saling. It was found that, without inluding a orretion � tyi=yt due to the irrelevant �eld inthe funtion f(t), one annot suessfully desribe the numerial data (0:0005 < t < 0:26), even when f(t) isde�ned as f(t) = p0 + p1t+ p2t2 + p3t3. Another analysis involving the spontaneous magnetization densitywas reently arried out by Gar��a et al [15℄. Remarkably, they laimed that, for L > 90 and t > 0:004,orretions to saling are invisible. They did not omment on the nature of the disrepany with Ref. [8℄,and did not provide details about their error estimation. Therefore, some doubt onerning the preision oftheir results (yt = 1:600(2) and yh = 2:501(5)) seems justi�ed.For the spin-1 model and the lattie gas, another quantity of interest is the density of vaanies �vat the ritial points. Finite-size analysis yields �v = 0:400694(1) and 0:789516(1) for these two models,respetively.Bibliography[1℄ L. Onsager, Phys. Rev. 65, 117, (1944).[2℄ B.M. MCoy and T.T. Wu, The Two-Dimensional Ising Model (Harvard University Press, Cambridge,Massahusetts, 1968), and referenes therein.[3℄ J.H. Chen, M.E. Fisher, and B.G. Nikel, Phys. Rev. Lett. 48, 630 (1982).[4℄ J. Adler, J. Phys. A 16, 3585 (1983). 21
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3Cluster simulation of the transverse Ising model
We formulate a luster Monte Carlo method for the anisotropi limit of Ising models on d + 1-dimensionallatties, whih in e�et, are equivalent with d-dimensional quantum transverse Ising models. Using thistehnique, we investigate the transverse Ising models on the square, triangular, Kagome, honeyomb, andsimple-ubi latties. The Monte Carlo data are analyzed by �nite-size saling. In eah ase we �nd,as expeted, that the ritial behavior �ts well in the d + 1-dimensional Ising universality lass. For thetransverse Ising model on the square lattie, we determine the Binder umulant of the lassial ounterpartfor a range of aspet ratios between the system sizes in the third or `lassial' diretion and that in the othertwo diretions. Mathing this universal funtion with the ase of the isotropi Ising model yields the lengthratio relating the isotropi Ising model with the anisotropi limit. The eÆieny of the present algorithm isreeted by the preision of its results, whih improves signi�antly on earlier analyses.3.1 IntrodutionIt is well known that the d-dimensional quantum transverse Ising model (TIM) is equivalent with theanisotropi limit of d + 1-dimensional lattie Ising model. As early as in 1964, Shultz and Mattis [1℄ dis-played this equivalene by mapping the lassial Ising model on a quantum model that redues to the TIM.The reverse path, i.e. from quantum spin models to anisotropi lattie models, was shown by Suzuki [2, 3℄,by using the Trotter formula [4℄.This equivalene enables one to explore the properties of the TIM by the study of its lassial ounterpart.In this way, one an take advantage of the insight and results that have been obtained from the theory oflassial ritial phenomena, inluding the renormalization theory. For instane, one an study the TIM inany number of dimensions, by means of the disretized path integral approah [5,6℄, or by applying standardMonte Carlo tehniques to its lassial ounterpart [7℄.However, these numerial tehniques lead to pratial diÆulties due to singular behavior in the anisotropilimit of the lassial Ising model. When this Hamiltonian limit is approahed, the oupling strengths andthe orrelation length in one of the diretions in the lassial model diverge, while the ouplings in the otherdiretions approah zero. Possibilities to deal with this problem are to approximate the anisotropi limitby a properly strong anisotropy, or extrapolate by taking the anisotropy stronger and stronger [7℄. Suhsimulations tend to be diÆult as a onsequene of the onsiderable requirements of omputer time andmemory.In this work, we takle this problem by means of the diret appliation of a ontinuous luster algorithmin the anisotropi limit of the Ising model. As the orrelation length in the strong-oupling diretion divergeswhen the Hamiltonian limit is approahed, we inrease the number of spins in this diretion and meanwhileresale it by a divergent number suh that the physial size of the system remains onstant. This resalingrenders the strong-oupling dimension ontinuous, while the other dimensions remain disrete. Thus, thereis an in�nite number of spins per physial length unit along the strong-oupling diretion. In this ontinuous25



limit, luster algorithms an be formulated [8℄ whose eÆienies are omparable to the onventional lustermethods for the isotropi ase.The preision of the results obtained by this ontinuous algorithm indiates that it is eÆient in om-parison with other methods that have been used to investigate transverse Ising models. These results are inagreement with the expetation that quantum transverse Ising models belong to the universality lass of thelassial Ising model with one more dimension. An interesting property of this ontinuous luster algorithmis that it an be applied to systems in urved geometries [9℄.3.2 Anisotropi limit of the Ising modelUsing d = 1 as an example, we briey reall the relation between the d+1-dimensional lassial Ising modeland the d-dimensional TIM. In view of its relevane for Monte Carlo analyses, we put some emphasis onthe behavior of the length sale in the d+1-st diretion. The Hamiltonian of a lassial 2-dimensional Isingmodel on a N �M square lattie with periodi boundary onditions is de�ned byH=kBT = �Xx;y [Kx sx;y sx+1;y +Ky sx;y sx;y+1℄ ; (3.1)where the integer oordinates x and y, whih are de�ned modulo N and M respetively, label the lattiesites, and Kx, Ky are the oupling strengths in the x- and y-diretions respetively. The spins an assumethe values sx;y = �1. The ritial line of this model is given by [10℄sinh (2Kx) sinh (2Ky) = 1 : (3.2)Therefore, in the anisotropi limit �! 0, the ouplings an be writtenKx = �=t; exp(�2Ky) = � ; (3.3)where t parametrizes the temperature; the ritial point is t = 1.The evaluation of the partition funtion Z(M;N) of this model by means of the transfer matrix T isexpressed by Z(M;N) = X~s1;~s2;��� ;~sM < ~s1jTj~s2 >< ~s2jTj~s3 > � � � < ~sM jTj~s1 > ; (3.4)where the transfer diretion is taken along the strong bonds Ky, and the elements of T are< ~skjTj~sk+1 >=Yx exp [Kxsx;y sx+1;y +Kysx;y sx;y+1℄ : (3.5)Here ~sk and ~sk+1 are the spin on�gurations in two adjaent rows respetively. Eq. (3.4) is just the trae ofTM , so that the partition funtion is the sum over the M -th powers of the eigenvalues of T. For large M ,the ontribution from the largest eigenvalue dominates. Sine every di�erent spin ontributes a fator �, ~skand ~sk+1 must be nearly idential. Thus, up to order � we may represent the transfer matrix as< ~skjTj~sk+1 >=< ~skj exp(��tHqm)j~sk+1 > exp (NKy) ; (3.6)in whih Hqm is the 1-dimensional quantum HamiltonianHqm = �Xx (szxszx+1 + tsxx) ; (3.7)where sz and sx are Pauli matries. Hqm ontains non-ommuting operators and represents a quantumsystem with Ising interations between the nearest-neighboring spins along the hain, and a transverse �eld tin the x-diretion. This establishes the relation between the 2-dimensional Ising model and the 1-dimensionalTIM. 26



As mentioned earlier, one an also derive this equivalene by using the Trotter formula [4℄, whih an bewritten as: exp[��Hqm℄ = limM!1fexp[� �MHqm℄gM ; (3.8)where � is the inverse temperature of the quantum system.A omparison of Eqs. (3.6) and (3.8) yields the relation between the inverse temperature � of the TIMand the lattie size M for the lassial Ising model asM = �t=� : (3.9)The equivalene of the TIM and the lassial model thus requires that M diverges as 1=� even at nonzerotemperatures. This is a serious ompliation for simulations, espeially at low quantum temperatures � !1.For d � 2, we use the example of the Ising model on the simple ubi lattie. Its Hamiltonian isH=kBT = � NXx=1 NXy=1 MpXz=1[Kxy sx;y;z(sx+1;y;z + sx;y+1;z) +Kz sx;y;zsx;y;z+1℄ ; (3.10)where 1 � x; y � N and 1 � z � Mp label the lattie sites. The label p emphasizes that Mp refers to thephysial system size; its ratio with N de�nes the aspet ratio of the 3-dimensional system. Periodi boundaryonditions apply. The oupling strengths Kxy and Kz in the xy-plane and in the z-diretion respetivelyare initially hosen to be of order one. The behavior of the length sales in the Hamiltonian limit, whereKz diverges while Kxy approahes zero, is illustrated by means of a Migdal-type renormalization [11℄ in thez-diretion, without resaling the x- and y-diretions. We expet that this proedure, although only valid asan approximation, will yield a qualitatively orret piture. Eah bond in the z-diretion is deorated withn�1 Ising spins and the bond strength Kxy is distributed aordingly among the newly inserted spins. Thisleads to a model with a lattie spaing along the z-diretion whih is smaller by a fator n. It is desribed bythe same Hamiltonian Eq. (3.10) but with new ouplings K(n)xy and K(n)z , and the z-oordinate is representedby integers z0 = nz whih run from 1 to M 0 = nMp:H0=kBT = � NXx=1 NXy=1 M 0Xz0=1[K(n)xy sx;y;z0(sx+1;y;z0 + sx;y+1;z0) +K(n)z sx;y;z0sx;y;z0+1℄ ; (3.11)The new ouplings satisfy K(n)xy = Kxy=n and tanh K(n)z = [tanh Kz℄1=n : (3.12)For large n, one may write exp [�2K(n)z ℄ = �, and substitute tanh K(n)z in Eq. (3.12) aordingly. One �nds1=n = a [ln(1 + �)� ln(1� �)℄ ' a�[2 +O(�2)℄, where a = �1= ln(tanh Kz). This leads toK(1)xy = �t [1 +O(�2)℄; exp[�2K(1)z ℄ = � ; (3.13)whih has a same form as Eq. (3.3). It also suggests that for nonzero � the ritial point t(�) deviates fromt(0) as �2.This model is equivalent with the TIM on the square lattie with HamiltonianHqm = �Xx;y [szx;y(szx+1;y + szx;y+1) + tsxx;y℄ : (3.14)The inverse proportionality of n and �, together with Eq. (3.9), shows that the physial size Mp =M 0=n isproportional to the inverse quantum temperature �. 27



3.3 AlgorithmAs mentioned earlier, a Monte Carlo method for the Hamiltonian limit will have to deal with singular aspetssuh as the divergent oupling strength Kz, the vanishing oupling strength Kxy, and the divergene of thesystem size M . Using ideas from existing luster methods [12{14℄, we introdue proedures to improve theeÆieny for the system desribed by Eqs. (3.1) and (3.3) with small but nonzero �. Then we disuss how todeal with the divergene of the system size M in the y-diretion, and �nally desribe the ontinuous Wol�algorithm (CWA) for the limit � = 0.Now, let us reall the luster algorithm for the isotropi lattie Ising model with nearest-neighbor in-terations. If two nearest-neighboring spins on sites m and n, oupled with strength Kmn, have the samesign the algorithm will `freeze' the bond between m and n with a probability pmn = [1� exp (�2Kmn)℄, or`break' the bond with the probability 1� pmn. Sites onneted by `frozen' bonds are inluded in the sameluster. One an introdue bond variables bmn = 0 or 1; frozen bonds have bmn = 1 and broken bonds havebmn = 0. A pair of opposite spins always has bmn = 0. The onventional way to simulate this is to draw auniformly distributed random number r (0 < r < 1) for eah bond bmn, set bmn = 1 if the spins on sites mand n have the same sign and r < pmn.For the anisotropi model de�ned by Eqs. (3.1) and (3.3), there are two types of bond variables bmn. Forsmall �, the bond probability between a pair of equal spins in the y-diretion is py = 1� exp (�2Ky) / 1� �,so one has to draw of order 1=� random numbers r before �nding a bond variable by = 0. For the weak bondsin the x-diretion, the probability px = 1� exp (�2Kx) / � that a pair of equal neighbors is onneted by afrozen bond is small, and many random numbers are needed before suh a `bridge' is found.A more eÆient proedure follows. We �rst write bmn = ~bmnÆsmsn where the ~bmn are independentrandom variables equal to 0 or 1; ~bmn = 1 with probability px = 1� exp (�2Kx) or py = 1� exp (�2Ky) forbonds in the x or y diretion respetively. Counting the bond variables sequentially in the y-diretion, thedistribution Py(ky) � (1� py) py ky�1 expresses the probability that (ky � 1) subsequent bond variables ~bmnare equal to one, while the ky-th variable is zero: a `break' ours at the ky-th position. Thus the umulativedistribution is Cy(ky) = kyXk=1Py(k) = 1� (py)ky ; (3.15)and by mapping the probability distribution Cy(ky) on the uniform distribution of the random number r,one an transform r into an integer ky: ky = 1 + [ln(r)= ln(py)℄ ; (3.16)where 0 < r < 1 and the square brakets denote the integer part. In ontrast, in the x-diretion, one usesthe distribution Px(kx) � p (1� px) kx�1 to express the probability that (kx � 1) subsequent variables ~bmnare zero, while the kx-th bond variable is one. Also in this ase, one transforms a uniformly distributedrandom number r into an integer kx: kx = 1 + [ln(r)= ln(1� px)℄ : (3.17)This method avoids the problem that many random numbers have to be drawn before adding a new bridgeor a new break.For purpose of larity, we desribe in detail the steps in the formation of a Wol� luster aording to thedesription above.1. Choose the origin (x; y) of the luster randomly (see Fig. 3.1), denote its sign s � sx;y.2. Count the neighboring sites on the left-hand side as (x; y � 1), (x; y � 2), � � � , (x; y � a) till thenearest interfae sx;y�a�1 = �s (see Fig. 3.1). Draw a random number r and ompute ky aordingto Eq. (3.16). De�ne l� as the smaller number of a and ky � 1, and ip the spins from (x; y � l� +1)to (x; y). Do the same for the right-hand side suh that the spins from (x; y + 1) to (x; y + l+) areipped. Thus, a range of l� + l+ strongly oupled spins on the x-th row is inluded in the luster andipped. 28
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xFigure 3.1: Illustration of the anisotropi Ising model on anN�M lattie. The vertial dashed line representsthe weak oupling Kx, the horizontal line represents the strong oupling Ky. The blak irlesare + spins, and the open irles are �pins.3. Inlude into the luster spins on (x � 1)-th and (x + 1)-th rows onneted to the above range bybridges in the weak-oupling diretion. Compute kx aording to Eq. (3.17). If kx > l� + l+, go to4. Otherwise, if sx�1;y�l�+kx = s, inlude this spin in the luster and store its position in the `stak'memory. Find a new random value kx till all the l� + l+ bonds between x-th and (x � 1)-th rows areaounted for. Do the same for the neighboring sites on the (x+ 1)-th row.4. If the stak is empty, go to 5. Otherwise, read a site (x; y) from the stak, and erase it from the stak.Go to 2.5. The luster is ompleted and ipped.Although the above proedures an improve the eÆieny of the onventional Wol� algorithm, we stillhave to solve the problem of the divergene of the expetation values of kx and ky in parallel with that ofM as �! 0: hkyi = h �1ln(py) i / 1� ; hkxi = h �1ln(1� px) i / 1� : (3.18)hkyi and hkxi an be reognized as the average distanes, in the y-diretion, of the breaks and of the bridgesrespetively.To deal with the divergene of the system size M one an resale the y-diretion as yp = � y, so thatthe total physial size Mp = �M and the orrelation length in this diretion remain approximately onstant(see Fig. 3.2). In the limit � = 0, the strong-oupling dimension beomes ontinuous, i.e., there are in�nitenumber of spins per physial length unit, and the +=� spins are replaed by ranges of sign +=�. Thus, theN �M square lattie redues to N lines of physial length Mp = �M (see Fig. 3.2), and Eqs. (3.16) and(3.17) hange into ly = � ky = � ln(r) ; (3.19)and lx = � kx = � ln(r) t=2; (3.20)whih indiate that the breaks and the bridges our on a length sale of 1 so that the numbers of thesebreaks and bridges are �nite in this ontinuous limit. These breaks an be reognized as interfaes separatingthe ranges of + and � spins, and the bridges serve as the onnetions between nearest-neighboring lines.Instead of the individual spins one may use the loations of these interfaes as the dynamial variables, andde�ne a ontinuous Wol� algorithm (CWA) on this basis.In the onventional Wol� algorithm, the spins are simply stored in an array. Sine this information isno longer available, one has to determine the sign of a partiular position (x; y) from the positions of theinterfaes, supplemented with additional information on the sign at a given position on eah ontinuous line,e.g. at the origin y = 0. The sign at position (x; y) is given by sx (�1)n, where n is the number of interfaesbetween the origin and position y on the x-th line, and sx is the sign at the origin of this line.The steps involved in the ontinuous Wol� algorithm (CWA) an now be expressed as follows:1. Choose a random position (x; y) randomly, whih means it is at x-th line and its y-oordinate is y,and obtain its sign s aording to the diretions given above.29



spin +1 spin −1 range of sign −1 range of sign +1Figure 3.2: Illustration of the proedure leading to the Hamiltonian limit of the lassial Ising model. Thephysial length sale is approximately onserved by reduing the horizontal size of N�M=� spinswith a fator �. This leads to N ontinuous lines of length M in the Hamiltonian limit. The left�gure shows an anisotropi Ising model with small but nonzero �, and the right one illustratesthe � = 0 ase.2. Determine the distane dl from y to the �rst interfae on the left-hand side of y, and similarly thedistane dr on the right-hand side.3. Inlude a range around (x; y) into the luster as follows. Draw a random number r and obtain ly fromEq. (3.19). If ly < dl, reate an interfae at position (x; y � ly); otherwise, annihilate the interfaeat (x; y � dl). So the left-hand end of the range to be ipped is set at (x; y � l), where l is thesmaller number of dl and ly (l = min (dl; ly)). Find another number from Eq. (3.19) and obtain theright-hand end of the range (x; y + r) analogously. Thus, the range from (x; y � l) to (x; y + r) isinluded in the luster and ipped.4. Create bridges between this range and its nearest-neighboring lines. For the (x � 1)-th line, draw arandom number and ompute lx by Eq. (3.20). If lx > l+r, go to 5. Otherwise, if the sign at position(x� 1; y� l + lx) is equal to s, store the position into the stak. Repeat this proedure till the wholerange has been visited. Do the same for the (x+ 1)-th line.5. If the stak is empty, go to 6. Otherwise, read (x; y) from the stak, and erase it from the stak. Goto 2.6. The luster is ompleted and ipped.In the CWA a spin range is ipped by the reation or annihilation of interfaes. When a range is ipped,there are three possibilities: two interfaes are reated, two interfaes are annihilated, or one new interfaeis reated and an existing one is annihilated. In all these ases, the number of interfaes per line remainseven. One detail to be mentioned is that, if a ipped range inludes the origin of that line, the orrespondingarray element ontaining the signs at the origins, should be hanged.It is straightforward to generalize the CWA for appliations to d-dimensional TIM's with d � 2. Relatedontinuous luster algorithms, suh as the Swendsen-Wang variety, an also trivially be formulated on thebasis of the above desription.3.4 Test of the algorithmTo test the CWA, we investigated the anisotropi limit of the 2-dimensional Ising model de�ned by Eqs. (3.1)and (3.3), sine it has been solved exatly [10℄. The CWA was applied to simulate suh systems with L linesof length L and with periodi boundary onditions, where L = 8; 12; 16; 22 and 24. During the simulations,the dimensionless quantity QL, whih is related to the Binder umulant [15℄, was sampled:30



Table 3.1: Results of the least-square �ts of QL(t) for the TIMs de�ned on the triangular, Kagome, honey-omb, square and ubi latties.triangular Kagome honeyomb square ubiLmin 6 8 10 2 7Lmax 20 20 20 48 14Q 0.6238 (7) 0.6041 (4) 0.6149 (7) 0.6206 (2) 0.456947 (�xed)t 4.76811 (9) 2.95265 (4) 2.13250 (4) 3.04438 (2) 5.15813 (6)a1 0.03138 (5) 0.0894 (1) 0.1027 (8) 0.0497 (2) 0.0235 (2)a2 0.0010 (1) 0.0082 (2) 0.0088 (2) 0.00207 (2) 0.0020 (4)a3 -0.00023 (7) -0.0035 (5) -0.0040 (2) -0.00043 (6) -0.0024 (6)b1 0.061 (5) 0.066 (2) 0.097 (4) 0.093 (2) 0.205 (2)b2 0.14 (2) - - 0.018 (6) -0.118 (3)QL(t) = < m2 >2L< m4 >L (3.21)where m is the magnetization density.Aording to universality of the Binder umulant, the asymptoti value of Q in suh a system is equalto that for the lattie Ising model, with isotropi ouplings Kx = Ky and system sizes L � �L, where� = lim�!0 1=(� sinh 2Ky) = 2 [10,16℄.In the language of renormalization, the �nite-size dependene of the singular part of the free energydensity f is formulated as f(t; h; v; � � � ;L) = L�df(tLyt ; hLyh ; vLyi ; � � � ; 1) ; (3.22)where t is the transverse �eld, h the magneti �eld, v the irrelevant �eld; yt; yh and yi are the orrespondingexponents, and d is the dimensionality. Therefore, one expets the following �nite-size behavior of QL(t)near ritial point [17℄: QL(t) = Q+ a1(t� t)Lyt + a2(t� t)2L2yt + � � �+b1Lyi + b2Ly2 + 1Ly3(t� t) + � � � ; (3.23)where y2 = d� 2yh, y3 = yi + yt, and a1; a2; b1; b2 and 1 are unknown parameters. The Monte Carlo datawere �tted on the basis of this formula, aording to the least-squares riterion. The exponents yt, yh andyi were set to the exat Ising values 1; 15=8 and �2 respetively. So y2 = d� 2yh = �7=4 and y3 = yi+ yt =�1. A �t inluding orretions with amplitudes a1; a2; a3; a4; b1 and 1 shows that t = 0:99998 (6) andQ = 0:80976 (22), in a good agreement with the known results t = 1 and Q = 0:809678 (3) [16℄. When weset t = 1 and Q = 0:809678, and leave yt to be �tted, we obtain yt = 1:01 (1), in agreement with the knownuniversal properties of the isotropi Ising model.In order to ompare the eÆieny of the CWA with the onventional Wol� method, we investigatedthe d = 2 TIM on a L � L square lattie with periodi boundary onditions. The CWA was applied tosimulate for the model de�ned by Eqs. (3.10) and (3.13) at the ontinuous limit � = 0. The length of thethird diretion is taken as L. The onventional Wol� algorithm was used to study suh anisotropi lattiemodels with small but nonzero � (1=150 � � � 1=6). The lattie size in the z-diretion is taken as L=�,and the ouplings Kxy and Kz are obtained by substituting � in Eq. (3.13). The transverse �eld was set ast = 3:04440, whih is very lose to the ritial point t (see Table 3.1), and the system size at L = 4.For several values of �, the omputer time needed for 5 million onventional Wol� steps, was omparedto the time needed by the CWA for the same number of steps (see Fig. 3.3). As expeted, the eÆieny ofthe onventional Wol� method dereases proportionally for �! 0. The eÆieny of the CWA is lower thanbut still omparable to that of the onventional Wol� method for the isotropi Ising model. The reasons are31
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jFigure 3.5: The two-dimensional latties on whih the TIM's are investigated. From left to right: square,triangular, Kagome and honeyomb latties with �nite size 2 � 2. The geometries of the or-responding anisotropi limit of the lassial Ising models are parallel lines whih originate fromthese lattie sites and perpendiular to the planes.3.5 Appliations3.5.1 Critial points of several TIM'sBy means of the CWA, we have investigated the d = 2 TIMs on the square, triangular, honeyomb, andKagome latties (see Fig. 3.5), and the d = 3 TIM on the simple ubi lattie. System sizes were hosen asLd, so that the physial length �M of the ontinuous diretion is equal to L. Periodi boundary onditionswere imposed. During the simulations, the Binder parameter QL(t) was sampled.For the d = 2 TIMs, the �nite-size behavior of QL(t) is expeted to follow the usual saling behaviorof 3-D Ising system as expressed by Eq. (3.23). Moreover, we expet that the d = 2 TIMs on di�erentlatties share the same exponents for the saling �elds t, h, and v, although the unknown amplitudes an bedi�erent. The Monte Carlo data for the systems on these di�erent latties were independently �tted on thebasis of Eq. (3.23), aording to the least-square riterion. The exponents yt and yi are set to the knownvalues 1:587 (2) and �0:815 (4) respetively as reported in the literature, for instane [18{20℄ and in papersreferened therein. Results of these �ts are shown in Table 3.1.To test the universality of the d = 2 TIMs, we set Q = 0:6206 and t = 3:04438 as in Table 3.1 for thesquare lattie, and thus obtained yt = 1:583 (6), whih is in agreement with the known value 1:587. Theorretions with amplitudes a1, a2, a3, a4, b1 and b2 were inluded, and the smallest system size used in the�t is L = 2.For the d = 3 TIM, we have to deal with the numerial diÆulties assoiated with the orretions dueto the marginally irrelevant �eld as our in 4-dimensional Ising-like models [21, 22℄. The anomalously slowrenormalization ow near the �xed point translates into a similarly slow �nite-size onvergene of the Binderratio QL(t), and leads to orretion fators inluding small powers of logarithms of the linear system size L.Under these irumstanes it is not feasible to determine many independent parameters in the �t. We thusmake use of the theoretial preditions for the universal value Q at the ritial point and the values of theexponents of the saling �elds. Expanding the �nite-size saling funtion for QL(t), we expet the followingbehavior [22℄: QL(t) = Q+ Xk akfLyt(lnL)�t �t� t + v L�yt(lnL)2=3 �gkb1Ly2 + b2(lnL)�1 + b3(lnL)�2 � � � ; (3.25)where k = 1; 2; � � � , �t = 16 , yt = 2 and y2 = 4 � 2yh = �2. The `shift' term with amplitude v seemsunimportant, and was taken to be zero. The universal value Q is taken as the analytial value: Q =0:456947 [21, 23℄. Results are shown in Table 3.1.Thus, by applying the CWA to these 2- or 3-dimensional TIMs, we obtained the ritial values of thetransverse �elds t (see Table 3.1). Table 3.2 ompares these values to those obtained by other methodswhih inlude e�etive-�eld approximation [24, 25℄, e�etive-�eld renormalization group (EFRG) [26, 27℄,series expansion [28,29℄ and density-matrix renormalization [31℄ results. The preision of the present resultsindiates that our algorithm ontributes a useful tool for numerial studies of transverse Ising models. Thetotal omputer time onsumed by the present simulations is about 5 proessor-months at 750 MHz.33



Table 3.2: Comparison of the ritial values of the transverse �eld t, as obtained by several di�erent methods,for the d = 2 TIMs on the square, Kagome, honeyomb and triangular latties, and the d = 3TIM in the simple ubi lattie.lattie Present EFA? EFRGy SE
 PI� S-Wz DMRGxwork [24,25℄ [27℄ [28, 29℄ [6℄ [30℄ [31℄Square 3.04438 (2) 2.742 3.021 3.08 3.225 3.044 (1) 3.046Kagome 2.95265 (4) 2.742 2.333 { { { {Honeyomb 2.13250 (4) { { { { { {Triangular 4.76811 (9) 4.704 4.200 4.118 { { {Cubi 5.15813 (6) 4.704 5.059 5.153 { { {? : E�etive Field Approximation; y: E�etive Field Renormalization Group; 
: Series Expansion; �: PathIntegral Monte Carlo simulation; z: Swendsen-Wang in ontinuous time; x: Density Matrix RenormalizationGroup.3.5.2 The Binder ratio and the determination of the length saleFor the isotropi Ising model on the simple ubi lattie, i.e. Kxy = Kz in Eq. (3.10), the ratio Q de�ned byEq. (3.23) is a universal funtion Q(�) of the aspet ratio � =M=N . On the basis of symmetry argumentsit is plausible that a maximum ours at � = 1.For the orresponding anisotropi system, as obtained by extending the TIM on the square lattie in theTrotter diretion, we expet a di�erent dependene of the Binder ratio Qa(�) on the aspet ratio � =Mp=N ,where Mp = �M is the physial size in the ontinuous dimension. This an be attributed to the spatialanisotropy of the Hamiltonian density at the �xed-point of the anisotropi Ising model. However, theanisotropy of the �xed-point Hamiltonian an be suppressed by an anisotropi resaling in the strong-ouplingdiretion, i.e., z ! z0 = �z so that 0 < z0 � �Mp. Thus we expet that Qa(�) of the anisotropi Ising modelfollows the same universal funtion Q, but with � replaed by �0 = �� = �Mp=N , i.e. Qa(�) = Q(��). Usinginstead the logarithm of the aspet ratio as the independent variable, one �nds that Qa(ln�) = Q(ln�+ln�),whih expresses a shift on the ln� sale with respet to the isotropi ase.We determined Qa(ln�) by means of Monte Carlo simulations for system sizes L�L� �L, with L = 8,12, 16, 20 and 24, and several values of � in the range from 0.3 to 3.0. These data were analyzed on thebasis of the saling formulaQL(ln�+ ln�) = Q1(0) + viLyi + v2Ly2 + (1 + dLyi)Xk�2 ak(ln � + ln�+ Lya)k ; (3.26)obtained by Taylor expansion in the argument of QL to whih a �nite-size orretion with amplitude  hasbeen added. This term desribes an L-dependent shift of the maximum of QL. The value of Q1(0) isknown to be 0:62358 (15) [19℄. Corretions with amplitudes vi and v2 desribe the �nite-size dependene ofQ near its maximum. The term with amplitude d desribes the inuene of the anisotropy on the irrelevant�nite-size orretion.Although the �nite-size orretion with amplitude  is learly observable, we ould not satisfatorilydetermine the assoiated exponent ya. We have assumed that ya = yi whih is onsistent with the data.First, we negleted the term with amplitude d and �xed the value of Q1(0) at 0:62358. A reasonable �t isobtained when we inlude terms up to k = 7 in the expansion. We then �nd � = 0:880 (6), whih is slightlylower than the value � = 0:8881 (2) whih was obtained from the spin-spin orrelation funtion and quotedin Ref. [9, 20℄. A reasonable data ollapse of the numerial �nite-size data for Q is thus obtained in theQ0L = QL � viLyi � v2Ly2 versus x0 = ln� � Lyi diagram, shown in Fig. 3.6. However, when we inludethe term with amplitude d in Eq. (3.26), we obtain a more satisfatory (on the basis of the �2 riterion) �tyielding � = 0:886 (7). 34
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4Conformal invariane: The Ising model
We apply onformal transformations to the two-dimensional Ising model (4.1) and to the three-dimensionalIsing model (4.2).4.1 The Ising model on a spheroidWe formulate onformal mappings between an in�nite plane and a spheroid, and one between a semi-in�niteplane and a half spheroid. Speial ases of the spheroid inlude the surfae of an in�nitely long ylinder,of a sphere, and of a at dis. These mappings are applied to the ritial Ising model. For the ase ofthe sphere and the at dis, we derive analytial expressions for the seond and the fourth moments of themagnetization density, and thus for the Binder umulant. Next, we investigate Ising models on spheroids andhalf spheroids by means of a ontinuous luster Monte Carlo method for simulations in urved geometries.Fixed and free boundary onditions are imposed for half spheroids. The Monte Carlo data are analyzedby �nite-size saling. Critial values of the Binder umulants and other ratios on the sphere and on theat dis agree preisely with the exat alulations mentioned above. At ritiality, we also sample two-and one-point orrelation funtions on spheroids and half spheroids. The magneti and temperature salingdimensions, as determined from the Monte Carlo data and the theory of onformal invariane, are in goodagreement with exat results.4.1.1 IntrodutionIn two dimensions, the onsequenes of onformal invariane for ritial systems have been studied ex-tensively. These studies have produed a large amount of results for both bulk and surfae ritial phe-nomena [1{4℄. One of the reasons is that the onformal group in two dimensions is an in�nite-parametergroup, so that the restritions imposed by onformal invariane are strong. As a result, the forms of thebulk and surfae orrelation funtions, and thus the ritial exponents are limited by onformal invariane.Under Cardy's mapping between an in�nite plane and the surfae of a ylinder [5℄, the algebrai deayof orrelations in the plane is transformed into an exponential deay along the ylinder. By utilizing theShwarz-Christo�el formula, Burkhardt et al. onformally mapped the in�nite plane onto a retangulargeometry [2℄. Furthermore, Cardy and Burkhardt investigated the semi-in�nite plane and the parallel-plategeometry with uniform or mixed boundary onditions [4, 6℄. The universal properties of a system inside airle with free or �xed boundary onditions have been studied both exatly and numerially [2, 3, 7℄.However, as far as we know, no appliations of onformal mappings onto urved geometries have beenreported in two dimensions. In this work, we use a onformal mapping of an in�nite plane onto a spheroid.By rotating an ellipse about the minor or the major axis, one obtains an oblate or a prolate spheroid,respetively. Speial ases inlude the surfae of an in�nitely long ylinder, of a sphere, and of a at dis.The latter ase is reahed when the polar diameter of the spheroid approahes zero, so that one obtains the37



interiors of two irles onneted at their perimeters. Thus, this transformation inludes Cardy's mappingas a speial ase. We also perform a di�erent onformal mapping from a semi-in�nite plane onto a halfspheroid.We apply these mappings to the ritial Ising model. From the known bulk two- and four-point orrelationfuntions in the plane, and the assumption of ovariane of the multi-point orrelations under onformalmappings, the seond and the fourth moments of the magnetization density � on the sphere and on the atdis an be expressed in terms of integrals. Sine a diret analyti alulation of most of these integrals isnot feasible, we evaluated them by means of Monte Carlo integration. As a result, we obtain the universalquantity Q = h�2i2=h�4i, and ratios r2 = h�2is=h�2id and r4 = h�4is=h�4id, where the subsripts s and drepresent the sphere and the at dis, respetively.The nonzero net urvature of a spheroid poses a problem for numerial appliations of onformal invari-ane. The diÆulty is that a system de�ned on the spheroid seems to defy any aeptable disretization.Even if the net urvature of a given geometry is zero, numerial simulations may be ompliated due tothe presene of urved boundaries. An example is a system inside a irle. Badke and Re�s et al. haveapproximated this geometry for the Ising model. A irle is drawn on a square lattie and then free or �xedboundary onditions are imposed by removing or freezing the spins outside the irle, respetively [3,7℄. Thee�etivity of this approximation is, however, somewhat limited beause of irregular �nite size behavior, asshown later.Reently, a ontinuous luster Monte Carlo algorithm has beome available for the anisotropi limit ofthe lattie Ising model [8, 9℄. One of the interesting properties of this model is that one of its dimensionsis ontinuous, whih enables one to apply the ontinuous luster method to urved geometries suh as aspheroid. Using a Wol�-like version of this algorithm [9℄, we investigate the Ising model on several spheroids,inluding a sphere, a at dis, and a prolate spheroid. Near the ritial point, we sampled the moments ofthe magnetization density and the quantity Q. The Monte Carlo data were analyzed by means of �nite-sizesaling. For the sphere and the at dis, the numerial results for the ratios Q, r2 and r4 are in exellentagreement with the aforementioned exat alulations, whih will be presented in detail in Se. 4.1.5. Atritiality, the two-point magneti orrelations were sampled. Moreover, the Ising model on half spheroidswas studied, inluding that on a half sphere and inside a irle. Both �xed and free boundary onditionswere used. The density pro�les of the magnetization and of the energy, i.e., one-point orrelations, weresampled. From the Monte Carlo data and the theory of onformal invariane, we determined the magnetiand temperature saling dimensions with a satisfatory preision.4.1.2 Conformal mappingsIn three-dimensional Cartesian oordinates (x; y; z), a spheroid an be de�ned byx2a2 + y2a2 + z2b2 = 1 ; (a; b > 0) ; (4.1)where a and b are the equatorial and the polar radii, respetively. The parametri equations for the spheroidare therefore x = a sin � sin ; y = a sin � os ; z = b os � ; (4.2)in whih 0 � � � � and 0 <  � 2�. Thus, the line element of the spheroid isds02 = dx2 + dy2 + dz2 = (a2 os2 � + b2 sin2 �) d�2 + a2 sin2 � d 2= dw2 + f(w) d 2 : (4.3)Here, we have de�ned a new oordinate w to speify the distane along the ellipse from the 'north pole' as afuntion of � (see Fig. 4.1). The oordinatew is related to the parameter � by w = R �0 pa2 os2 v + b2 sin2 v dv,whih is an ellipti integral of the seond kind, and f(w) = a2 sin2 �.In polar oordinates (r; '), the line element in an in�nite plane isds2 = dr2 + r2 d'2 : (4.4)38
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Figure 4.1: Example of an ellipse with 1=e = a=b = 2. The orresponding oblate spheroid is obtained by therotation of the ellipse about the z diretion. The new oordinate w spei�es the distane alongthe ellipse from the north pole.A onformal transformation from the in�nite plane into the spheroid is thus established by the equationsr = e�g(�); and ' =  ; with g(�) = Z � q(b=a)2 + ot2 v dv ; (4.5)and by the requirement that the points r = 0 and r =1 are mapped onto points � = � and 0, respetively.The transformation (4.5) is onformal, beause the line elements (4.4) and (4.3) di�er only by a position-dependent fator: ds2 = ds02 [e�2g(�)=a2 sin2 �℄ : (4.6)Under a onformal mapping (~r ! ~r 0), a multi-point orrelation funtion ovariantly transforms as [1℄h�1(~r1)�2(~r2) � � � i~r = b(~r1)�X1 b(~r2)�X2 � � � h�1(~r 01)�2(~r 02) � � � i~r 0 ; (4.7)where �i is a saling operator (e.g., assoiated with the magnetization density or the energy density), Xi isthe orresponding saling dimension, and b(~r) is the resaling fator, whih reads b(~r)2 = ds2=ds02.In the in�nite plane, the bulk two-point orrelation funtion at ritiality behaves as [10℄h�(~r1)�(~r2)iplane = Bj~r2 � ~r1j�2X ; (4.8)where B is a onstant. Thus, aording to Eqs. (4.5)-(4.8), one obtains the orrelation funtion g1(�) of twopoints (�;  ) and (�;  + �) on a spheroid ( � �)g1(�) = B(2a sin �)�2X : (4.9)The evaluation of the mapping formula (4.5) is ompliated in general. However, for the speial asesmentioned above, it simpli�es and yields more results.I. Surfae of a ylinderAs the polar radius b ! 1, the spheroid approahes the surfae of an in�nitely long ylinder. Thesubstitutions of a new oordinate u = b� and the radius R = a of the ylinder lead tods02 = du2 +R2 d 2 ; (�1 < u <1; 0 <  � 2�) ; (4.10)and the mapping formula (4.5) simpli�es tor = e�u=R ; and ' =  : (4.11)Thus, Cardy's mapping is restored [5℄. The ritial two-point orrelation funtions along the ylinder arethen h�(u1;  )�(u2;  )i = BR�2Xe�Xju1�u2j=R(1� e�ju1�u2j=R)�2X : (4.12)39
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where � is the areal density of the spins, and dSi represents the number of spins in an in�nitesimal area.For a sphere, � and dSi an be written as 1=(4�R2) and R2 sin �i d�i d i, respetively. For a at dis,� = 1=(2�R2) and dSi = ri dri d i. R is the radius of the sphere or the at dis. g(~r1; ~r2) and g(~r1; ~r2; ~r3; ~r4)are the two- and four-spin orrelation funtions.The two-point orrelation funtion is known exatly (Eq. (4.8)). An exat result is also available forthe bulk four-spin orrelation of the two-dimensional ritial Ising model, whih is given in terms of pairorrelations by [12℄g(1; 2; 3; 4) = 12 (�g(1; 2)g(2; 3)g(3; 4)g(4; 1)g(1; 3)g(2; 4) �2 + (2$ 3) + (3$ 4))1=2 : (4.23)Here, for simpliity, we have written g(~r1; ~r2) and g(~r1; ~r2; ~r3; ~r4) as g(1; 2) and g(1; 2; 3; 4), respetively. Thenotation (i$ j) represents the expression between square brakets [ ℄ with i and j interhanged.The universal amplitude ratio Q = h�2i2=h�4i is simply related to the Binder umulant [13℄.I. Surfae of a sphereThe substitution of the pair orrelation on a sphere ( Eq. (4.14)) leads toh�2i = �24�R2 Z 2�0 d 2 Z �0 d�2 R2 sin �2 g(0; 0; �2;  2)= BR�2X2�X�1 Z �0 d�2 sin �2(1� os �2)�X= BR�2X2�2X=(1�X) ; (4.24)For the Ising model, X = 2� yh = 1=8 so that h�2i = (211=4=7)BR�2X � 0:961 024 5BR�2X .Eqs. (4.22) and (4.23) and substitutions of the integration variables xi = �i=� and yi =  i=2� lead toh�4i = BR�4X�32�2X�3 Z 10 dx2 dx3 dx4 dy3 dy4 f(x2;x3; y3;x4; y4) ; (4.25)with f(x2;x3; y3;x4; y4) = sin(�x2) sin(�x3) sin(�x4)g(1; 2; 3; 4), where the oordinates of these four pointsare (0; 0), (�x2; 0), (�x3; 2�y3), and (�x4; 2�y4). This equation was evaluated with a Monte Carlo proedure,whih approximates the integral byh�4i = BR�4X�32�2X�3N�1 NXi=1 f(x(i)2 ;x(i)3 ; y(i)3 ;x(i)4 ; y(i)4 ) ; (4.26)where x(i) and y(i) are uniformly distributed random numbers in the interval (0; 1). It yields h�4i =BR�4X(1:198 78� 0:000 02), where the two deimal numbers are the average and standard error obtainedfrom 1000 determinations of the integral. Eah integral involves 106 Monte Carlo steps.Thus, the value of the dimensionless quantity is obtained as Q = 0:770 42� 0:000 01.II. Surfae of a at disThe ritial pair orrelations on a at dis are given by Eq. (4.18). The evaluations both of h�2i andh�4i were done by means of Monte Carlo proedures beause in this ase the symmetry lower than that ofa sphere. The alulation must allow for the fat that the form of the pair orrelation depends on whetheror not the two points are in the same fae (Eq. (4.18)). Taking into aount all possible distributions of thefour orrelated points, one �ndsh�4i = �4 Z R0 dr1 � � � dr4 Z 2�0 d 1 � � �d;  4 r1r2r3r4[2g0(1; 2; 3; 4) + 8g1 + 6g2℄ ; (4.27)42



where g0(1; 2; 3; 4) de�nes orrelations of four points on the same fae, g1 applies to three points on one faeand one on the other, and g2 applies to two points on one fae and two on the other. From this alulation, weobtain h�2i = R�2X(1:04156�0:00001), h�4i = R�4X(1:41273�0:00005), and thus Q = 0:76791�0:00003.The ratios of moments of the magnetization density on the sphere and on the at dis are thus:r2 = h�2is=h�2id = 0:922 68(2) ; and r4 = h�4is=h�4id = 0:848 57(4) ; (4.28)where the number between parentheses stands for the estimated error in the last deimal plae.4.1.4 Models and algorithmsAs mentioned before, simulations on a spheroid are diÆult due to the inompatibility of regular latties withurved geometries. Here, we takle this problem by using the Hamiltonian limit of a two-dimensional lattieIsing model. For suh a system, an eÆient ontinuous Wol�-like method has been explained in detail [9℄.Here, we desribe the appliation of this algorithm to simulations in urved geometries.The Hamiltonian of an Ising model on a L� L square lattie with periodi boundary onditions readsH=kBT = �Xx;y [Kx �x;y �x+1;y +Ky �x;y �x;y+1℄ (4.29)where the integers 1 � x; y � L label the lattie sites. Kx and Ky are the oupling strengths along the xand y diretion, respetively. The spins an assume the values �x;y = �1. The ritial line of this model isgiven by [10℄ sinh (2Kx) sinh (2Ky) = 1 : (4.30)In the anisotropi limit �! 0, the ouplings therefore areKx = �=t; exp(�2Ky) = � ; (4.31)where t is a temperature-like parameter whose ritial point is t = 1. It is known that in this limit thesystem is equivalent to the quantum transverse Ising hain [14, 15℄ with nearest-neighbor ouplings and anexternal �eld t: HQM = �Xx (�zx�zx+1 + t�xx) ; (4.32)with �z and �x Pauli matries.Sine our purpose is the appliation of onformal invariane, we have to restore isotropy asymptotiallyfor the system with Kx < Ky. This an be done by inreasing the number of spins in the y diretion bya fator Ly=Lx = sinh 2Ky = 1=2� [16℄. Meanwhile, one resales the y diretion as y0 = 2y=� so that thesystem sizes along the x and y diretion are equal again: L0y = Lx. As a result, the y dimension beomesontinuous as �! 0, i.e., there is an in�nite number of spins per physial length unit, and the lattie struturetransforms into L lines of length L. The spins form ranges of +=� signs, and the number of interfaes inthe system is of order L2.For this anisotropi limit, a full desription of the aforementioned ontinuous Wol�-like algorithm hasbeen given in Ref. [9℄. For the onveniene of the reader, we summarize the essential points. During theformation of a luster, a bond between nearest-neighboring spins with the same sign is 'frozen' with aprobability P = 1 � exp(�2K) or 'broken' with 1 � P . Sites onneted by 'frozen' bonds are inluded inthe same luster. For the anisotropi limit, the probability P in the x and y diretion will be of order � and1 � �, respetively. Thus, the strong-ouping bonds will ontinue to onnet spins in the y diretion untila 'break' ours with a probability of order � per bond. Therefore, after the resaling disussed above, theonneted spins along the lines in the y diretion form ranges of +=� signs with lengths of order 1, and thebreaks are just the aforementioned interfaes. Moreover, the average distane of the bonds between adjaentlines is also of order 1. These weak-oupling bonds serve as 'bridges' between neighboring lines to onnetranges of the same sign, and help to build lusters. Analogous to luster methods for the disrete models, theaforementioned ontinuous luster algorithm ips one or more lusters during a Monte Carlo step depending43
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4.2 Bulk and surfae ritiality: three-dimensional Ising modelUsing a ontinuous luster Monte Carlo algorithm, we investigate the ritial three-dimensional Ising modelin its anisotropi limit. From the ratio of the magneti orrelations in the strong- and the weak-ouplingdiretions, we determine the length ratio relating the isotropi Ising model and the anisotropi limit. On thisbasis, we simulate the ritial Ising model on a spheroylinder S2�R1 , i.e., a urved geometry obtained froma onformal mapping of the in�nite spae R3 . From orrelation lengths along the spheroylinder, ombinedwith the predition of onformal invariane, we estimate the magneti and thermal saling dimensions asXh = 0:5182(6) and Xt = 1:419(7), respetively. The behavior of the Binder umulant is also determinedin the limit of an in�nitely long spheroylinder. Next, free boundary onditions are imposed on the equa-tors of the spheroylinder, and thus the geometry S1 � S+ � R1 is obtained. The surfae magneti salingdimension is estimated as X(s)h = 1:263(5). The onsisteny of the aforementioned estimations and existingresults on�rms the three-dimensional Ising model is onformally invariant. Further, the preision of theseresults reveals that, as in two dimensions, onformal mappings provide a powerful tool to investigate ritialphenomena. With the ontinuous luster algorithm, we also perform simulations of systems inside a onven-tional solid ylinder. The surfae magneti orrelation length di�ers, within the estimated error margin, bya fator �=2 from that along a half spheroylinder S1 � S+ � R1 with the same radius.4.2.1 IntrodutionAppliations of onformal invariane in two dimensions have been explored extensively and produed fruitfulresults both for bulk and surfae ritial phenomena [1, 4, 19, 20℄. Conformal mappings provide relationsbetween ritial systems in di�erent geometries. A well-known and partiularly useful example is Cardy'smapping between an in�nite plane and the surfae of an in�nitely long ylinder, whih transforms thealgebrai deay of orrelations in the plane into an exponential deay along the ylinder [5, 6℄. Beause aylinder is pseudo-one dimensional, its numerial investigation is simpler than that of a two-dimensionalplane. This mapping an be generalized to any number of dimensions [6℄. In three dimensions, Cardy'smapping transforms an in�nite spae R3 into a pseudo-one-dimensional geometry S2 � R1 , i.e., a urvedgeometry extending the surfae of a sphere S2 into another dimension R1 . Thus, one also expets that, as intwo dimensions, Cardy's mapping also provides a signi�ant help in numerial studies of ritial phenomena.In partiular, we need suh studies beause exat results are sare in three dimensions. However, thenonzero net urvature of the geometry S2 � R1 poses a serious obstale for numerial investigations.Reently, we solved this problem for the ase of the Ising model by using the Hamiltonian limit ofthe lattie Ising model and a ontinuous luster Monte Carlo algorithm [9, 17℄. The key ingredient of thisin�nitely anisotropi model is that one of its dimensions is ontinuous, so that the problem of disretizationfor one of the lattie diretions is avoided. In two dimensions, we have numerially studied a onformalmapping between an in�nite plane and a spheroid [21℄. Speial ases of the spheroid inlude the surfaes ofan in�nitely long ylinder, of a sphere, and of a at dis. Thus, this mapping inludes Cardy's transformationas a speial ase. A brief report has also been published about the on�rmation of Cardy's mapping in threedimensions [17℄, in whih the aforementioned geometry S2�R1 was named a `spheroylinder'. In the presentwork, the tehniques involved in Ref. [17℄ will be desribed in more detail. Moreover, by mapping the semi-in�nite spae R2 �R+ onto the half spheroylinder S2 �R+ and S1 � S+ �R1 , respetively, we investigatethe surfae ritiality of the Ising model in three dimensions.The present work also inludes simulations of the Ising model inside a onventional solid ylinder. Com-pared to the aforementioned half spheroylinder, the onventional solid ylinder has a zero net urvature.However, numerial simulations su�er from ompliations due to its urved surfae. Suh a diÆulty isavoided by using the Hamiltonian limit of the lattie Ising model and the ontinuous luster algorithm. Freeboundary onditions are imposed on the surfae of the onventional solid ylinder, and orrelation funtionsalong the ylinder are sampled. In fat, the onventional solid ylinder is losely related to the half sphero-ylinder S1 � S+ � R1 . The former objet is obtained by replaing the half-sphere of the latter objet bythe interior of a irle. 51



4.2.2 Conformal mappingsIn two dimensions, one may parametrize the in�nite plane as a omplex number z = x + iy. Cardy'stransformation is then expressed as z0 = R ln z [5℄. The geometry of z0 an be interpreted as the surfaeof an in�nitely long ylinder or a at strip with periodi boundary onditions. For a ritial system with asaling dimension X , Cardy's mapping yields the orrelation length along the ylinder as�R = R=X ; (4.43)where R is the radius of the ylinder [1℄.This mapping an be generalized to any number of dimensions [6℄. In three dimensions, one may expressthe at spae R3 in spherial oordinates (r; '). Cardy's mapping is then desribed by the oordinatetransformation: (r; �; ') = (eu=R; �; ') (�1 < u <1) ; (4.44)where R is a free parameter. Thus a geometry expressed by the variables (u; �; ') in Eq. (4.44) is reahed.It is obvious that this geometry is analogous to the surfae of an in�nite ylinder as mentioned earlier. Thelatter objet an be reognized as the extension of a irle S1 into another dimension R. Analogously, theformer geometry an be obtained by extending a sphere S2 into another dimension R. This dimension isperpendiular to the surfae of the sphere, whih, unfortunately, annot be visualized in three-dimensionalspae. Taking into aount this analogy, we named in Ref. [17℄ the three-dimensional geometry S2 � R a`spheroylinder'.The reason why equation (4.44) is onformal is as follows. First, the metri of the at spae R3 isexpressed, in spherial oordinates, by the invariant line elementds2 = dr2 + r2 (d�2 + sin2 � d'2) ; (0 � � � �; 0 � ' < 2�) : (4.45)Under the formula (4.44), equation (4.45) transforms as [6℄ds2 = R�2e2u=R [du2 +R2 (d�2 + sin2 � d'2)℄ ; (4.46)where ds0 2 = du2 + R2 (d�2 + sin2 � d'2) reets the natural metri of the spheroylinder S2 � R1 . Equa-tion. (4.46) shows that the line elements ds 2 and ds0 2 di�er only by a position-dependent fator R�2e2u=R.Thus, the mapping (4.44) is onformal.Under a onformal mapping (~r ! ~r 0), a multipoint orrelation funtion ovariantly transforms as [1℄h�1(~r1)�2(~r2) � � � i~r = b(~r1)�X1 b(~r2)�X2 � � � h�1(~r 01)�2(~r 02) � � � i~r 0 ; (4.47)where �i is a saling operator (e.g., assoiated with the magnetization density or the energy density), andb(~r) is the resaling fator, whih reads b(~r)2 = ds2=ds0 2.In the in�nite spae R3 , the ritial two-point orrelation funtion behaves ash�(~r1)�(~r2)iR3 / j~r2 � ~r1j�2X : (4.48)Equations (4.44), (4.47) and (4.48) yield the orrelation funtion along the spheroylinder ash�(u1; �; ')�(u2; �; ')iS2�R1 / R�2X �eju1�u2j=2R � e�ju1�u2j=2R��2X : (4.49)For ju1 � u2j � 0, equation (4.49) redues toh�(u1; �; ')�(u2; �; ')i / R�2Xe�Xju1�u2j=R ; (4.50)so that the relationship (4.43) follows again.However, appliations of Eq. (4.43) in three dimensions are rather sare so far. The reason is thatthe spheroylinder S2 � R1 has a non-zero net urvature. For numerial investigations, a urved geometry52



does not readily aommodate a sequene of regular latties. For the speial ase of the spherial model,equation (4.50) has been veri�ed analytially by Cardy [6℄. Weigel and Janke approximated the S2 sphereby the surfae of a ube [22℄. Their results for the Ising model with �nite size R satisfy Eq. (4.50) up to aproportionality onstant, whih has to be determined empirially.Under the mapping (4.44), the half in�nite spae R2 � R+ onformally transforms into the half sphero-ylinder S1 � S+ � R, i.e., a geometry also desribed by the natural metri ds0 2 in Eq. (4.46), but with0 � � � �=2. Thus, this geometri objet has a surfae at the equators (� = �=2) of the spheres. Thepair orrelation on the surfae of the half spae R2 � R+ follows from the formula (4.48), exept that thebulk saling dimension X is replaed by the surfae dimension X(s) [1℄. Thus, the surfae orrelation at theequators of the half spheroylinder is also desribed by Eq. (4.49) but with a substitution of X by X(s).Next, we onsider another onformal mapping between the semi-in�nite spae R2�R+ and a half sphero-ylinder S2�R+ , also desribed by the metri ds0 2 in Eq. (4.46), but with u � 0. This mapping is di�erentfrom Eq. (4.44) and is onveniently desribed in two steps. First, the formula [2℄~r 0=r02 = ~r=r2 + Î=2 ; (4.51)maps spheres onto spheres in three dimensions, and the spae R3 is transformed into itself [2℄. Here, Î is anarbitrary �xed unit vetor. Under the mapping (4.51), the plane Î � ~r = 0, whih orresponds to a spherialsurfae of an in�nite radius, is onformally mapped onto the surfae of a unit sphere with the enter at Î .Meanwhile, the half spaes Î � ~r > 0 and Î � ~r < 0 are transformed respetively into the interior and exteriorof this unit sphere. The homogeneous translation~r 00 = ~r � Î (4.52)shifts the enter of the sphere to the origin of the double-primed oordinate system.The pro�le of a saling operator � in the semi-in�nite spae R2 � R+ behaves as [1℄h�(~r)iR2�R+ / y�X ; (4.53)where y >> 0 is the distane of a point ~r to the surfae. Equations (4.51) and (4.52) yield the resalingfator b(~r) of the onformal mapping ( ~r ! ~r 00) as [2℄b(~r) = 1 + Î � ~r + r2=4 = 4=(~r 00 � Î)2 : (4.54)From Eqs. (4.47) and (4.51)-(4.54), the quantity h�(~r 00)i inside a unit sphere follows from [1,2℄h�(~r 00)i / j1� (r00)2jX ; (4.55)where r00 � 1 is the distane of the point ~r 00 to the enter of sphere.Next, we apply Eq. (4.44) to onformally map this unit sphere onto the half spheroylinder S2 � R+ .The pro�le (4.55) is then ovariantly transformed intoh�(u; �; ')iS2�R+ / R�X �eju1�u2j=2R � e�ju1�u2j=2R��2X ; (4.56)whih di�ers from Eq. (4.49) by a fator R�X .Moreover, equations (4.51), (4.52) and (4.44) transform the quarter-in�nite spae R1 � R+ � R+ into aquarter of the in�nite spheroylinder S1 � S+ � R+ , desribed by ds0 2 in Eq. (4.46) but with 0 � � � �=2and u � 0. Therefore, the pro�le of the surfae saling operator at the equators should follow from Eq. (4.56)exept that the exponent X is replaed by the surfae saling dimension X(s).4.2.3 Models and algorithmsIn this setion, we briey reall the Hamiltonian limit of the Ising model and the ontinuous luster algo-rithm [9℄. The appliations to the spheroylinder and the onventional solid ylinder are also desribed.53



The three-dimensional Ising model with anisotropi ouplings is desribed by the HamiltonianH=kBT = �Xx;y;z[Kxy sx;y;z (sx+1;y;z + sx;y+1;z) +Kz sx;y;z sx;y;z+1℄ ; (4.57)where the integers 1 � x; y � L and 1 � z � L0 label the sites of a ubi lattie, Kxy and Kz are the ouplingstrengths along bonds perpendiular and parallel to the z diretion, respetively. The spins an assume thevalues sx;y;z = �1.In the limit that the interations in the z diretion are in�nitely strong, the ouplingsKxy andKz beomeKxy = �=t ; exp[�2Kz℄ = � ; (�! 0) ; (4.58)where t parametrizes the temperature and � is an in�nitely small number. The anisotropi model de�ned byEqs. (4.57) and (4.58) is equivalent to the quantum transverse Ising model on the square lattie [14, 15℄:Hqm = �Xx;y [szx;y(szx+1;y + szx;y+1) + tsxx;y℄ ; (4.59)where szx;y and sxx;y are Pauli matries, and t represents a transverse �eld in the x diretion.For suh an in�nitely anisotropi system, the physial size in the z diretion diverges as 1=�, beause theorrelation length in this diretion is of order 1=� [14, 15℄. In order to keep the orrelation length �nite, onemay resale as z0 = z� so that the z0 dimension beomes ontinuous. This means that there is an in�nitenumber of spins per physial length unit. As a result, the simple-ubi lattie redues to L2 lines originatingfrom the sites of a L � L square lattie. The spins on these lines form ranges of +=� signs, and the totalnumber of interfaes between these ranges is of order L3.Monte Carlo simulations of this ontinuous system are realized by the appliation of a ontinuous lusteralgorithm. This algorithm uses the positions of the aforementioned interfaes as the dynamial variables.The full desription has been given in Ref. [9℄. Here, we summarize the essential points. We start froma disrete Ising model and use bond variables as de�ned in the random luster model [23℄. During theformation of a luster, the bond between nearest-neighbor spins of the same sign is `frozen' with a probabilityP = 1�exp(�2K) or `broken' with the probability 1�P . A luster is then formed by spins onneted to oneanother by these frozen bonds. The formation and ipping of these lusters leads to highly eÆient MonteCarlo methods, whih suppress the ritial slowing down that is prominent in the Metropolis algorithm. Inthe Swendsen-Wang luster method [24℄, the whole lattie is deomposed into a sequene of lusters. In theWol� version of the luster algorithm [25℄, only one luster is formed and ipped during a Monte Carlo step.For the anisotropi Ising model de�ned by Eqs. (4.57) and (4.58), the probability P in the xy plane and zdiretion is of order � and 1� �, respetively. Thus, the strong-oupling bonds onnet many spins in the zdiretion until a `break' ours with a probability of order � per bond. Spins between these breaks in the zdiretion form lusters of +=� signs of with lengths of order 1=�. After the resaling desribed above, these zdiretion lusters redue to ranges of +=� signs, of whih the length is now of order 1. Moreover, the averagedistane of the frozen weak-oupling bonds along the z diretion is also of order 1. These weak-ouplingbonds serve as `bridges' between neighboring lines to onnet ranges of the same sign, and help to buildlusters in the xy plane. As a result, ontinuous Wol�-like and Swendsen-Wang-like luster algorithms anbe formulated for this anisotropi limit. The appliation of a ontinuous Wol�-like algorithm, ombined with�nite-size-saling analysis, yields [9℄ the ritial point as t = 3:04438(2) for the model de�ned by Eqs. (4.57)and (4.58). The preision is good in omparison with existing results [8,26℄, and reets the eÆieny of theaforementioned ontinuous luster algorithm.Sine our purpose is the appliation of onformal mappings, we have to restore isotropy asymptotially.This an be done by hoosing an appropriate aspet ratio � = L0z=Lxy, where L0z and Lxy = L are linearsystem sizes in the z0 diretion and the xy plane, respetively. In Ref. [9℄, we determined the ritialBinder umulant as a funtion of the length ratio �. Mathing this universal funtion with the ase of theisotropi Ising model [27{29℄, we showed that the asymptoti isotropy of this Hamiltonian limit is restoredfor �0 = 0:886(7). Here, we proeed di�erently. We sampled the ritial magneti orrelations over half54



linear system sizes in the strong- and weak-oupling diretions, respetively, of whih the amplitude ratiodm is de�ned as dm(�;L) = Px;y R dz0 h2 �(x; y; z0)�(x; y; z0 + �L=2)iPx;y R dz0 h�(x; y; z0) [�(x + L=2; y; z0) + �(x; y + L=2; z0)℄i : (4.60)This amplitude ratio dm is a funtion of the length ratio � and the linear size L. The aforementioned isotropymeans that the magneti orrelations in the z diretion are equal to those in the x and y diretions, and thusdm(�0; L) = 1. Taking into aount �nite-size e�ets, we Taylor-expand dm(�;L), using logarithmi salesfor dm and �, asln dm(�;L) = a1(ln�� ln�0) + a2(ln�� ln�0)2 + bLya + Lya(ln�� ln�0) + � � � ; (4.61)where a1; a2; b and  are unknown parameters, and the orretion with the exponent ya is due to themirosopi deviations from isotropy of the Hamiltonian limit of the Ising model. In two dimensions, suha orretion has been investigated in detail [21℄. It was found that ya � �2 = yi, where yi is the exponentof the irrelevant �eld for the two-dimensional Ising model. Here, we assume that this relation also holds inthree dimensions so that ya = yi = �0:821(5), where the value of yi was taken from Refs. [21, 27{29℄. Onthe basis of the least-squares riterion, equation (4.61) was �tted to the Monte Carlo data. We �nd thata1 = 0:505(2), a2 = 0:06(1), b = 0:375(7),  = 2:8(3), and �0 = 0:8881(2), whih provides a signi�antimprovement over our previous result �0 = 0:886(7) [9℄.As a result, the new oordinate z00 = z0=�0 restores the isotropy asymptotially for systems onsisting ofL2 lines with physial length L in the large-L limit. Due to periodi boundary onditions, eah of these linesan be reognized as a irle S1. This enables one [17, 21℄ to represent the `lattie struture' on a sphereS2 by L evenly spaed irles with varying radius, suh that the strong ouplings are along the ' diretionwhile the weak ouplings are between the adjaent irles. The loation of the kth irle is �k = (k� 12 )�=L(k = 1; 2; � � � ; L), and the orresponding irumferene is 2L sin �k, whih aounts for the S2 urvature.Sine the probability of a weak-ouping bond is de�ned per unit of length, and the adjaent irles on asphere have di�erent radii, the distribution of these weak-oupling bonds still requires a length sale. It washosen as the average length sale of both irles. Therefore, the irumferene of the sphere is 2L, and theradius is L=� [17,21℄. The validity of this method, i.e., asymptoti spherial symmetry of suh systems, hasbeen on�rmed in Ref. [21℄. Extension of this lattie struture of a sphere into another dimension yields theapproximation of the spheroylinder S2 � R1 [17℄.The ritial point for systems on the spheroylinder is idential to that in the at spae R3 . Argumentsare a), the lattie strutures in these two geometries are same on a mirosopi sale; b), for �nite systems L,the disretization in � leads to an integrated e�et on the average oupling strength, whih is proportionalto L�2 aording to the trapezium rule. Under renormalization, this e�et leads to orretions proportionalto Lyt�2. Sine the thermal saling exponent yt < 2 for the two- and three-dimensional Ising model, thise�et will vanish for L ! 1. In two dimensions, we have studied the Ising model on a sphere [17, 21℄, andon�rmed that the leading orretions for �nite systems are of order Lyt�2.Analogous proedures an be applied to the interior of a irle, i.e., a dis geometry. In this ase,the lattie struture on the dis is also represented by L evenly distributed irles, but the kth irle issimply loated at rk = (k � 12 ). Thus, the radius of the dis is just that of the largest irle �(2L � 1).The onventional solid ylinder is obtained by extending this dis geometry into another dimension with adisrete lattie struture.4.2.4 Numerial resultsBy applying the aforementioned ontinuous Wol�-like luster algorithm, we have simulated the Hamiltonianlimit of the Ising model in the following geometries.I. Spheroylinder with periodi boundary onditionsFor systems on a spheroylinder, the values of L were taken as 4; 6; 8; 10; 12; 14; 16; 20. The �nite size inthe R diretion was taken as nL = 8L. Periodi boundary onditions were imposed in the u diretion (u = 055



and u = 8L). Later, we will show that n = 8 is large enough to approximate the geometry S2 � R1 . Wesampled the magneti orrelation funtion gm(r) in the u diretion, whih is de�ned by [17℄gm(r) = 1V Xu;� Z 2�0 d'L� sin � h�(u; �; ')�(u + r; �; ')i : (4.62)Sine the ouplings are di�erent in the ' diretion and in the other two diretions, there are two waysto represent the energy density: the density of the interfaes and the nearest-neighbor interations in theweak-oupling diretions. We hose the latter oneenn = 1V Xu;� Z 2�0 d'L� sin � h�(u; �; ')�(u + 1; �; ')i ; (4.63)in order to sample the energy-like orrelation ge(r)ge(r) = 1V Xu;� Z 2�0 d'L� sin � h�(u; �; ')�(u + 1; �; ')� �(u+ r; �; ')�(u + r + 1; �; ')i � e2nn : (4.64)For �nite systems, there is a orretion / Lyt�2 as mentioned earlier. Compared to the irrelevant salingexponent yi = �0:821(5) in three dimensions [21,27{29℄, the orretion with the power y = yt�2 = �0:413is expeted to dominate over that with yi.In the ontinuum limit, the behavior of the magneti energy-like orrelations, gm(r) and ge(r) respetively,follows from Eq. (4.49). Taking into aount �nite-size e�ets yields the orrelation length �L as��1L = XR (1 + aLy + bLyi) = �XL (1 + aLy + bLyi) : (4.65)Due to the periodiity in the u diretion, orrelations build up over two distanes r and nL� r. Thus, theorrelation funtion g(r; L) for �nite systems behaves asg(r; L) = L�2X [Y (r) + Y (nL� r)℄ (A+BLy + CLyi) ; (4.66)with the funtion Y (r) = (ehr=2R � e�hr=2R)�2X ; (h = 1 + aLy) : (4.67)Here, the radius is R = L=� as mentioned before.Equations (4.66) and (4.67) was �tted to the Monte Carlo data. The value of y is �xed at �0:413as spei�ed above. For the magneti and the energy-like orrelations, the exponent X represents the bulkmagneti and thermal saling dimensions, Xh and Xt respetively. We obtain Xh = 0:5178(12) and Xt =1:423(19), in a good agreement with the existing results Xh = 0:5185(3) and Xt = 1:413(1) [21,27{29℄. Thison�rms the assumption of onformal invariane [17℄. Inluding another orretion Lyi in the funtion hdoes not improve the residual �2 of the �t signi�antly.II. Binder umulant on a spheroylinderThe dimensionless quantity originally introdued by Binder plays an important role in the study of ritialphenomena [13℄. An example is Ref. [9℄, in whih we obtains the length ratio �0 = 0:881(6) by samplingthe Binder umulant. For a system on a hyper-ubi lattie in general d dimensions, the universal ratio Q,whih is losely related to the Binder umulant [13℄, is de�ned asQ(K) = h�2i2=h�4i : (4.68)For a system on a hyperylinder-like geometry Sd�1 � R1 , however, another de�nition is desirable. Thereason is as follows. If the length of the geometry Sd�1 � R1 is muh larger than the orrelation length,56
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5Conformal invariane: The perolation model
We investigate the anisotropi limit of the bond-perolation model in d dimensions, whih is equivalent witha (d� 1)-dimensional quantum q ! 1 Potts model. We formulate an eÆient Monte Carlo method for thismodel. Its appliation shows that the anisotropi model �ts well with the perolation universality lass in ddimensions. For three-dimensional retangular geometry, we determine the ritial point as t = 8:6429(4),and determine the length ratio as �0 = 1:5844(3), whih relates the anisotropi limit of the perolationmodel and its isotropi version. On this basis, we simulate asymptotially isotropi ritial systems in severalurved geometries inluding a spheroid and a spheroylinder. Using �nite-size saling and the assumption ofonformal invariane, we determine the bulk and surfae magneti exponents in two and three dimensions.They are in good agreement with the existing results. This on�rms that the perolation model is onformallyvariant.5.1 IntrodutionSine their introdution in 1957 [1℄, perolation problems have been studied extensively, and a variety ofappliations has also been reported (see, e.g., Refs. [2,3℄). Perolation provides a simple piture of a seond-order phase transition, and remains an ative researh subjet [4{6℄. We illustrate the problem of thebond-perolation on a regular lattie. Between eah pair of lattie sites, a bond is oupied or empty witha probability p or 1 � p, respetively. Two sites onneted through a hain of oupied bonds are said tobe in the same luster. Then, various questions an be asked onerning the ritial luster distributionand the perolation probability et. Suh perolation problems are now rather well understood; this an atleast partly attributed to the well-known relationship [7℄ between the bond-perolation and the Potts model(for a review of the Potts model, see Ref. [8℄). In this way, the phase transition that ours in perolationproblems an be desribed in the language of ritial phenomena in statistial physis. As a onsequene,a onsiderable number of ritial exponents has exatly been obtained in two dimensions. For instane, thethermal and magneti saling exponents are yt = 3=4 and yh = 91=48. These exponents an be alulatedfrom the Coulomb gas theory [9, 10℄ and are also predited by the onformal �eld theory [11{13℄.Besides the above isotropi perolation model, it is of interest to understand the behavior of anisotropisystems in the perolation theory. For instane, an anisotropi random perolation model was demonstratedto be governed by new, random �xed points [14℄. In the present paper, we shall onsider the anisotropibond-perolation model, whih is de�ned on a d-dimensional retangular lattie with a bond probability p?within (d�1)-dimensional layers perpendiular to the z diretion, and with the probability pk = Rp? parallelto z. For R = 0, the system deouples into independent (d � 1)-dimensional layers, so that the perolationproblem redues to (d � 1) dimensions. Models with a �nite and nonzero R have already reeived someattention [15℄, and it was shown that they are within the same universality lass as the isotropi perolationmodel in d dimensions. In the present paper, we shall fous on the limit R!1. In this anisotropi limit ofthe bond-perolation model, the probability p? in the (d�1)-dimensional layers approahes 0 near ritiality,63



and thus one an express p? and pk aspk (pz) = 1� � ; and p? = �=t (�! 0) ; (5.1)where t is a temperature-like parameter. When � is preisely zero, the system beomes one-dimensionaland this perolation problem is trivial. However, as we shall argue later, the anisotropi perolation modelde�ned by Eq. (5.1) is equivalent with a quantum q ! 1 Potts model in (d� 1) dimensions, whih �ts in thed-dimensional perolation universality lass.For the anisotropi model de�ned by Eq. (5.1), the orrelation length in the z diretion is of the order of1=�. In order to maintain the d-dimensional harater of the system, the lattie size in this diretion mustalso diverge as 1=�. Thus, we apply a resaling z0 = z�, so that the orrelation length in the new unit andthe physial size remain approximately onstant. As � ! 0, the z0 dimension beomes ontinuous, and werefer to the resulting ontinuous perolation problem as the transverse perolation model.Next, we formulate a Monte Carlo method for the transverse perolation model. The numerial resultson�rm that the transverse perolation model belongs to the same universality lass as the onventionalperolation problem on a disrete lattie.Another purpose of the present paper is the appliation of onformal mappings in urved geometries.In two dimensions, the theory of onformal invariane has yielded substantial results [11{13℄. Conformalmappings yield relations between ritial systems in di�erent geometries, and thus provide useful tools forthe determination of universal properties of ritial models. A well-known example is Cardy's mappingbetween an in�nite plane and the surfae of an in�nitely long ylinder [16℄. Sine a ylinder is pseudo-one-dimensional, its numerial investigation is simpler than that of a two-dimensional plane. Cardy's mappingan be generalized to any number of spatial dimensions, and in three dimensions it transforms an in�nitespae R3 into a pseudo-one-dimensional geometry S2 � R. However, the nonzero urvature of the geometryS2 � R poses a serious obstale for numerial simulations.In appliations to the Ising model, this problem was solved reently in Refs. [17{19℄. The solution makesuse of the Hamiltonian limit of the lattie Ising model, whih renders one of the lattie diretions ontinuous.Thus, one an perform Monte Carlo simulations in urved geometries, suh as the surfae of a sphere S1�S1in two dimensions and the ylinder-like geometry S2�R1 in three dimensions. It was reported [17,18℄ that,in three dimensions, the Ising model is onformally invariant and the orresponding estimations of ritialexponents are ompatible with existing results. In Ref. [17℄ the three-dimensional geometry S2 � R1 wasnamed a spheroylinder. Here, we simulate the transverse perolation model in urved geometries, whihprovides another appliation of onformal mappings to investigate bulk and surfae ritial phenomena.5.2 Models and algorithms5.2.1 Quantum transverse q-state Potts modelsThe partition sum of the q = 1 Potts model is just a onstant, so that its equivalene to the bond-perolationmodel has to be formulated [7℄ in terms of geometri properties of the random-luster representation of thePotts model in the limit q ! 1. To explore the anisotropi limit of the bond-perolation model de�ned byEq. (5.1), we start with the Hamiltonian limit of an Ising model on a N�M retangular lattie with periodiboundary onditions H=kBT = �Xi;j [Kx si;j si+1;j +Ky si;j si;j+1℄ : (5.2)The spins an assume the values si;j = �1, the integer oordinates i and j label the lattie sites, and Kxand Ky are the oupling strengths in the x and y diretions, respetively. The ritial line of this model isgiven by [20℄ sinh(2Kx) sinh(2Ky) = 1 : (5.3)Thus, in the anisotropi limit �! 0, the ouplings an be written asKx = �=t ; and exp(�2Ky) = � ; (�! 0) ; (5.4)64



where t parametrizes the temperature; the ritial point is t = 1.The Hamiltonian limit of the lattie Ising model de�ned by Eqs. (5.2) and (5.4) an be exatly mappedonto the one-dimensional quantum Ising model [21℄. This equivalene was formulated in the reverse diretionby Suzuki [22℄, using the Trotter formula [23℄. The Hamiltonian of the quantum Ising hain readsHqm = �Xi (�zi�zi+1 + t�xi ) ; (5.5)where �z and �x are the Pauli matries for the z and x spin omponents, respetively. The HamiltonianHqmontains nonommuting operators and represents a quantum system with nearest-neighbor Ising interations,and the temperature-like parameter t ats as a transverse �eld in the x diretion.This equivalene an be readily generalized to spatial dimensions d > 2, i.e., the Hamiltonian limit of ad-dimensional lattie Ising model is equivalent with the transverse Ising model in (d� 1) dimensions.Inluding the transverse Ising model as a speial ase, one an de�ne a general quantum q-state Pottsmodel [24, 25℄. For instane, the Hamiltonian of a quantum q-state Potts hain (with integer q) an bewritten as Hqm = �Xi q�1Xk=0 ( S ki S q�ki+1 + tR ki ) ; (5.6)where S and R are q � q matries satisfying the Z(q) algebra[Si;Sj ℄ = [Ri;Rj ℄ = [Si;Rj ℄ = 0 ; i 6= j ;SjRj = exp(i2�=q)RjSj ; and R qj = S qj = I : (5.7)For the ase of q = 2, the operators S and R redue to the Pauli matries �z and �x, respetively, andEq. (5.6) simpli�es to Eq. (5.5). The eigenspetra of these ritial quantum q-state Potts hains (0 < q � 4)with free and periodi boundary onditions have already been explored in Refs. [24, 25℄, and it was shownthat, indeed, they share the same ritial exponents as the orresponding lassial q-state Potts models intwo dimensions.For noninteger q or the limiting ase q ! 1, equations (5.6) and (5.7) are not suitable to desribe theHamiltonian limit of the q-state Potts model. In this ase, one an instead apply the transfer matrix of therandom luster model [26℄. The evaluation of the partition funtion uses the transfer matrix asZ = Xs(1);s(2);���hs(1)jT js(2)i � � � hs(y)jT js(y+1)i � � � ; (5.8)where s(y) is the bond on�guration at the yth row and the transfer is in the diretion of the strong oupling.For the anisotropi bond perolation model desribed by Eq. (5.1), the transfer matrix readshs(y)jT js(y+1)i = I � � Xx [B(y;y+1)x � 1tC(y)x;x+1℄ +O(�2) ; (5.9)where I is the unit matrix. The symbol B(y;y+1)x represents that, between the yth and (y + 1) rows, a`broken' bond ours at the site x while the remaining bonds are oupied, and C(y)x;x+1 means that only onebond exists between x and x+ 1 at the yth row. One q is not preisely equal to 1, the operators B and Cdo not ommute, and thus are quantum operators. For t << 1, most sites are onneted so that the systemis in an 'ordered' state; while for t >> 1, they are independent of eah other and the system is 'disordered'.A phase transition ours at t = 1.Therefore, we simply expet that the anisotropi limit of the bond perolation model by Eq. (5.1) is withinthe same universality lass with the orresponding isotropi version. This will be demonstrated further bymeans of Monte Carlo simulations. 65



5.2.2 AlgorithmsWe onsider the anisotropi limit of the bond-perolation model [Eq. (5.1)℄ on a N �M retangular lattiewith periodi boundary onditions. The bond oupation probabilities in the x and y diretions are p? andpk in Eq. (5.1), respetively. For suh a system, the orrelation length in the y diretion is of order 1=�, asmentioned earlier. Thus, we have to take the lattie size M proportional to 1=� while if N is kept onstant.Sine omputer memories are �nite, it may not immediately be obvious how a Monte Carlo algorithm anbe formulated.Let us start with the proedures ommonly used for the luster deomposition of the isotropi version ofthe perolation model with the bond probability p. First, one introdues a bond variable bij for eah bondbetween nearest-neighboring sites i and j. Oupied and empty bonds are represented by bij = 1 and 0,respetively. For eah bond variable bij , one draws a uniformly distributed random number r (0 � r < 1),and sets bij = 1 if r < p. The whole lattie is then deomposed into lusters of onneted sites throughthe oupied bonds. These perolation lusters are analogous to the Swendsen-Wang lusters in the Pottsmodel [27℄.For the anisotropi limit of the perolation model de�ned by Eq. (5.1), the bond probability in the ydiretion is py = 1� �, so that one has to draw of order 1=� random numbers r before �nding an empty bondby = 0. This indiates that empty bonds are sparsely distributed in the y diretion. In the x diretion, thebond probability px / �, so that the task to �nd the next oupied bond bx = 1 again involves of order 1=�random numbers.A more eÆient proedure follows [28℄. Counting the bond variables sequentially in the y diretion, thedistribution Py(m) � (1� py)pm�1y expresses the probability that (m� 1) subsequent bond variables bij areequal to 1, while the mth variable is zero, i.e., an empty bond ours at mth position. Thus, the umulativedistribution an be written as Cy(m) = mXj=1 Py(j) = 1� pmy = 1� (1� �)m ; (5.10)whih represents the probability that an empty bond bj = 0 ours in the range 1 � j � m. Thus, by mappingthe distribution 0 < Cy(m) < 1 on the uniform distribution of the random number r, one transforms r intoan integer m m = 1 + [ln(r)= ln(1� �)℄ ; (5.11)where 0 < r < 1 and the square brakets denote the integer part of the number in between. The numberm represents the distane of the urrent empty bond to the one to be generated. Thus, onlyone randomnumber is needed to generate the next empty bond in the y diretion.In the x diretion, one instead uses the distribution Px(n) � px(1 � px)n�1 to express the probabilitythat (n� 1) subsequent variables bij are zero, while the nth bond variable is 1. We mention that, althoughthe bond variables are now in the x diretion, they are still ounted sequentially along the y diretion.Analogously, one an transform a uniformly distributed random number r into an integer nn = 1 + [ln(r)= ln(1� px)℄ (px = �=t) : (5.12)The average number of the y-dimensional empty bonds and that of the oupied bonds in the x diretionare m � Z 10 dr ln(r)= ln(1� �) / 1� ; and n / t� ; (5.13)respetively. Now, suppose the N �M square lattie represents a onduting network, and the oupiedbonds at as the elementary onduting units. Aording to Eq. (5.13), in the y diretion, the urrent isallowed to ow along the onduting `lines' until it oasionally enounters an empty bond, to whih we shallrefer as a barrier with an in�nitely large resistane. In the x diretion, sine most bonds are empty, the areasbetween the neighboring onduting lines an be onsidered to be �lled with an insulating material, and theeletrial urrent has to rely on sparsely distributed `bridges' (oupied bonds). If a potential di�erene is66



x

y’Figure 5.1: The anisotropi limit of the perolation model after the resaling y0 = �y. The horizontal linesrepresent `onduting' lines in the y0 diretion, and the blak bars are barriers with an in�nitelylarge resistane on these lines; the vertial lines serve as `bridges' between neighboring lines. Oneperolating luster is shown by solid lines. This �gure shows that the onduting lines on theleft- and right-hand sides of a barrier may belong to the same luster, but in that ase they arevia a detour. If this barrier is removed, the luster size will remain unhanged.applied to the up and down sides of the N�M network, the orresponding ondutivity of this network thendepends on the relative abundane of the bridges and barriers. Aording to Eq. (5.13), the average totalnumbers of the barriers and the bonds are NM� and NM�=t, respetively, so that they remain �nite in thelimit � ! 0. Thus, the ondutivity of the network depends only on the temperature-like parameter t. Fort >> 1, the sizes of onduting lusters are small, and the up and down sides are disonneted, so that nourrent exists; if the temperature t is suÆiently low, a perolating luster whih arries urrent may ourin the system.Although one now needs only a �nite number of random numbers, one still has to solve the problem ofthe in�nite size M in the y diretion, reeted by the divergene of m and n. This an be done by resalingthe y diretion as y0 = �y, so that the physial size M 0 = M� remains approximately a onstant. In thelimit �! 0, the y dimension beomes ontinuous, i.e., there is an in�nite number of lattie sites per physiallength unit, and the N �M square lattie redues to N lines of physial length M 0. Meanwhile, Eqs. (5.11)and (5.12) hange intom0 = �m = � ln(r) ; and n0 = �n = �t ln(r) ; (�! 0) ; (5.14)whih indiates that the average distanes of the barriers and bridges, m0 and n0, are now of the order of 1.As a result, after the resaling y0 = y�, the anisotropi limit of the perolation model de�ned by Eq. (5.1)redues to a ontinuous perolation model, to whih we shall refer as the transverse perolation model. Atypial on�guration is shown in Fig. 5.1, where the horizontal lines are the aforementioned onduting linesand the vertial lines are the bridges in the transverse diretion. The blak bars represent the barriers,through whih the urrent annot penetrate. For larity, in Fig. 5.1 we have outlined a luster by means ofsolid lines.Conventional Monte Carlo methods for disrete lattie perolation problems store the lattie sites simplyin an array. For the transverse perolation, this is no longer appliable, sine one of the dimensions is nowontinuous. However, as mentioned above, the total number of the barriers and bridges still remains �nite,so that one an make use of their positions as the dynamial variables. On this basis, a proedure for theluster deomposition and the sampling is formulated as:First, randomly distribute barriers and bridges over the N �M 0 geometry. Starting from an arbitrarilyhosen origin, the positions of the barriers and the bridges are sequentially generated by Eq. (5.14). Forinstane, suppose the urrent Monte Carlo step arrives at the ith barrier, whose position is stored as (xi; yi).Here, the oordinates (xi; yi) represent that the ith barrier sits at the position yi of the xith line. Then,67



one draws a random number 0 < r < 1 and evaluates m0 by Eq. (5.14). If yi + m0 � M 0, the (i + 1)thbarrier is plaed at the same line as the ith one, and thus xi+1 = xi and yi+1 = yi + m0; otherwise ifM 0 < yi +m0 � 2M 0, the (i+ 1)th barrier is at (xi + 1; yi +m0 �M 0); � � � . Repeat this proedure until thewhole N �M 0 geometry is visited. The same proedure is applied to the distribution of the bridges, and thetotal numbers of the barriers and the bridges are denoted as Bl and Br, respetively.Seond, sample the sizes of the lusters. After the �rst step, the geometry is now deomposed into lusterswhih onsists of onduting lines onneted through the bridges. The size of the ith luster is the sum ofthe lengths of the onduting lines in it, whih an be alulated from the positions of the barriers stored inthe omputer memory. If the size of the ithe luster is denoted as Si, a quantity resembling the magnetisuseptibility � and the orresponding Binder-like ratio Q [29℄ an be de�ned as� = 1V hXi S2i i � V hm2i ; and Q = hPi S2i i2h(PS2i )2i ; (5.15)where V � NM 0 is the volume of the system.During the �rst step of the above algorithm, the funtion, ln r, has to be frequently arried out, whihdereases somewhat the eÆieny of the algorithm. A di�erent proedure an be applied as follows. FromEq. (5.14), the total number of the barriers and bridges is as hBli = V=hm0i = V and hBri = V=hn0i = V=t,respetively. Instead of allowing the utuations of Bl and Br during Monte Carlo simulations, one may�x them at their expetation values V and V=t, respetively. Sine these barriers and bridges are uniformlydistributed, their positions an now be independently alulated as li = rV with the random number 0 <r < 1. Then, the oordinates of the ith barrier is given by xi = [li=M 0℄ + 1 and yi = li � (xi � 1)M 0, wherethe square brakets represent the integer part. Here, the word `independently' means that the position ofthe (i+ 1)th barrier does not depend on that of the ith one.However, in this way, sine the utuations of the energy-like quantities Bl and Br are suppressed, anexternal onstraint is e�etively imposed on the system. A question arises how this energy-like onstrainta�ets the ritial behavior of the system. For the perolation model, sine the thermal saling exponentsatis�es 2yt � d < 0, it an be shown [30℄ that the leading saling behavior of the ritial system is notmodi�ed. But new orretions to saling an arise due to this onstraint. To avoid this ompliation, westill use Eq. (5.14) to generate positions of the barriers and bridges in the present paper.5.3 Simulations in at geometries5.3.1 Two dimensionsFor the anisotropi limit of the perolation model in the two-dimensional retangular geometry, the dualityargument yields that the ritial point is t = 1, sine the ritial bond probabilities satisfy px + py = 1.Furthermore, the thermal and magneti ritial exponents are exatly known, as mentioned earlier. Thus,this model provides a good test ase for the Monte Carlo algorithm desribed above and the universality ofthe transverse perolation model.The simulations used a retangular geometry of L lines of length L in the range 6 � L � 32. Periodiboundary onditions were applied, and the dimensionless Binder-like ratio Q and the suseptibility-likequantity � de�ned in Eq. (5.15) were sampled. Near the ritial point, the numerial data of Q were�tted [31℄ by Q(t; L) = q0 + 4Xk=1 qi(t� t)kLkyt + b1Ly1 + b2Ly2 + 1(t� t)Lyt+y1 : (5.16)The terms with y1 = �2 and y2 = �3 aount for orretions to saling. The �t with yt = 3=4 yieldst = 0:9994(5), in good agreement with the exat result t = 1. If t is kept �xed at 1 while yt is left free,we have yt = 0:752(3) � 3=4 [9{13℄. Moreover, we �tted the Monte Carlo data of � at t = 1 by the formula�(t) = x0 + L2yh�2(b0 + b1Ly1 + b2Ly2) ; (5.17)from whih we obtain yh = 0:1043(4) � 5=48 [9{13℄. 68
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Figure 5.3: A luster for the transverse perolation model on the L � L retangular geometry with freeboundary onditions and L = 100.In two dimensions, we simulated the transverse perolation model preisely at t = 1 on the L � Lretangular geometry. The system sizes and the length ratio were taken as in the range 6 � L � 64 and0:65 � � � 0:80, respetively. Free boundary onditions were applied both in the x and y diretions. Duringthe Monte Carlo simulations, we sampled the perolation probabilities in both diretions, denoted as Px andPy . Aordingly, we de�ne a dimensionless ratior(�;L) = �PxPy� : (5.19)Thus, the aforementioned isotropy means r(�0; L) = 1. Taking into aount �nite-size e�ets, we �tted thedata of r(�;L) byr(�;L) = 1 + a1(�� �0) + a2(�� �0)2 + � � �+ b1Ly1 + b2Ly2 + 1Ly1(�� �0) : (5.20)The terms with y1 and y2 desribe orretions to saling, due to small-sale deviations from isotropy of thetransverse perolation model. The numerial data an be suessfully desribed by Eq. (5.20) with y1 = �2and y3 = �3, and the �t yields �0 = 0:76978(7), in agreement with the number 4=3p3 [25℄.Similarly, for the three-dimensional retangular geometry L2�L with free boundary onditions, one ande�ne the ratio r(�;L) on the basis of the perolation probabilities in the disrete and ontinuous diretions.Simulations were performed at the aforementioned estimated ritial point t = 8:6429(4), and the systemsizes were taken in the range 6 � L � 40. The data of r(�;L) were �tted by Eq. (5.20) with yi = �1:14 [4℄.After a uto� for small system sizes L � 10, the �t yields �0 = 1:5844(4).5.4 Conformal invarianeIn this setion, we summarize the onformal mappings and the orresponding transformations of the pairorrelation funtions involved in the present paper. Most of these mappings have already been derived inRefs [13, 16{18℄. 70



Spheroylinder. In two dimensions, one may parametrize the in�nite plane as a omplex numberz = x + iy, Cardy's well-known mapping [13, 16℄ is then expressed as z0 = R ln z. The geometry z0 anbe interpreted as the surfae of an in�nitely long ylinder S1 � R1 with a radius R. This mapping an begeneralized to any number of dimensions. For instane, in spherial oordinates (r; �; �), Cardy's mappingin three dimensions reads (r; �; �) = (eu=R; �; �) ; (�1 < u <1) (5.21)with R > 0 a free parameter. The geometry desribed by the variables (u; �; �) has a line element asd s2 = du2 +R2(d �2 + sin2 � d�2) ; (0 � � � �; 0 � � < 2�) (5.22)and thus an by reognized as the extension of a sphere S2 into another dimension R. In Ref. [17℄, thispseudo-one-dimensional geometry S2 � R was named a spheroylinder.In the in�nite at spae R3 , a ritial two-point orrelation funtion g(r) behaves asg(r)R3 / r�2X ; (r >> 0) (5.23)where X is the appropriate saling dimension. Under the onformal mapping (5.23), this algebrai deay[Eq. (5.23)℄ is ovariantly transformed intog(u)S2�R / R�2X(eu=2R � e�u=2R)�2X ; (5.24)where u > 0 is the distane between a pair of points on the spheroylinder, (u0; �; �) and (u0 + u; �; �).For u >> 0, the orrelation funtion deays exponentially: g(u) / R�2Xe�Xu=R � R�2Xe�u=� , so that theorrelation length along the spheroylinder is equal to � = R=X .Interior of a sphere. In two dimensions, the omplex funtion z0 = (z� i)=(z+ i) [13℄ maps the in�niteplane onto itself, and meanwhile transforms the semi-in�nite plane R � R+ into the interior of a unit irle.In fat, suh a mapping an be generalized to spatial dimensions d > 2. It then reads~r 0=r0 2 = ~r=r2 + Î=2 ; (5.25)with Î an arbitrary �xed unit vetor. Under Eq. (5.25), the in�nite at spae Rd is mapped onto itself,and the plane Î � ~r = 0, whih orresponds to a spherial surfae with an in�nite radius, is onformallytransformed into the the surfae of a d-dimensional unit sphere with the enter at Î . The half spaes Î �~r > 0and Î � ~r < 0 are transformed into the interior and exterior of this unit sphere, respetively.On the basis of the onformal transformation (5.25), it an be shown [13, 32℄ that, in the interior of asphere with free or �xed boundary onditions, the pro�le of an operator h i follows fromh (r)i / R�X [1� (r=R)2℄�X ; (5.26)where R is the radius of the sphere.Furthermore, Eq. (5.21) transforms the interior of a unit sphere Sd into a semi-in�nite spheroylinderSd�1�R+ , with an end at u = 0. Thus, a onformal mapping between the semi-in�nite at spae Rd�1�R+and the half spheroylinder Sd�1 � R+ is established, and the pro�le (5.26) is ovariantly transformed intoh (u)i / R�X(eu=2R � e�u=2R)�2X ; (5.27)whih di�ers from Eq. (5.24) only by a fator R�X .Surfae of a sphere. By rotating an ellipse about the minor or major axis, one obtains an oblateor a prolate spheroid, respetively. In three-dimensional Cartesian oordinates (x; y; z), these spheroids arede�ned by x2a2 + y2a2 + z2b2 ; (a; b > 0) (5.28)71



where a and b are the equatorial and the polar radii, respetively. Speial ases of the spheroids inlude thesurfae of an in�nitely long ylinder, of a sphere, and of a at dis. The latter objet is reahed in the limitof an oblate spheroid b ! 0. It is already known [18℄ that a onformal transformation exists between thein�nite plane R2 and the surfae of a spheroid. For simpliity, we here only introdue the mappings of thein�nite plane on the surfae of a sphere and on that of a at dis. Further, we generalize suh onformalmappings to spatial dimensions d > 2.The transformation between an in�nite plane R2 and the surfae of a sphere S2 an be graphiallyunderstood as follows. A sphere with radius R is plaed on the top of an in�nite plane, i.e., only the south`pole' of the sphere touhes the plane. From the north `pole', one draws an arbitrary line, suh that thisline penetrates through the sphere at ~R and intersets with the plane at ~r. The onformal transformationis simply obtained by setting an one-to-one orrespondene between the point ~r and ~R. If one expressesthe plane in polar oordinates (r; �), while parametrizes the surfae of the sphere in spherial oordinates(r = R; �; �), the transformation reads (r; �) = (2R ot �2 ; �) : (5.29)Aording to Eqs. (5.23) and (5.29), the pair orrelation funtion g(~R1; ~R2) on the sphere follows fromg(~R1; ~R2) / 2�xR�2X [1� sin �1 sin �2 os(�1 � �2)� os �1 os �2℄�X= j~R1 � ~R2j�2X ; (5.30)whih, interestingly, has the same form as that in the in�nite plane desribed by Eq. (5.23).Appliation of Eq. (5.29) to the interior of a unit irle leads to the half sphere S�S+, so that a onformaltransformation between the semi-in�nite plane R � R+ and the half surfae of a sphere is established.Aordingly, the pro�le of an operator in the geometry S � S+ behaves ash (~R)i / (R os �)�X : (5.31)In spherial oordinates (r;
), where 
 is a set of angular variables speifying the surfae of a d-dimensional sphere, the line element of the at spae Rd an be written asd s2 = d r2 + r2d
2 : (5.32)In three dimension, one simply has d
2 = d �2+ sin2 � d�2. On this basis, one an express the line elementof the (d+ 1)-dimensional spae Rd+1 asd s0 2 = d r0 2 + r0 2(d �0 2 + sin2 �0 d
2) : (5.33)It is now obvious that, for d > 2, the generalization of Eq. (5.29) reads(r; 
) = (2R ot �02 ; 
) ; with r0 = R : (5.34)Therefore, Eq. (5.34) transforms an in�nite spae Rd into the surfae of a (d+1)-dimensional sphere Sd, onwhih the pair orrelation funtion follows from Eq. (5.30).Surfae of a hyper-dis. As mentioned earlier, the dis geometry is obtained in the limit b! 0 of an oblatespheroid, omposed of the interiors of two irles onneted at their perimeters. This an be generalized tod > 2, and the surfae of a hyper-dis onsists of the interiors of two d-dimensional spheres with the surfaesof both spheres sewn together. Then, the onformal mapping between the spae Rd and the surfae of thehyper-dis reads � (r; 
) = (r0=R; 
) ; (0 � r < 1 ; r0 � R : positive fae)(r; 
) = (R=r0; 
) ; (0 � r < 1 ; r0 � R : negative fae) : (5.35)The �rst derivative of the mapping formula (5.35) is disrete at the edge of the hyper-dis (r0 = R). For apair of points on the same fae of the hyper-dis, ~r1 0 and ~r2 0, the orrelation funtion has the same form asthat in the in�nite spae Rd , i.e., g(~r1 0~r2 0) / j~r1 0 � ~r2 0j�2X .72
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Figure 5.4: Example of transverse perolation model on the interior of a irle.5.5 Simulations in urved geometriesFor spatial dimensions d > 2, onformal mappings normally lead to a urved spae or a geometry withurved boundaries. Even in two dimensions, urved geometries, suh as the surfae of a sphere, an also beobtained from onformal transformations. The nonzero urvature of these geometries poses a serious problemfor numerial appliations of onformal mappings, sine they defy disretizations into regular latties. As aonsequene, the validity of Cardy's mapping was veri�ed only for the speial ase of the spherial model [33℄.Reently, for the ase of the Ising model, this diÆulty was avoided by making use of the Hamiltonian limitof the Ising model [17, 18℄, whih renders one of the dimensions ontinuous. Sine the aforementionedtransverse perolation model also has one ontinuous dimension, we here provide further appliations ofonformal mappings to both the bulk and surfae ritiality.5.5.1 Monte Carlo methods in urved geometriesAs an example, we sketh a proedure for luster deomposition of the interior of a irle. First, one dividesthe geometry into L onentri irles, with the Lth irle preisely at the edge (Fig. 5.4). The loationof the kth irle reads rk = k � 12 , with the orresponding irumferene k = �(2k � 1). Then, let theontinuous longitudinal dimension of the transverse perolation model be the � diretion, so that thoseonentri irles just represent the onduting lines mentioned above. Then, aording to Eq. (5.14), onegenerates and uniformly distributes barriers at the onentri irles. We mention that, at the kth irle, theaverage number of the barriers is ontrolled by the length of its perimeter. The distribution of bridges followsan analogous way, but the total number of the bridges between the kth and (k+1)th irles (1 � k � L� 1)is now governed by the irumferene of the irle in the middle. Furthermore, the diameter of the �rst irleis 1, and thus bridges an exhibit through the enter, onneting di�erent parts of the �rst irle. A typialon�guration is shown in Fig. 5.4, where the bridges are denoted as the dashed lines.Similarly, the `lattie' struture on a sphere S2 an be represented by L uniformly distributed irles withradii as hosen above. The transverse and longitudinal dimensions are the � and � diretions, respetively.The loation of the kth irle is �k = (k� 12 )�=L, and its irumferene is k = 2L sin �k. Thus, the radius ofthe sphere is R = L=�. Analogously, the number of the barriers at the kth irle is dominated by the lengthof its perimeter, while that of the bridges is governed by the irumferene of the irle in the middle of thekth and (k + 1)th ones.On a mirosopi sale, the lattie struture on a sphere or the interior of a irle is the same as thaton a at plane, i.e., both of them are obtained in the anisotropi limit of the square lattie. Thus, oneexpets that the ritial point is still t = 1. However, a global e�et may arise due to the fat that the73
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6Critial phenomena under energy-like and magneti on-straints
We present a Monte Carlo study of several ritial and triritial systems in two dimensions under two typesof onstraint. The systems inlude Baxter's hard-square and hard-hexagon lattie gases, the Blume-Capelmodel, and three- and four-state Potts models with vaanies. The �rst type of onstraint is energy-likeand �xes the number of partiles or vaanies. We �nd that suh onstraints a�et the leading �nite-size-saling properties of energy-like quantities, while the e�et on magneti quantities is restrited to orretionterms. The seond type of onstraint applies to the magnetization, and appears to suppress the �nite-sizedivergenes of a quantity that normally sales as the magneti suseptibility.In an attempt to explain the observed �nite-size saling properties, we make use of the well-known Fisherrenormalization mehanism. However, we do not always �nd a satisfatory agreement with our numerial re-sults for onstrained ritial systems. For instane, for most energy-like onstraints, the exponents desribingthe �nite-size dependene of the spei� heat are twie the expeted values.We also sample spei�-heat-like and suseptibility-like quantities on the basis of the utuations of thelong-wavelength Fourier omponents of the energy and magnetization densities of onstrained systems. Their�nite-size saling behavior resembles that of the spei� heat and the suseptibility of unonstrained systemsrespetively.6.1 IntrodutionIn experiments or in simulations, systems undergoing a phase transition may be subjet to a onstraint. Forinstane, the total number of vaanies in the Blume-Capel (BC) model [1,2℄ an be kept onstant. Likewise,in Baxter's hard-square lattie gas [3℄, the total number of partiles may be �xed.Critial phenomena in these `annealed' onstrained systems have been of interest for deades. Inves-tigations date bak to 1965 when the exatly solvable Syozi model [4℄, a dilute spin- 12 Ising model, wasintrodued. Syozi found that the ritial indies �0, �0 and 0 are related to the standard exponents of theIsing model as �0 = ��=(1� �) ; �0 = �=(1� �) ; 0 = =(1� �) ; � � � : (6.1)Fisher suggested [5℄ that the relations (6.1) are not spei� to the Syozi model, but are satis�ed byequilibrium models with a divergent spei� heat (� > 0) in general. Sine then, Fisher's renormalizedritial exponents have gained onsiderable aeptane. As a result of Eq. (6.1), the singularity of theonstrained ritial spei� heat C assumes the form of a �nite usp instead of being divergent. For themarginal ase of a logarithmi divergene (� = 0), Fisher showed that C � C0 / 1= ln t where t is thetemperature-like distane to ritiality. 79



Later, more general theories were formulated [6℄ for onstrained systems, inluding a theory of triritialonstrained phenomena. Suh restritions an, besides the total number of vaanies, also involve the volumeor pressure et. It was onluded [6,7℄ that, depending on the type or strength of the onstraint, a ontinuoustransition may get Fisher-renormalized, remain unhanged, or beome �rst-order. The speial point wherethe transition remains unhanged orresponds to a `triritial' point [6℄, of whih the ritial singularity isthe same as that of the unonstrained ritial system. This theory was tested on the Baker-Essam model [8℄,an exatly solvable ompressible Ising model.On the basis of a renormalization-type analysis using a generalized Landau-Ginzburg-Wilson Hamiltonianand the �-expansion tehnique, Imry and oworkers found four distint �xed points [9℄. These are thetriritial Ising (T ) and ritial Ising (I) �xed points for unonstrained systems, and the renormalizedtriritial (RT ) Ising and the renormalized Ising (RI) ritial �xed point for onstrained systems. In threedimensions, T and RT orrespond to Gaussian and spherial �xed points, respetively [9℄. The exponentrelations between these �xed points are: �RI = ��I=(1 � �I) and �RT = ��T =(1 � �T ), in agreementwith Eq. (6.1). These relations have, for the 3D ase, been used to explain experimental data for 3He-4Hemixtures [10℄.Sine the upper ritial dimensionality of Ising-like triritial systems is three, one may expet thatmean-�eld theory yields a qualitatively orret senario for suh systems. We have thus performed an exatalulation for the triritial mean-�eld Blume-Capel (BC) model [11℄ with a large but �nite system size.We �nd that the �nite-size saling behavior of the onstrained version of this model orresponds with thelassial (mean-�eld) ritial Ising model.Although onsiderable work has already been done for ritial onstrained behavior, further investigationsstill seem appropriate. The reasons are as follows. First, although Fisher's renormalized exponents have beenused extensively, few reports have been published about the �nite-size dependene of onstrained systems.Seond, it is not obvious how triritial systems behave under the onstraint. Third, it remains to beinvestigated how the onstraint a�ets the long-wavelength utuations of quantities whose ritial behavioris onserved or renormalized. Sine the onstraint does not eliminate the spatial utuations, one mightexpet that the unrenormalized behavior will persist.Our investigations inlude several ritial and triritial 2D models: Baxter's hard square (HS) andhard-hexagon (HH) lattie gases [3℄, the Blume-Capel (BC) model, and Potts models with vaanies. Alsoinluded is the triritial BC model in three dimensions. The total number of vaanies (or partiles) is�xed at the ritial expetation value, while they still an move freely over the lattie. These models arede�ned in Setion II. Here the problem arises what sort of Monte Carlo algorithm applies to suh onstrainedsystems. The Swendsen-Wang and Wol� methods are not suitable or suÆient, sine they do not operateon the zero spins or lattie-gas partiles. In priniple, one an apply a partile-onserving Kawasaki-likeMonte Carlo algorithm. But this method su�ers from serious ritial slowing down, so that suh simulationsare limited to small system sizes. In the present work, we realize two types of onstraints by means of apartile-onserving geometri luster algorithm [12℄, whih moreover suppresses ritial slowing down. ThisMonte Carlo method moves ritial lusters of spins (both zero and nonzero) or partiles over the lattiein aordane with the Boltzmann distribution. It also imposes a magneti onstraint: it onserves themagnetization. The latter onstraint an be eliminated by inluding Wol� luster steps. The results for theenergy-like and for the magneti onstraint are presented in Setions III and IV, respetively. Setion Vpresents an analyti approah to �nite-size saling in the presene of a onstraint. A brief disussion andoverview is given in Setion VI.6.2 Models and sampled quantitiesAll simulations of the models desribed below used L� L systems with periodi boundary onditions.
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6.2.1 The Blume-Capel modelThe Hamiltonian of the BC model [1, 2℄ on the square lattie isH=kBT = �KXhnni sisj +DXk s2k ; (6.2)where the sum hnni is over nearest-neighbor pairs, and the spins assume values s = 0 or �1. We refer tozero spins s = 0 as vaanies. The parameter D ats as the hemial potential of the vaanies. In theK�D parameter spae, the BC model has a ritial line K(D) and a triritial point (Kt; Dt). The ritialbehavior along the line K(D) is Ising-like, and thus the magneti, thermal and irrelevant saling exponentsare yh = 15=8, yt = 1, and yi = �2, respetively. At triritiality, the BC model has di�erent exponents,namely [13℄ yh = 77=40, y(1)t = 9=5, y(2)t = 1=5, and yi = �1. Using a sparse transfer-matrix method and�nite-size saling, we loate the triritial point at Kt = 1:6431759 (1) and Dt = 3:2301797 (2). This resultis based on the requirement that two types of orrelation lengths (magneti and energy-like) simultaneouslyreah their theoretial values. The orresponding vaany density is �t = 0:4549506(2). Analogously, wedetermine an arbitrary ritial point at K = 1 as D = 1:70271780(2), with � = 0:3495830(1). This pointappears to be suÆiently far from the triritial point; rossover e�ets were not seen in the saling analysisof the transfer-matrix results.6.2.2 Baxter's hard-ore lattie gasesWe onsider a lattie gas on the square lattie de�ned by the HamiltonianH = �KXhnni�i�j � J XfNEg�k�l �MX[SE℄�m�n + �Xk �k ; (6.3)where � = 0; 1 represents the absene and the presene of a partile, respetively, and the hemial potentialof partiles is denoted as �. The sums labeled as fNEg and [SE℄ are over seond-neighbor pairs (diagonalsof the elementary faes) along the (x; y) = (1; 1) and (1;�1) diretions, respetively. We fous on twoexatly solved ases [3℄ in whih the nearest-neighbor interation K ! �1, i.e., the partiles are `hard'and nearest-neighbor sites annot be oupied simultaneously. The �rst ase is Baxter's HS model atJt = Mt = ln(3 +p5) and �t = ln[8(1 +p5)℄ whih is known [14℄ to belong to the same universality lassas the triritial BC model. The orresponding vaany density is �t = (5 +p5)=10.In the seond ase, one of the diagonal ouplings beomes in�nitely repulsive while the other one is zero:M ! �1 and J = 0. This leads to Baxter's hard-hexagon (HH) lattie gas, whih has a ritial point at� = ln[(11+p5)=2℄ that belongs to the three-state Potts universality lass. The ritial exponents are givenby yh = 28=15, yt = 6=5 and yi = �4=5 [3, 15℄. The ritial vaany density is again � = (5 +p5)=10 [3℄.6.2.3 Two-dimensional Potts model with vaaniesWe onsider the Potts model on the square lattie de�ned by the HamiltonianH=kBT = �KXhi;ji Æ�i;�j (1� Æ�i;0)�DXk Æ�k;0 (� = 0; 1; � � � ; q) : (6.4)Here, the sum h i is over all nearest-neighbor sites, and the site is oupied by a Potts spin with � = 1; � � � ; qor by a vaany � = 0. Nonzero ouplings K our only between equal Potts spins, i.e., spins with �k 6= 0.The abundane of the vaanies is ontrolled by the hemial potential D. For q < 4 the phase diagram inthe (K;D) plane resembles that of the Blume-Capel model: a triritial point ours between the ontinuousand the �rst-order range of the line of phase transitions. By means of a transfer-matrix method, we haveloated the q = 3 triritial point at K = 1:649913 (5), D = 3:152173 (1). The orresponding density of thevaanies is � = 0:34572 (5). 81



For the generi q = 4 Potts ase, analyses of the ritial saling behavior are hampered by logarithmiorretions indued by the marginally irrelevant dilution �eld assoiated with D. We suppress this dilution�eld by requiring that transfer-matrix results for both the temperature and the magneti exponent lead tothe exatly known values. Extrapolation of �nite-size estimates leads to our estimate of the q = 4 ritial�xed point in the (K;D) plane as K = 1:45790 (1), D = 2:47844 (2). The orresponding density of thevaanies is � = 0:21207 (2).6.2.4 Data sampledSeveral quantities were sampled during the Monte Carlo simulations, inluding the order parameter and thedensities of the energy and the partiles or vaanies when allowed to utuate. The magneti suseptibilityis obtained from the utuations of the order parameter m as � = L2hm2i. For the BC model, m is just themagnetization density. For the HH model, we de�ne m2 = 12 h(�1 � �2)2 + (�2 � �3)2 + (�3 � �1)2i in termsof the vaany densities �1, �2 and �3 on the three sublatties.Analogously, we have m2 = h(�1 � �2)2i for the HS model. A universal Binder ratio [16℄ is then de�nedas Q = hm2i2=hm4i. An energy-like density e was sampled as the nearest-neighbor orrelation for the BCmodel, and as the next-nearest-neighbor orrelation for the HH and HS lattie gases. On this basis, a spei�-heat-like quantity (equal to the seond derivative of the redued free energy to the parameter onjugate toe) is de�ned as C = Ld(he2i � hei2), where d is the dimensionality of the lattie.In addition we also sample quantities desribing the response of the model to spatially inhomogeneoustemperature or magneti �elds. Just as C and � they an be expressed in terms of utuations of theonjugate densities. For these onjugate densities we use the long-wavelength Fourier omponents of theenergy or magnetization.First, we de�ne a suseptibility-like quantity �F on the basis of the utuations of the spatial orderparameter distribution m(x; y). The Fourier omponents of m(x; y) for systems of size L aremkx;ky = 1L2 Z L0 dx dy m(x; y) exp[2�i(xkx + yky)=L℄ ; (6.5)Obviously, the onventional suseptibility is just � = L2hm2i = L2hm20;0i, and the quantities mkx;ky , forkx 6= 0 or ky 6= 0, represent spatial inhomogeneity of m. Thus, We de�ne�F = L2hm�1;0m1;0 +m0;�1m0;1i: (6.6)We shall refer to �F as the struture fator of the suseptibility.Analogously, we de�ne a spei�-heat-like struture fator as CF = L2he�1;0e1;0+e0;�1e0;1i, where ekx;kydenotes the Fourier omponents of the energy density e.6.3 Results for energy-like onstraintsThe following simulations are performed exatly at the ritial or triritial point, unless spei�ed otherwise.Aording to �nite-size saling, for unonstrained ritial systems, we expet, apart from �nite-sizeorretions, e� e0 / Lyt�d ; � / L2yh�d ; and C � C0 / L2yt�d ; (6.7)where e0 and C0 arise from the analyti part of free energy. The saling behavior of � and C an beobtained by integration over spae of the magneti and energy-energy orrelation funtions respetively.These orrelation funtions depend on the distane r as r2yh�2d and r2yt�2d respetively. Sine �F and CFare determined by integrals with the same saling properties, we expet �nite-size behavior similar to � andC respetively.As a test, we simulated the unonstrained HH model (yt = 6=5 and yh = 28=15). In order to allowtransitions between partiles and vaanies, Metropolis sweeps were applied in addition to geometri lustersteps [12℄. System sizes were taken as L = 6; 9; � � � ; 24. Results are shown in Fig. 6.1, whih on�rmsEq. (6.7) and our expetation that C and CF behave similarly.82



0

0.5

1

1.5

2

2.5

3

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

C C
F

L2/5Figure 6.1: Spei�-heat-like quantities C (�) and CF (4) versus L2=5 for the unonstrained HH model.
0.418

0.419

0.42

0 0.005 0.01 0.015 0.02

 e

L-6/5Figure 6.2: Energy-like quantity e for the onstrained HH model versus L�6=5.6.3.1 Hard-hexagon lattie gasFor the onstrained HH model, only geometri luster steps [12℄ were used. In priniple, the total numberof the vaanies should be taken as V = L2�, with � = (5+p5)=10. For �nite systems, however, V is notan integer. Therefore simulations were performed at two numbers [V℄ and [V+1℄ where brakets [ ℄ denotethe integer part. Data at V are obtained by linear interpolation between [V℄ and [V + 1℄. System sizeswere hosen as 33 values ranging from 9 to 960. Examples of the Monte Carlo results are shown in following�gures.Figures 6.2-6.4 suggest that e�e0 / L�6=5, C�C0 / L�4=5, and CF / L2=5. Compared to unonstrainedsystems, the behavior of e and C is onsiderably modi�ed. In partiular, the spei�-heat-like quantity Capproahes a onstant C0 when L inreases. The struture fator CF remains, however, similar to that inthe unonstrained system. It is also observed that the magneti suseptibilities, as expeted, approximatelybehave as � / �F / L2yh�d = L26=15 (not shown).Although the leading behavior of suseptibility-like quantities remains unhanged, �nite-size orretionsdue to the onstraint appear. An example of suh a quantity is the dimensionless Binder ratio (Fig. 6.5),indiating an assoiated exponent y1 = �2=5.To be more spei�, we �tted the formula Qm = Qm + aLy1 to the numerial data aording to theleast-squares riterion. Applying a uto� for small system sizes L � 15 we found that Qm = 0:7892(2),a = 0:1025(9) and y1 = �0:397(5). Sine the irrelevant exponent yi = �4=5 is learly di�erent, it appearsthat new orretions are introdued by the onstraint.83



0.104

0.106

0.108

0.11

0.112

0.114

0.116

0.118

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

C

L-4/5Figure 6.3: Spei�-heat-like quantity C for the onstrained HH model versus L�4=5.

0

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14

C
F

L2/5Figure 6.4: The struture fator CF for the onstrained HH model versus L2=5.

0.79

0.8

0.81

0.82

0.83

0 0.1 0.2 0.3 0.4

Q
m

L-2/5Figure 6.5: Binder ratio Qm for the onstrained HH model versus L�2=5.84



40

50

60

70

80

90

100

110

120

130

140

2.5 3 3.5 4 4.5 5 5.5 6

C
F

ln LFigure 6.6: The struture fator CF for the onstrained ritial BC model versus lnL.
1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C

1/(ln L)2Figure 6.7: Spei�-heat-like quantity C for the onstrained ritial BC model versus 1=(lnL)2.6.3.2 Critial Blume-Capel modelThe ritial BC model in two dimensions is a marginal ase (� = 0). The simulations used a ombinationof Wol� and geometri luster steps in order to leave the magnetization free and impose the onstraint thatthe number of vaanies is �xed. System sizes were hosen as 53 values ranging from 4 to 400. Under theonstraint, the ritial struture fator approximately behaves as CF �CF0 / lnL (Fig. 6.6), and the salingbehavior of � and �F is about / L2yh�d = L7=4 (not shown). This senario is analogous to that for theonstrained HH model, i.e., the ritial behavior of CF , � and �F is not a�eted by the onstraint.The Monte Carlo data for C and e are shown in Figs. 6.7 and 6.8, respetively. The suggest thatC � C0 / 1=(lnL)2, and that a single power law is not suÆient to desribe the behavior of the energy-likequantity e.The Binder ratio Qm is shown in Fig. 6.9 as 1= lnL, the approximate linearity at left-hand-side indiatesthat the leading �nite-size orretion may be of a logarithmi form. Compared to the irrelevant exponentyi = �2 for unonstrained BC model, suh a orretion may arise from the onstraint.6.3.3 Dilute q = 4 Potts modelThe simulations took plae at the `�xed point' where the logarithmi orretions are absent. The vaanydensities were kept �xed, and square systems were hosen in the range 12 � L � 280. The numerial datafor of C were �tted by C = 0 + 1L�1 + 2L�3=2 + 3L�2 ; (6.8)85



1.804

1.805

1.806

1.807

0 0.01 0.02 0.03 0.04 0.05

e

1/LFigure 6.8: Energy-like quantity e for the onstrained ritial BC model versus 1=L.

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.15 0.2 0.25 0.3 0.35 0.4

Q
m

1/ln LFigure 6.9: Binder ratio Qm for the onstrained ritial BC model versus 1= lnL.
86



The amplitude 3 was not signi�ant. A two-parameter �t led to 1 = �2:1(5) and 2 = �23(1). It appearsthat the absolute value of 2 is muh larger than that of 1.6.4 Results for magneti onstraintsIn the presene of a onstraint on the magnetization we still want to determine a suseptibility-like quantity.For the Ising model we may onsider a loal quantity de�ned asm0 � L�d Xtriang sisjsk (6.9)where the sum is over three-spin produts. These three spins are piked up from those on elementaryunits suh as the elementary triangles and squares for the triangular and square latties, respetively. Thisquantity has the same symmetry property as the magnetization m, i.e., it hanges sign when all spins areinverted. Its utuations are obviously redued when the onstraint m = 0 is imposed. We thus de�ne thesuseptibility-like quantity �0 � Ldhm02i (6.10)In the more general ontext of the Potts model the magnetization is determined by the densities �i de�nedas �i � L�dXk Æ�k;i (6.11)where i = 1; 2; � � � ; q denotes the Potts state. The normal Potts magneti suseptibility � is de�ned as� = Ldhm2i = 12Ld qXi=1 qXj=i+1h(�i � �j)2i (6.12)Sine the terms in the double sum do not depend on i and j one an just take the term i = 1 and j = 2. Inthe presene of the onstraint �i = 1=q we may thus de�ne the magnetization-like quantitym0 = L�dXi;j;k(Æ�i;1 � Æ�i;2)(Æ�j ;1 � Æ�j ;2)(Æ�k;1 � Æ�k;2) ; (6.13)and the suseptibility-like quantity �0 = Ldhm02i (6.14)Without this onstraint, the �nite-size saling behavior of �0 and � is governed by the same exponents. Thiswas numerially veri�ed for several models.6.4.1 Critial Ising modelThe model is de�ned on the triangular lattie, and the system sizes were hosen in the range 8 � L � 660.The simulations took plae at the ritial point K = 14 ln 3 and at zero magnetization. The results for thesuseptibility-like quantity �0 are shown in Fig. 6.10. The data for �0 were �tted by the formula�0 = 0 + Lp(a0 + a1Ly1) ; (6.15)aording to the least-squares riterion. The exponent p governs the leading singular behavior of �0, andthe term with y1 purportedly aounts for �nite-size orretions. We thus obtain p = �1:008(12) andy1 = �1:05(6).6.4.2 Critial q = 3 Potts modelThe model is also de�ned on the triangular lattie, with system sizes ranging from 9 to 480. The densitiesof the three types of Potts variables were hosen equal and �xed. The data for �0 (not shown) were �ttedby Eq. (6.15), whih led to the results p = �0:77(5) and y1 = �0:51(20).87
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6.5 Finite-size saling in the presene of a onstraintAs mentioned above, onstrained ritial behavior in in�nite systems is explained by Fisher's renormalizedexponents [5℄. On this basis, we perform some alulations for �nite-size onstrained ritial behavior.6.5.1 Energy-like onstraintIn the language of the Potts model with vaanies [Eq .(6.4)℄, the saling behavior near the ritial temper-ature of the redued free energy density f = lnZ isf(t; L) = L�dfs(tLyt ; 1) + fa(D) ; (6.16)where t is the thermal saling �eld, and fs and fa are the singular and analyti parts of the free energyrespetively. Here, we have negleted the irrelevant �eld in fs. The analyti part fa is expressed in D whihparametrizes the ritial line. The dependene of fa on the distane t to the ritial line is negleted. Theonstraint is thus �(D;K;L) = �f=�D = onstant where t is expressed in K and D. Solving this equationyields the path in the (D;K) plane. The solution an be written as t / (K�K)Ld�2yt if 2yt�d > 0, whereK is the value of K where the path rosses the ritial line at t = 0. Substitution of t in Eq. (6.16) leads tof(t0; L) = Ldfs(t0Ld�yt ; 1) + fa(t0) : (6.17)where we have parametrized the distane to the ritial point as t0 � K �K. On this basis, we expet thatthe leading ritial singularities for onstrained systems aree� e0 / L�yt ; and C � C0 / Ld�2yt + aL2(d�2yt) : (6.18)Equation (6.18) indiates that e � e0 / L�6=5 and C � C0 / L�2=5 + aL�4=5 for the onstrained HHmodel, and that e � e0 / L�1 and C � C0 / 1= lnL + a=(lnL)2 for the onstrained ritial BC model.From a omparison with the numerial data in Se. II, we �nd that the energy density is satisfatorilyexplained. However, for the spei� heat, the amplitude of the leading term Ld�2yt is very small if notabsent. This result, as well as the aforementioned new �nite-size orretions, suggests that some morereetion is desirable.Our �nite-size saling results for models with an energy-like onstraint, and our expetation on the basisof the Fisher renormalization sheme, are listed in Tab. I.Tab. I: Summary of �nite-size saling properties in ritial and triritial models under the energy-likeonstraint that the number of vaanies or partiles is onserved.model quantity found expetedhard-hexagon e L�6=5 L�6=5hard-hexagon C � C0 L�4=5 L�2=5hard-hexagon CF L2=5 L2=5rit. 2D Blume-Capel e L�1 (?) L�1rit. 2D Blume-Capel C � C0 1=(lnL)2 1= lnLrit. 2D Blume-Capel Q 1= lnL(?) L�2dilute 2D q = 4 Potts C � C0 L�1 (?) L�16.5.2 Magneti onstraintFor Ising models we require m = 0, and for Potts models �1 = �2 = � � � = �q . Without this onstraint,the ritial behavior of � and �0 as de�ned above is governed by the same magneti exponent. Under theonstraint, � is ompletely suppressed, and we may thus raise the question about the saling behavior of�0. We �rst note that � and �0 an be written as the seond derivatives of the free energy density f with90



respet to �elds H and H 0 respetively. The seond derivative of f to H 0 will depend on the `path' desribedby the onstrained system in the H;H 0 plane. To �nd this path, we �rst assume that the magneti saling�eld h and a subleading �eld h0 an be expressed as linear ombinations of H and H 0, and that h is the onlyrelevant �eld governing the magneti ritial behavior. Following Fisher's proedure applied earlier in thease of thermal behavior, we �nd that the path is determined by balaning the ontributions of the singularand analyti parts of f to the magnetization so that the magneti saling dimension yh is renormalized asy0h = Xh = 2 � yh. Thus, for ritial systems with a zero magnetization, one would expet �0 / Lp1 withp1 = 2y0h � 2 = 2� 2yh. We refer to this as `Mehanism One'. It does not math our results given in SetionIV: the observed singularities appear to be stronger.We therefore tentatively assume instead that there is another relevant magneti saling �eld that plays arole in the Potts model. For the exponents assoiated with suh saling �elds see e.g. Ref. [13℄. Normally, thisseond �eld is onsidered redundant. The value of the seond magneti dimension is X 0h = (g+1)(10�g)=8g,with q = 2 + 2 os(g�=2), where 2 � g < 4 applies to the ritial branh of the Potts model, and 4 � g � 6to the triritial branh. The parameter g is alled the oupling onstant of the Coulomb gas. If the seond�eld is not redundant, it will lead to a singularity aording to �0 / Lp2 with p2 = 2� 2X 0h. We will referto this as `Mehanism Two'. Comparison with Setion IV tells us that it does not apply, as expeted forredundant operators.Next we investigate a third mehanism based on the nonlinearity of the saling �elds. In partiularwe expet that quadrati terms in the magneti �eld may ontribute to the temperature �eld t, i.e., t =K �K + wH2 + w0H 02 + � � � . The saling equation for the free energy then beomesf(t; � � � ; L) = L�df(Lyt(K �K + wH2 + w0H 0 2 + � � � ); � � � ; 1) + � � � (6.19)The seond derivative to H 0 will thus pik up ontributions proportional to Lp3 with p3 = yt � d. For thease of the ritial q = 2 and q = 3 Potts models, this agrees well with the numerial results, but not so forq = 4 and the triritial systems.A fourth mehanism is similar to the seond, but with a seond magneti dimension assumed to bedesribed by the Ka formula [17, 18℄Xp;q = [p(m+ 1)� qm℄2 � 12m(m+ 1) ; (1 � p < m ; 1 � q � p) (6.20)for rotationally invariant operators. For the triritial Blume-Capel model (m = 4), it is known [19℄ thatXh2 = X2;1 = 7=8 is a seond relevant magneti dimension. We assume that this an be generalized to thewhole triritial branh of the Potts model suh thatXh2 = Xm=2;m=2�1 = (9m2 � 4)=8m(m+ 1) : (6.21)Thus, one has Xh2 = 20=21 and 9=8 for the triritial q = 3 (m = 6)and the q = 4 (m ! 1) Potts model,respetively. Substitution of g = 4(m+ 1)=m in Eq. (6.21) yieldsXh2 = [36� (g � 4)2℄=8g ; (6.22)where g is the oupling onstant of the Coulomb gas. We simply assume that Eq. (6.22) also applies to theritial branh of the Potts model, for whih g = 4m=(m + 1). Thus, one has Xh2 = X(m+3)=2;(m+1)=2 =(3m+ 5)(3m+ 1)=8m(m+ 1) for the ritial Potts model. For m = 5, i.e., the q = 3 Potts model, its valueis Xh2 = X4;3 = 4=3. The ase m = 3 applies to the ritial Ising and triritial q = 1 Potts models, whihhave Xh2 = X3;2 and X3=2;1=2, respetively. Apparently, the oordinates of these exponents do not our inthe aforementioned Ka table (6.20), and the exponents may not be observable in thermodynami quantities.The preditions of this mehanism (Mehanism Four) agree satisfatorily with the numerial results, exeptfor the q = 4 Potts model and the triritial q = 3 model.The �ts aording to the above four mehanisms are summarized in Tab. II.91



Tab. II: Summary of �nite-size saling results aording to Mehanisms 1-4 outlined above. In those ases where p does not well agree with asingle mehanism, better agreement is obtained by ombining Mehanisms 3 and 4.q model Xh1 Xh2 p p1 p2 p3 p42 rit. Ising 1=8 7=6 �1:008(12) �7=4 �1=3 �1 |{3 rit. q = 3 2=15 13=12 �0:77(5) �26=15 �1=6 �4=5 �2=34 q = 4 with va. 1=8 15=16 �0:224(4) �7=4 1=8 �1=2 �1=43 trir. q = 3 2=21 20=21 0:126(2) �38=21 8=21 �2=7 2=212 trir. q = 2 3=40 3=4 0:253(2) �37=20 1=2 �1=5 1=4Tab. III: Results of �ts for several q-state Potts models with vaaniesFit1 (p4, p3 �xed) Fit2 Fit3model a0 a1 a2 p4 p3 p4 p3rit. q = 3 0:4198(4) �0:83(5) �1:08(7) �0:7(2) �4=5 (�xed) �2=3 (�xed) �0:7(2)q = 4 with va. 2:55(3) �4:67(2) 0:78(3) �0:249(5) �1=2 (�xed) �1=4 (�xed) �0:49(8)trir. q = 3 �5:54(2) 4:40(2) 0:67(2) 0:094(5) �2=7 (�xed) 2=21 (�xed) �0:30(5)trir. Ising �2:26(1) 1:356(2) 0:12(2) 0:250(5) �1=5 (�xed) 1=4 (�xed) �0:2(2)92



Table II indiates that not all the numerial data an be explained by a single mehanism. It is obvious,however, that more than one mehanisms an simultaneously exist under the magneti onstraint. Thus, we�tted the data for �0 by �0 = a0 + a1Lp4 + a2Lp3 + a3Lp4+yi ; (6.23)where the term with yi arises from the irrelevant thermal saling �eld. For the ritial q = 3 Potts model,it is diÆult to distinguish p3 = �4=5 from p4 = �2=3. However, if p3 and p4 are �xed and yi is set to�4=5, both amplitudes a1 and a2 are indeed well determined as a1 = �0:83(4) and a2 = �1:08(5). Forthe triritial Blume-Capel model, we also �xed p3 = �1=5 and p4 = 1=4 and obtained a1 = 1:356(3) anda2 = 0:12(2). If we leave p4 free and keep p3 �xed, we �nd p4 = 0:249(3), in agreement with the expetedvalue. However, if p3 is left free while p4 is �xed at 1=4, the error margin of p3 is as big as the value itself.This may be due to the following. First, the amplitude a2 is muh smaller than a1 as mentioned earlier.Seond, the exponent p3 = �1=5 is lose to 0 suh that the term with a2 is diÆult to distinguish from thebakground ontribution a0. The �ts of �0 for the q = 3 and q = 4 Potts models, and for the q = 2 triritialmodel, are summarized in Tab. III.6.6 DisussionFrom our numerial results for several ritial and triritial systems under an energy-like onstraint, weobserve that a) the leading saling behavior of suseptibility-like quantities remains the same as in unon-strained systems; b) ritial behavior of struture fators, aounting for spatial utuations, is also notinuened by suh a global onstraint; ) the saling behavior of energy-like quantities is modi�ed signi�-antly; and d) strong �nite-size orretions arise due to the onstraint.On the basis of Fisher's theory, we have performed some analytial alulations, in order to omparewith our numerial results. We �nd that onstrained triritial phenomena an be desribed satisfatorily.However, our understanding of onstrained ritial phenomena appears to be insuÆient: the numerialresults indiate that, for a number of models, the amplitude of the leading term in Eq. (6.18) is very smallif not absent.Our derivation of the onstrained �nite-size behavior does not provide us with an obvious reason whythe leading term should vanish. Moreover, it has been observed [20℄ that the e�etive renormalization ofthe onstrained spei� heat in experiments is not as strong as the theoretial predition, Eq. (6.1). Thisdeviation from the expeted saling behavior is just in the opposite diretion.Furthermore, we have shown that, in omparison with unonstrained systems, new �nite-size orretionsfor magneti quantities arise due to the energy-like onstraint. It appears that these orretions are notaounted for by the mehanism desribed in Ref. [21℄. Thus, further investigation, in partiular a theoretialanalysis, seems desirable.Our results for the onstrained three-dimensional Blume-Capel model, while in agreement with the Fisherrenormalization sheme, do not agree with the mean-�eld desription [11℄ of the onstrained model. Can weunderstand this? In the mean-�eld model, eah spin interats equally with every other spin. The preseneof vaanies only redues the number of Ising spins, leading to a smaller e�etive interation. Thus, thevaany utuations are oupled to the Ising utuations. The stability riterion of the oupled utuationsdetermines the triritial point. The onstraint suppresses the utuations of the vaanies, and thus reduesthe model to an `ordinary' mean-�eld Ising model. It is lear that triritial behavior is suppressed in theonstrained mean-�eld model, but we �nd it puzzling that this result di�ers from that for the triritialBlume-Capel model in three dimensions, the upper ritial dimensionality.For the magneti onstraint, the situation seems more satisfatory than for the energy-like onstraints,but still involves assumptions that need further justi�ation. For instane, our assumption for the value ofthe seond magneti saling dimension of the Potts model deserves more attention, sine no solid numerialevidene for this exponent is available, as far as we know.For us the most remarkable result obtained above is the �nite-size behavior of the onstrained spei�heat, whih displays twie the expeted exponent. In an attempt to obtain a further lue, we have done an93
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7Constrained triritial Ising model in three dimensions
Using the Wol� and geometri luster Monte Carlo methods, we investigate the triritial Blume-Capelmodel in three dimensions. Sine these simulations onserve the number of vaanies and thus e�etivelyintrodue a onstraint, we generalize the Fisher renormalization for onstrained ritial behavior to triritialsystems. We observe that, indeed, the triritial behavior is signi�antly modi�ed under this onstraint. Forinstane, at triritiality, the spei� heat has only a �nite usp and the Binder ratio assumes a di�erent valuefrom that in unonstrained systems. Sine three is the upper triritial dimensionality of Ising systems, weexpet that the mean-�eld theory orretly predits a number of universal parameters in three dimensions.Therefore, we alulate the partition sum of the mean-�eld triritial Blume-Capel model, and aordinglyobtain the exat value of the Binder ratio. Under the onstraint, we show that this mean-�eld triritialsystem redues to the mean-�eld ritial Ising model. However, our three-dimensional data do not agree withthis mean-�eld predition. Instead, they are suessfully explained by the generalized Fisher renormalizationmehanism.7.1 IntrodutionIn the development of the theory of ritial phenomena and phase transitions, a spin-1 Ising model known asthe Blume-Capel (BC) model has played an important role. This model was originally introdued by Blumeand Capel [1, 2℄, and the redued Hamiltonian readsH=kBT = �KXhiji sisj +DXk s2k (si = �1; 0) ; (7.1)where the sum h i is over all nearest-neighbor pairs of lattie sites. The spins assume values �1 and 0,and those in state 0 are referred to as vaanies. The abundane of vaanies is governed by the hemialpotential D, whih is also termed the rystal �eld parameter. The phase diagram is skethed in Fig. 7.1.For D ! �1, the vaanies are exluded, and the model (7.1) redues to Onsager's spin- 12 model [3℄. Theritial ouping K(D) is an inreasing funtion of D. For suÆiently large hemial potential, the transitionthen beomes �rst-order, separating the vaany-dominated phase from those dominated by plus (+1) orminus (�1) spins. At the joint point, these three oexisting phases simultaneously beome idential, andthis point is then alled [4℄ the triritial point, denoted as (Kt; Dt) in Fig. 7.1.In two dimensions, the nature of ritial singularities of the BC model is now well established. Forinstane, as early as in 1942, the exat expression of the free energy was obtained by Onsager [3, 5℄ for thespin- 12 model. The universal thermal and magneti exponents are yt = 1 and yh = 15=8, respetively. At thetriritial point (Kt; Dt), exat values of the universal exponents follow from Baxter's exat results for thehard-square lattie gas [6, 7℄, in the same universality lass with the triritial Blume-Capel model; further,these exponents an be alulated from the Coulomb gas theory [8,9℄ and are also inluded in preditions of97
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Figure 7.1: Sketh of the phase diagram of the BC model. The solid line represents the ritial line, whihseparates the para- and ferromagneti phases; and the �rst-order transition is shown as a dashedline. The two lines join at a triritial point (blak irle).the onformal �eld theory [10,11℄. The leading and subleading thermal exponents at triritiality are [6{12℄yt1 = 9=5 and yt2 = 4=5, respetively, and the magneti ones are yh1 = 77=40 and yh2 = 9=8, respetively.In three dimensions, exat results are absent for the BC model along the ritial line K(D), and inves-tigations of ritial behavior have to depend on approximations suh as series and � expansions, and MonteCarlo simulations [13{16℄. However, the triritial Ising model is somewhat speial, in the sense that it is oneof the rare ases in three dimensions that exat information is available about ritial singularities [4℄. Thisis possible beause three is the upper triritial dimensionality of Ising systems. As a onsequene, ritialexponents an be exatly obtained from renormalization alulations [17℄ of the Landau-Ginzburg-WilsonHamiltonian. The thermal and magneti triritial exponents [4℄ are yt1 = 2 and yt2 = 1, and yh1 = 5=2 andyh2 = 3=2, respetively.An experimental example of triritial phenomena in three dimensions is the superuid transition in3He-4He mixtures [4℄, whih is skethed in Fig. 7.2. The transition at the triritial point is known asthe � transition. In fat, the order parameter in the 3He-4He mixtures is a vetor of two omponents, sothat the superuid transition should in priniple be desribed by the O(2) model, the so-alled XY model.Nevertheless, the renormalization alulations yield the same ritial exponents for the O(n) model withn � 1, apart from logarithmi orretions. Thus, in this sense, the BC model (7.1) is still qualitativelyappliable [4℄ at the � point. One would then simply expet that the triritial spei� heat C is divergent,with a ritial index � = 2 � d=yt1 = 1=2. However, this expetation does not agree with the existingexperimental results: C was observed [18℄ to have only a �nite usp with � = �0:9(1) at the � point.This lak of agreement is the result of an important di�erene between the systems in the aforementionedtheoretial and experimental ontexts. This is reeted by the distintion between Figs. 7.1 and 7.2, ofwhih the �rst deals with models in the spae (K;D). In ontrast, Fig. 7.2 uses the mole fration x of 3Heas an independent parameter [18℄. The fration x plays a similar role as the vaany density in Eq. (7.1).Therefore, a orret theoretial desription of the � transition in Fig. 7.2 should be based on a restritedpartition sum with a onserved number of vaanies. In other words, an external onstraint is imposed onthe system (7.1). This onstraint is of the `annealed' type [19℄ sine vaanies are allowed to move freelyover the lattie aording to the Boltzmann distribution.Constrained ritial behavior has already been studied for deades. As earlier as 1965, Syozi [20℄ intro-dued a deorated Ising model on a d-dimensional lattie, whih was shown [21℄ to be intimately onnetedwith annealed systems. The Syozi model an be exatly transformed into the spin- 12 model, and ritialexponents of these two systems are related as�s = ��=(1� �) ; �s = �=(1� �) ; and �s = �=(1� �) ; � � � (7.2)where � and � are the standard ritial indies for the spei� heat C and the magnetization density m for98
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Figure 7.2: The shemati phase diagram of a 3He-4He mixture in the plane of temperature T and molefration x of 3He. The temperature an be understood as the inverse oupling onstant 1=K inEq. (7.1).the spin- 12 model, respetively, and � = 1=yt is the inverse of the thermal exponent; those with the subsripts are for the Syozi model. It an be shown that the hypersaling relations still hold among the ritialindies �s; �s et. In three dimensions, the spin- 12 model has � > 0, so that the spei� heat C of the Syozimodel does not diverge at ritiality. In two dimensions, C of the spin- 12 model is divergent in a logarithmisale sine � = 0. For this marginal ase, C of the Syozi model reahes a �nite usp, also of a logarithminature. Later, this was disussed in a more general ontext by Essam and Garelik [22℄ and by Fisher [23℄.It was pointed out that relations (7.2) are not spei� to the Syozi model, but are more generally satis�ed byequilibrium models with a divergent spei� heat (� > 0). Sine then, the so-alled Fisher renormalizationof onstrained ritial systems has gained onsiderable aeptane [24{27℄.A desription of onstrained triritial behavior was formulated by Imry and his oworkers [28℄ in theontext of the renormalization group (RG) tehnique. Using the �-expansion and a generalized Landau-Ginzburg-Wilson Hamiltonian, they found four distint �xed points: the triritial Ising (TI), ritialIsing (CI), renormalized triritial Ising (RTI), and renormalized ritial Ising (RCI) �xed points. Renor-malization ows deviating from TI an move into the �xed points CI or RTI , and those from CI anend at RCI . The ritial exponents at these �xed points are related as �RCI = ��CI=(1 � �CI) and�RTI = ��TI=(1 � �TI), in agreement with Eq. (7.2). For the spatial dimensionality d � 3, TI and RTIorrespond to Gaussian and spherial �xed points, respetively. Thus, one has the ritial indies �TI = 1=2and �RTI = ��TI=(1 � �TI) = �1 in three dimensions. If one assumes that onstrained behavior of anannealed triritial system is governed by the �xed point RTI , the theoretial predition �RTI = �1 is thenin good agreement with the experimental observation [18℄ � = �0:9(1).At the upper ritial dimensionality, the mean-�eld theory is generally believed to orretly desribe someuniversal aspets of phase transitions. Indeed, for the triritial BC model in three dimensions, a number ofuniversal quantities, inluding the thermal and magneti exponents yt1 and yh1, an be exatly alulated [4℄from a mean-�eld (MF) analysis. In the present paper, we also perform some exat alulations for the MFBC model. Under the onstraint that the total number of vaanies is �xed, we show that the triritial MFBC model redues to the ritial MF Ising model. However, this MF result is not what one would expet forthe triritial BC model in three dimensions, sine the onstraint should not hange the universality lass.Thus, the present paper also takes another approah: following the basi ideas in Ref. [23℄, we generalize theFisher renormalization mehanism for onstrained ritial behavior to triritial systems. In Partiular, wederive �nite-size saling results based on this generalized mehanism.In addition to these theoretial analyses, we perform a Monte Carlo study of the onstrained three-dimensional (3D) BC model. For systems with a onserved number of vaanies, eÆient simulations haveonly beome possible after the introdution of the geometri luster method [29{31℄. This algorithm wasdeveloped on the basis of spatial symmetries, suh as Hamiltonian invariane under spatial inversions and99



rotations. It moves groups of magneti spins and vaanies over the lattie in aordane with Boltzmanndistribution, while the global magnetization and vaany densities are onserved. Then, the aforementionedonstraint an be realized by a ombination of the geometri method and the Wol� algorithm [32℄, whihats only on nonzero spins and thus allows magnetization utuations.7.2 Mean-�eld Blume-Capel modelIn this setion, we perform an asymptoti analysis of the �nite mean-�eld (MF) BC model. On this basis, wehope to obtain some exat results for universal parameters desribing onstrained behavior of the triritialBC model in three dimensions.The mean-�eld (MF) version of a �nite BC model (7.1) is expressed by the HamiltonianH=kBT = �KN NXi=1 NXj=i+1 sisj +DXk s2k (si = �1; 0) ; (7.3)where N is the total number of spins, and eah spin is interating with eah other spin. Then, the loalHamiltonian of the ith spin, i.e., the terms in Eq. (7.3) involving that spin, readsHi=kBT = �Ksim+Ds2i + KN s2i with mN = NXi=1 si ; (7.4)where m is the global magnetization density. The last term in Eq. (7.4) vanishes as 1=N , and will benegleted. The triritial point [4℄ of this MF system an be alulated as follows. Aording to theBoltzmann distribution, Eq. (7.4) determines the statistial probability w of the loal spin si asw(si = 1) = 1z eKm ; w(si = 0) = 1z eD ; and w(si = �1) = 1z e�Km ; (7.5)with a normalization fator z = eKm + eD + e�Km. Thus, the loal magnetization hsii and the global onem are related as hsii = 2 sinh(Km)=[exp(D) + 2 osh(Km)℄ : (7.6)At triritiality, the stability riterion requires that m = 0, �hsii=�m = 1, and �3hsii=�m3 = 0. FromEq. (7.6), solution of these requirements yields the triritial point as Kt = 3 and Dt = 2 ln 2, and theorresponding vaany density as �v = �vt = 2=3.7.2.1 Unonstrained systemsThe Hamiltonian (7.3) depends only on the numbers of down spins and vaanies, whih are denoted as Ndand Nv, respetively. Expression of the partition sum Z in these variables leads toZ = NXNd=0N�NdXNv=0 (Nd; Nv) exp �K2 N(N �Nv � 2NdN )2 � (D + K2N )(N �Nv)� ; (7.7)where the ombinatorial fator (Nd; Nv) ounts the total number of on�gurations with Nd minus spins andNv vaanies C(Nd; Nv) = N !Nd!Nv !(N �Nd �Nv)! : (7.8)After the substitution of the magnetization density m = (N � Nv � 2Nd)=N and the vaany density�v = Nv=N in Eqs. (7.7) and (7.8), one hasZ = 2N2 Z 10 dm Z 10 d�v (m; �v) exp[K2 Nm2 �DN(1� �v)℄ [1 +O(1=N)℄ ; (7.9)100



where we have replaed the sums in Eq. (7.7) by integrals over the magnetization and vaany density mand �v, and negleted orretion terms of order 1=N . Substitution of the triritial values of K and D,appliation of the Stirling's formula ln(N !) = (N + 12 ) lnN �N , and Taylor-expansion of ln (m; �v) yieldln (m; �v) = �94N(Æ�v +m2)2 � 814 NÆ�vm4 � 272 NÆ2�vm2 � 98NÆ3�v�8110Nm6 +NO " 4Xk=0m8�2k(Æ�v)k#+ � � � ; (7.10)where Æ�v = �v � �vt represents utuations of the vaanies. On this basis, the partition sum (7.9) an bewritten as Z = fN2 Z 10 dm e� 8110Nm6 [1 +NO(m8)℄ Z 1�1 d~� e� 94N ~�2 [1 + 638 Nm6 +NO(m8)℄= f 0N2 Z 10 dm e� 940Nm6 Z 1�1 d~� e� 94N ~�2 [1 +O(1=N)℄ (i+ 2j = 6) ; (7.11)where f and f 0 are onstants and we have introdued a new variable ~� = Æ�v + m2. The integrationboundaries have been extended to in�nity, and this an be shown [33℄ to introdue only an error deayingexponentially with N . Equation (7.11) indiates that the triritial utuations of the MF BC model (7.3)onsist of two parts: Gaussian (normal) utuations of a ombined variable ~� and those of the magnetizationdesribed by a weight exp(�9Nm6=40). The absene of m2 and m4 in Eq. (7.11) is an essential harateristiof the �6 theory and the mean-�eld desription of triritial phenomena. For later onveniene, we rewriteEq. (7.11) in the variables xm = 9Nm6=40 and xv = 9N ~�2=4 asZ = B(N) Z 10 dxm x� 56m e�xm Z 10 dxv x� 12v e�xv [1 +O(1= 3pN)℄ ; (7.12)where B(N) is a funtion of N . Then, substitution of the � funtion, �(z) = R10 uz�1e�z dz, yields thepartition sum (7.11) as Z = B(N)�(16)�(12) : (7.13)In the study ritial phenomena, several universal ratios of �nite-size saling amplitudes, losely relatedto the quantity originally introdued by Binder [34℄, play an important role. Partiularly, these dimensionlessratios are very useful in Monte Carlo determinations of ritial points. Here, we onsider two suh ratios,whih are de�ned on the basis of utuations of the magnetization m and vaany density �v asQm = hm2i2hm4i and Qv = h(Æ�v)2i2h(Æ�v)4i ; (7.14)with Æ�v = �v � �vt, as mentioned earlier.From the probability distribution implied by the partition sum (7.12), the expetation values of themoments of the magnetization density m are then obtained ashm2i = B(N)Z Z 10 dxm m2x� 56m e�xm Z 10 dxv x� 12v e�xv= � 409N� 13 �( 12 )�( 16 ) +O(N� 23 ) ;hm4i = � 409N� 23 �( 56 )�( 16 ) +O(N�1) ;hm6i = � 409N� �( 76 )�( 16 ) +O(N� 43 ) ; andhm8i = � 409N� 43 �( 32 )�( 16 ) +O(N� 53 ) : (7.15)101



Therefore, the dimensionless ratio Qm isQm = �2(12)=�(16)�(56) +O(N� 13 ) = 12 +O(N� 13 ) ; (7.16)where we have used formula �( 12 + z)�( 12 � z) = �os(�z) , so that �2( 12 ) = � and �( 16 )�( 56 ) = 2�.The exat value of Qv an be obtained as follows. From the de�nition ~� = Æ�v +m2, one hashÆ�vi = h~�i � hm2i ;h(Æ�v)2i = h~�2i � 2h~�ihm2i+ hm4i ; andh(Æ�v)4i = h~�4i � 4h~�3ihm2i+ 6h~�2ihm4i � 4h~�ihm6i+ hm8i : (7.17)At the triritial point, one has hÆ�vi = 0, so that h~�i = hm2i. A detailed alulation then yieldsQ�1v = ��3 + 6 hm4ihm2i2 � 4 hm6ihm2i3 + hm8ihm2i4� = � hm4ihm2i2 � 1�2 ; (7.18)so that Q�1v = 9� 16 ��( 16 )�( 12 )�3 ' 3:8348 ; (7.19)and Qv = 0:2608 � � � .The aforementioned alulations impliitly yield the mean-�eld (MF) thermal and magneti exponents.Equation (7.4) indiates that the mean-�eld quantity hm2i an be regarded as a type of energy density. Fromthe de�nition of the magneti suseptibility � = Nhm2i, one has then the saling behavior at triritialityhm2i / N ~yt�1 = N2~yh�2. Here, we have introdued the mean-�eld ritial exponents ~yt and ~yh, whihare related to the standard leading thermal and magneti exponents in �nite dimensions as yt1 = d~yt andyh1 = d~yh with d � 3, respetively. The above saling formula gives the mean-�eld relation ~yt = 2~yh � 1,whih generally holds for mean-�eld systems. On this basis, Eq. (7.15) yields ~yt = 2=3 and ~yh = 5=6 for thetriritial MF BC model, so that one has yt1 = 2 and yh1 = 5=2 in three dimensions, in agreement with theexisting RG results [4℄.7.2.2 Monte Carlo simulationsThe mean-�eld (MF) alulations in the above subsetion rely on the limit N ! 1, and thus we haveperformed numerial tests for �nite N . Using the standard Metropolis method, whih is adequate for thispurpose, we simulated the unonstrained model (7.3) for D = Dt = 2 ln 2 in the range 2:96 � K � 3:04.The system sizes were taken as N = 100, 200, 400, 600, 800, and 1000. The MF result for the triritialpoint is on�rmed by the lear intersetion of the Qm versus K data, shown in Fig. (7.3) at K = 3. Then,we simulated preisely at the triritial point (Kt; Dt), with system sizes 10 � N � 16000. The sampledquantities inlude the magneti suseptibility � = Nhm2i, the vaany density �v, and the Binder ratios Qmand Qv. Here, the quantity Qv is de�ned by Eq. (7.14), but Æ�v = �v��vt is replaed by Æ�v = �v�h�vi for�nite systems. The latter de�nition of Qv is more natural in the sense that, for �nite-dimensional systems,the exat value of �vt is generally unknown. Further, at triritiality, sine the quantity h�vi approahes �vtas N !1, these two de�nitions do not have qualitative di�erene. The data for �v, Qm, and Qv are shownin Tab 7.1. Aording to the least-square riterion, we �tted the Monte Carlo data by�(N) = �0 +N2~yh�1(x0 + x1N ~yi + x2N2~yi + x3N3~yi) ;�v(N) = �vt +N ~yt�1(p0 + p1N ~yi + p2N2~yi + p3N3~yi) ;Qm(N) = Qmt + qm1N ~yi + qm2N2~yi + qm3N3~yi ; andQv(N) = Qvt + qv1N ~yi + qv2N2~yi + qv3N3~yi : (7.20)The terms with the exponent ~yi aount for �nite-size orretions, with ~yi = �1=3, as indiated fromEq. (7.16). Results are given in Tab. 7.2, where the estimation of ~yi was obtained from the �t of Qm with102
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on the thermodynami relation that, in the language of the BC model, the vaany density �v and the hem-ial potential D are onjugate parameters. Let f be the redued free energy of the unonstrained ritialmodel as a funtion of K and D. The onstraint equation is then expressed as �v = ��f=�D =onstant.This yields the path of the onstrained system in the parameter spae (K;D), whih appears to be singularat the ritial point. In this setion, we follow a similar proedure and generalize the Fisher renormalizationmehanism suh that it an desribe onstrained triritial phenomena. Partiularly, sine the Monte Carlosimulations have to take plae at �nite systems, we shall �rst fous on the �nite-size saling behavior ofonstrained triritial systems.As a �rst step, we express the �nite-size saling formula of the redued free energy f of an unonstrainedsystem [4℄ near the triritial point asf(t1; t2; L) = L�dfs(t1Lyt1 ; t2Lyt2) + fa(t1; t2) : (7.24)Here, L is the linear system size, and it an also be reognized as a saling fator in the ontext of therenormalization group theory. The leading and subleading thermal saling �elds t1 and t2 represent thedistane to the triritial point at t1 = t2 = 0. The funtions fs and fa are singular and analytial partsof the free energy f , respetively. We have negleted irrelevant saling �elds and also suppressed magnetisaling �elds in Eq. (7.24). For the BC model desribed by Eq. (7.1), the thermal �elds t1 and t2 are analytifuntions of K and D. Thus, di�erentiation of Eq. (7.24) with respet to D yields�h�v(t1; t2)i = �f�D = a1Lyt1�df (1;0)s (t1Lyt1 ; t2Lyt2) + a2Lyt2�df (0;1)s (t1Lyt1 ;t2Lyt2) + a1f (1;0)a (t1; t2) + a2f (0;1)a (t1; t2) ; (7.25)where a1 = �t1=�D and a2 = �t2=�D are onstants. The supersripts (i; j) represent i di�erentiationswith respet to t1 and j di�erentiations to t2. Here, we mention that, for �nite systems L, the onjugatequantity of D is the expetation value of the vaany density h�v(t1; t2)i instead of �v(t1; t2) itself. Underthe onstraint h�v(t1; t2)i = h�v(0; 0)i, Taylor expansion of of Eq. (7.25) near the triritial point leads to0 = b1L2yt1�d t1 + b2Lyt1+yt2�d t2 + b3t1 + b4t2 ; (7.26)where b1, b2, b3, and b4 are onstants, and only the leading terms are kept in the expansions of fs and fa. Theonstraint equation (7.26) desribes the approah of the onstrained BC model to the triritial point in theparameter spae (t1; t2). However, the analyti form of the path still depends on the relative values of yt1,yt2, and d, and so does the ritial exponents desribing the onstrained ritial singularities for t1; t2 ! 0.It follows from Eq.(7.26) that, near the triritial point, the thermal �elds t1 and t2 are related as1. for 2yt1� d > 0 and yt1+ yt2� d > 0, the �rst two terms in the right-hand side of Eq. (7.26) dominateas L!1, so that one has Lyt1t1 / Lyt2t2, i.e., t2 >> t1 and K�Kt � t2. Thus, the leading thermalexponent of the onstrained system is equal to the subleading exponent yt2.2. for 2yt1�d > 0 but yt1+yt2�d < 0, one has Lyt1t1 / Ld�yt1t2. The leading exponent is renormalizedas yt1 ! d � yt1. This ase was already orretly inluded as one of the possible outomes of Imry'srenormalization alulations [28℄.3. for 2yt1 � d < 0, i.e., the unonstrained spei� heat does not diverge at triritiality, t1 is linearlyrelated to t2 as t1 / t2, and no exponent renormalization ours.In short, for a system with a divergent spei� heat at triritiality, ritial exponents are renormalizedunder the onstraint; otherwise, no renormalization ours. However, sine triritial systems have tworelevant thermal �elds t1 and t2, the triritial renormalizations an appear in di�erent ways, depending onwhether or not yt1 + yt2 > d.Then, the expression of the redued free energy f 0 of the onstrained triritial BC model an be obtainedby substitution of the above renormalization in Eq. (7.24), whih yieldsf 0(t1; t2; L) = L�df 0s(t1Ly0t1 ; t2Lyt2 ; 1) + f 0a(t1; t2) ; (7.27)105



where y0t1 is equal to yt2, d � yt1, and yt1 for yt1 + yt2 > d, yt1 + yt2 < d but 2yt1 > d, and 2yt1 < d,respetively.Next, we onsider the e�et of the onstraint in an in�nite system. We interpret the parameter Lin Eq. (7.24) as a resaling fator that an be arbitrarily hosen. Thus, we may set the resaling fatorL = t�1=yt22 for ase 1 and L = t�1=(d�yt1)2 for ase 2, so that the thermal �elds t1 and t2 are relatedas t1 / tyt2=yt12 and t1 / t(d�yt1)=yt12 , respetively. Substitution of these relation in Eq. (7.27) yields theonstrained redued free energy f 0 of an in�nite system asf 0(t1; t2) / t2��01 	(t2=t�1 ) : (7.28)Here, the ritial index is given by �0 = 2� d=y0t1 and the rossover exponent by � = yt2=y0t1, with y0t1 givenearlier, and 	 represents an analytial funtion. For the ase y0t1 = d � yt1, one has �0 = ��=(1 � �), inagreement with Eq. (7.2).During the derivation of these saling equations, we have used Taylor expansions, for instane, ofEq. (7.25), and kept only the leading terms. Therefore, in addition to those from irrelevant thermal �elds,we expet that new orretions are indued by the onstraint.As generally expeted at the borderline dimensionality for mean-�eld-like behavior, logarithmi orretions-to-saling our in triritial BC systems (7.1) in three dimensions. This has already been obtained in renor-malization alulations of the Landau-Ginzburg-Wilson Hamiltonian. Near the triritial point, the reduedfree energy of the 3D BC model reads [4℄f(t1; t2; h1; h2; v; L) = L�3fs(t1L2; t2LL�2=50 ; h1L5=2;h2L3=2L�1=100 ; vL�10 ) + fa(t1; t2) : (7.29)where the parameter v, also an analytial funtion of K and D, desribes the leading irrelevant thermal �eld.For ompleteness, we have also inluded the leading and subleading magneti �elds h1 and h2. The amplitudeL0 = 1 + 25v lnL aounts for the aforementioned logarithmi orretions. Equation (7.29) indiates thatthese orretions our not only in the irrelevant �eld v but also in the subleading �elds t2 and h2.It follows from Eq. (7.29) that the unonstrained spei� heat C in systems (7.1) is divergent (2yt1�3 > 0)at triritiality, and thus the ritial exponents are renormalized under the onstraint. However, the 3Dtriritial BC model (7.1) is a marginal ase in the sense the ritial exponents yt1 + yt2 � 3 = 0, so that itis not immediately obvious how the renormalization ours. Taking into aount L�2=50 in Eq. (7.29) for thesubleading �eld t2, we onlude that in onstrained systems the leading thermal exponent is renormalizedas y0t1 = 3� yt1 = 1.7.4 Monte Carlo simulations7.4.1 Unonstrained BC modelThe triritial BC model (7.1) has been investigated on several three-dimensional latties, and varioustehniques have been developed, inluding the self-onsistent Ornstein-Zernike approximation [36℄ and MonteCarlo simulations [35, 37℄.In omparison with the well-known Swendsen-Wang [38℄ and Wol� [32℄ algorithms for the spin- 12 Isingmodel, no luster algorithm has so far been developed to eÆiently ip between Ising spins and vaanies nearthe triritial point. Thus, Monte Carlo simulations of the unonstrained triritial BC model (7.1) su�erfrom ritial-slowing-down. Using a ombination of the Metropolis, Wol�, and aforementioned geometriluster [29{31℄ steps, we simulated the BC model (7.1) on the simple-ubi lattie with periodi boundaryonditions. The utuations between vaanies and Ising spins are realized by the standard Metropolismethod; the Wol� algorithm ips between +1 and �1 Ising spins; and the geometri steps move groups ofspins and vaanies over the lattie. In this way, ritial-slowing-down is signi�antly suppressed. Makinguse of the exat values of Qm and Qv. we loated [35℄ the triritial point as as Kt = 0:7133(1) andDt = 2:0313(4); the expetation value of the triritial vaany density is �vt = 0:6485(2), rather lose the106
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7.5 DisussionDue to the geometri luster algorithm, a full-luster simulation beomes possible for the triritial BCmodel with a onserved number of vaanies. We have performed an extensive investigation of onstrainedtriritial behavior in three dimensions, and observe that� the leading �nite-size saling behavior of magneti quantities remains unhanged under the onstraint.This is as expeted: the vaany density �v is onjugate to the hemial potential D, whih ontributesonly to the thermal �elds t1 and t2.� the ritial behavior of energy-like quantities is renormalized; partiularly, the onstrained spei�heat C has only a �nite usp at triritiality. The leading thermal exponent yt1 = 2 is renormalized asy0t1 = 3� yt1 = 1, while the seond one yt2 = 1 remains unhanged under the onstraint;� the onstrained magneti Binder ratio at triritiality is Qmt = 0:687(6), apparently di�erent from theunonstrained value Qmt = 1=2. This is understandable beause the universal ratio Qm still dependson boundary onditions, and the aspet ratios, et, whih inuene magneti orrelation funtions.The onstraint also belongs to this ategory;� struture fators suh as Cs, aounting for spatial inhomogeneities of onventional quantities, displaythe same saling behavior as in unonstrained systems. This indiates that the divergene of the spatialorrelation length, one essential haraterization of ritial phenomena, remains unhanged under theonstraint at least to a sale whih is small in omparison with system sizes. In this sense, one anonlude that the annealed onstraint does not modify the universality lass of a triritial system.It is lear that the onstrained triritial BC model in three dimensions is notmean-�eld ritial Ising-like.This indiates that the mean-�eld theory is not omplete in desribing universal ritial phenomena even atthe upper ritial dimensionality. For a unonstrained mean-�eld BC model, the vaany utuations areoupled to the Ising utuations. Then, the stability riterion of the oupled utuations, depending on thevalue of K and D, yields distint types of phase transitions: a line of ritial Ising points, a triritial point,and a �rst-order transition line. However, in onstrained mean-�eld systems, the utuations of vaaniesare suppressed. Therefore, the presene of vaanies only serves to redue the number of Ising spins, leadingto a smaller e�etive interation. As a onsequene, the whole line of phase transitions in the spae (K;D),inluding the triritial point and the �rst-order transition, redues to mean-�eld ritial Ising-like under theonstraint. Sine this does not agree with the onstrained behavior of the investigated short-range model,we arrive at the somewhat surprising that mean-�eld theory does not desribe the universal properties ofthe onstrained triritial at its upper ritial dimensionality.On the basis of the generalized Fisher renormalization mehanism, we �nite-size analyzed several tririt-ial quantities of the onstrained BC model in three dimensions. The agreement between the theoretialpreditions and the Monte Carlo results is quite satisfatory.The Fisher renormalization mehanism is rather straightforward and fundamental. Nevertheless, Imry'srenormalization alulations [28℄ also give a orret predition of the ritial index � for triritial O(n)systems (n � 1) in three dimensions. However, we mention that the alulations in Ref. [28℄ did not takeinto aount the e�et of the subleading thermal �eld yt2. It is then justi�ed to ask the question how toinlude yt2 in these alulations.A �nal remark follows. In a �nite system, the vaany density �v needs not be equal to its expetationvalue h�vi, although this di�erene vanishes as L!1. In the generalized Fisher mehanism for onstrainedtriritial behavior, it is only required that h�v(t1; t2)i is equal to h�v(0; 0)i. However, the Monte Carlosimulations take plae with �v = �vt, i.e., no utuation of �v is allowed. In this sense, the onstraint in ournumerial studies is `stronger' than the one in the generalized Fisher renormalization, although our presentnumerial results do not reveal the onsequenes of this fat.
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8Constrained triritial phenomena in two dimensions
We investigate several triritial models on the square lattie by means of Monte Carlo simulations. Theseinlude the Blume-Capel model, Baxter's hard-square model, and the q = 1, 3, and 4 Potts models withvaanies. We use a ombination of the Wol� and geometri luster methods, whih onserves the totalnumber of vaanies or lattie-gas partiles, and suppresses ritial slowing down. Several quantities aresampled, suh as the spei� heat C and the struture fator Cs whih aounts for the large-sale spatialinhomogeneity of the energy utuations. We �nd that the onstraint strongly modi�es some of the ritialsingularities. For instane, the spei� heat C reahes a �nite value at triritiality, while Cs remainsdivergent as in the unonstrained system. We are able to explain these observed onstrained phenomena onthe basis of the Fisher renormalizationmehanism generalized to inlude a subleading relevant thermal saling�eld. In this ontext, we �nd that, under the onstraint, the leading thermal exponent yt1 is renormalizedto 2� yt1, while the subleading exponent yt2 remains unhanged.8.1 IntrodutionIn experiments, many systems undergoing phase transitions are subjet to external onstraints suh as theonversation of partile numbers in a mixture. Suh systems are desribed in terms of the anonial ensemble,and thus typially display a behavior di�erent from that of unonstrained models, whih are desribed bythe grand ensemble. An example is the superuid transition in the 3He-4He mixtures [1℄, whose universalproperties an be desribed by a dilute XY model. The Hamiltonian of the lattie XY model readsH=kBT = �KXhi;ji~si~sj +DXk j~skj2 ; (8.1)where the spins an assume a unit vetor of two omponents, j~skj = 1, or a vaany j~sj = ~0. The sum h iis over nearest-neighbor lattie pairs, and K and D are the oupling onstant and the hemial potential ofvaanies, respetively. The mole fration of 3He in the experiment orresponds with the vaany density� = 1N Pk(1 � j~skj2), with N the total number of lattie sites. For D ! �1, the vaanies are exluded,and the model (8.1) redues to the pure XY model. In three dimensions, this model undergoes a seond-order phase transition, and the ritial oupling onstant K(D) is an inreasing funtion of D. The ritialline terminates at a triritial point (Kt; Dt). Sine the upper triritial dimensionality of the O(n) model(n � 1) is equal to three, signi�ant exat information is available [1℄. A set of universal parameters an beexatly obtained by means of mean-�eld analyses and also by renormalization group (RG) alulations of theLandau-Ginzburg-Wilson Hamiltonian. The leading and subleading thermal ritial exponents are yt1 = 2and yt2 = 1 [1℄. Thus, as the triritial point is approahed, one simply expets that the spei� heat Cdiverges with the index � = 2� 3=yt1 = 1=2. However, typial experiments take plae at a onstant density� instead at a onstant hemial potential D. It was reported [2℄ that, at the triritial point (Kt; �t), the115



spei� heat C has only a �nite value with � = �0:9(1), apparently di�erent from the aforementioned index� = 1=2. Thus, the theoretial desription of the experiment in Ref. [2℄ uses the dilute XY model witha onserved number of vaanies. This means that an external onstraint is imposed on the system (8.1).Sine the pertinent 3He and 4He mixtures are liquid, the onstraint is of the `annealed' type [3℄. Therefore,the vaanies should be able to move freely over the lattie of model (8.1).The e�et of a onstraint on a ritial systems has already been studied for deades [3{6℄. As early asin 1965, Syozi introdued [4℄ a deorated Ising model, whih is intimately onneted with annealed systems.The Syozi model an be exatly transformed into the spin- 12 model, and for dimensionality d > 2 ritialexponents of these two models are related as�s = ��=(1� �) ; �s = �=(1� �) ; and �s = �=(1� �) ; � � � (8.2)where � and � are the standard ritial indies for the spei� heat C and the magnetization density m,respetively, and � = 1=yt is the inversion of the thermal exponent. The subsript s represents the Syozimodel. Later, this onstraint mehanism was disussed in a more general ontext by Essam and Garelik [5℄and by Fisher [6℄. It was argued [5, 6℄ that the relations (8.2) are not spei� to the Syozi model, but aremore generally satis�ed by equilibrium models with a divergent spei� heat C. Thus, Eq.(8.2) predits that,as long as � > 0, the onstrained ritial spei� heat C an at most reah a �nite value instead of beingdivergent. For systems with a onvergent spei� heat � < 0, Fisher [6℄ pointed out that no renormalizationof ritial exponents as Eq. (8.2) ours, but additional orretions an be introdued by the onstraint.Further, for the marginal ase � = 0, i.e., C normally diverges logarithmially in unonstrained systems, itwas shown [6℄ that, again, the onstraint leads to a onvergent spei� heat. Sine then, Fisher's renormalizedritial exponents have been used extensively [3, 7{10℄.More general theories were then formulated for onstrained systems, inluding a theory of onstrainedtriritial phenomena [11, 12℄. Besides vaanies, onstraints an be imposed on volumes or pressure, et.It was argued [11, 12℄ that, depending on the type or strength of the onstraint, a ontinuous transitionmay beome Fisher-renormalized, remain unhanged, or beome �rst-order. The speial point, where thetransition remains unhanged was referred to as a speial 'triritial' point [11℄.In the ontext of the renormalization group (RG) theory, Imry and oworkers [13℄ applied the �-expansiontehnique to a generalized Landau-Ginzburg-Wilson Hamiltonian. The e�et of the onstraint is aountedfor by an additional parameter, and they found four distint �xed points: the triritial Ising (TI), the ritialIsing (CI), the renormalized triritial Ising (RTI), and the renormalized ritial Ising (RCI) �xed point. Theritial exponents at these �xed points are related as: �RCI = ��CI=(1� �CI) and �RTI = ��TI=(1� �TI),in agreement with Eq. (8.2). For the spatial dimensionality d � 3, TI and RTI orrespond to Gaussian andspherial �xed points, respetively [13℄. Thus, at the �xed points TI and RTI, the ritial index is equal to�TI = 1=2 and �RTI = �1, respetively. For the 3He-4He mixtures, if one assumes that onstrained triritialbehavior is governed by the �xed point RTI, the theoretial predition �RTI = �1 is in good agreement withthe experimental result � = �0:9(1) [2℄.However, to our knowledge, numerial tests of these theories are still sare; in partiular, the �nite-size behavior of onstrained ritial systems has only attrated limited attention. Thus, very reently,we performed [14℄ a Monte Carlo investigation of the onstrained three-dimensional Blume-Capel (BC)model [15, 16℄. The phase diagram of the BC model is analogous to that of the dilute XY model, and,in three dimensions, the two triritial models share a ommon set of ritial exponents. At the triritialpoint, the onstrained spei� heat reahes a �nite value with the index � = �0:99(3) [14℄, in agreementwith the experimental data [2℄ and the RG alulations in Ref. [13℄. Nevertheless, the exponent of thepower law desribing the deay of the orrelation funtion at triritiality remains unhanged under theonstraint. In this sense, the onstraint does not lead to a hange of the universality lass. In Ref. [14℄, wealso generalized Fisher's approah [6℄ for appliation to triritial systems. For the triritial BC model inthree dimensions, this mehanism also predits that the unonstrained and onstrained indies are relatedas �o = ��un=(1� �un) = �1, in agreement with the RG alulations in Ref. [13℄. Here, the supersripts`o' and `un' are for onstrained and unonstrained systems, respetively. However, for a general triritialsystem, it was predited [14℄ that, in addition to the relation �o = ��un=(1� �un), other ases an our,116



depending on the relative magnitude of the leading and subleading thermal exponents yt1 and yt2, and thespatial dimensionality d.In order to verify these theoretial preditions, the present paper presents a more extensive study ofonstrained triritial phenomena in two dimensions. The systems investigated inlude the Blume-Capel(BC) model [15, 16℄, Baxter's hard-square model [17, 18℄, and the q = 1, 3, and 4 Potts models withvaanies [19℄. In omparison with the three-dimensional ase, the investigation of two-dimensional systemshas some advantages. First, Monte Carlo simulations an be performed for larger linear systems sizes.Seond, the triritial points of the triritial q = 1 Potts model and Baxter's hard-square lattie gas areexatly known, and those of the other systems have been determined with a preision in the sixth or seventhdeimal plae. In ontrast, for the three-dimensional BC model, the error estimation of the triritial point isso far restrited to the fourth deimal plae [14℄. Third, Baxter's hard-square lattie gas [17,18℄ is in the sameuniversality lass as the triritial Blume-Capel model, so that the two models an serve for independenttests.The outline of the remaining part of this paper is as follows. Setion II reviews the models, the sampledquantities, and the geometri luster algorithm, whih plays an important role in the present investigation.In Se. III, we apply the Fisher renormalization mehanism in the generalized ontext of triritial saling.Numerial results are presented in Se. IV, and a brief disussion is given in Se. V.8.2 Models, simulations, and sampled quantities8.2.1 ModelsThe Blume-Capel model. In the development of the theory of triritial phenomena, the spin-1 model knownas the Blume-Capel (BC) model has provided the foundation. The model was independently introdued byBlume and Capel [15, 16℄. The redued Hamiltonian readsH=kBT = �KXhi;ji sisj +DXk s2k (s = 0;�1) : (8.3)This Hamiltonian is idential to Eq. (8.1) when the vetor order parameter ~s is replaed by a salar s. Further,in three dimensions, the phase diagram of Eq. (8.3) is analogous to that of the dilute XY model (8.1). Theuniversal triritial exponents of the two-dimensional BC model (8.3) are known from exat solutions [17,18℄;they an also be alulated in the ontext of the Coulomb gas theory [20, 21℄ and are inluded in thepreditions of onformal �eld theory [22,23℄. The leading and subleading thermal exponents are yt1 = 9=5 andyt2 = 4=5, and the magneti ones are yh1 = 77=40 and yh2 = 9=8, respetively. Using a sparse transfer-matrixtehnique and the �nite-size saling, we have loated [24℄ the triritial point of the square-lattie BC modelas Kt = 1:6 431 759(1) and Dt = 3:2 301 797(2); the triritial vaany density is �t = 0:4 549 506(2). Theseresults are based on the requirement that both the leading magneti and energy-energy orrelation lengthssimultaneously reah their theoretial values. They are onsistent with the existing estimate Kt = 1:64(2)and Dt = 3:22(4) [25℄, and the preision is onsidered to be suÆient in the present investigation.Baxter's hard-square model. We also investigate Baxter's triritial hard-square lattie gas [17, 18℄,whih belongs to the same universality lass as the triritial BC model. The Hamiltonian of a generallattie gas on the square lattie an be written asH = �KXhnni�i�j � J Xfnnng�k�l +DXk �k ; (8.4)where � = 0; 1 represents the absene and the presene of a partile, respetively. The sums hnni and fnnngare over nearest-neighbor and seond-nearest-neighbor sites, respetively. For the hard-square lattie gas,it is required that K ! �1, i.e., the partiles have a `hard'-ore so that nearest-neighbor sites annot beoupied simultaneously. For this ase, the triritial point is exatly known [17, 18℄: Jt = ln(3 +p5) andDt = ln[8(1 +p5)℄. The orresponding vaany density is �t = (5 +p5)=10.117



The triritial q = 3 Potts model. Just as the triritial BC model, the triritial q = 3 Potts model [19℄an be obtained by inluding vaanies in the `pure' q = 3 Potts model. The Hamiltonian of suh a diluteq-state Potts model then readsH = �KXhnni Æ�i;�j (1� Æ�i;0)�DXk Æ�i;0 ; (� = 0; 1; � � � ; q) ; (8.5)where the lattie site is oupied by a Potts variable � = 1; � � � ; q or by a vaany � = 0. Nonzeroouplings K our only between nonzero Potts variables. For q < 4, the phase diagram in the (K;D) planeresembles that of the BC model: a triritial point ours between the ontinuous and the �rst-order line oftransitions. At the triritial point (Kt; Dt), the ritial exponents are [20{23℄ yt1 = 12=7, yt2 = 4=7, andyh1 = 40=21. Also for this model we used the sparse transfer-matrix method to loate [24℄ the triritialpoint: Kt = 1:649 913(5), Dt = 3:152 173(10), with a orresponding vaany density �t = 0:34572(5).The dilute q = 4 Potts model. The q = 4 Potts model is a marginal ase [19℄, sine the subleadingleading thermal exponent satis�es yt2 = 0. The leading thermal and magneti exponents are [21,22℄ yt1 = 3=2and yh1 = 15=8, respetively. The phase transition of a pure Potts model with q > 4 is of the �rst-ordertype [17℄. We investigate the dilute q = 4 Potts model at the point where the leading and the subleadingthermal �eld vanish. We have loated [24℄ this '�xed' point as Kt = 1:45 790(1), Dt = 2:47 844(2), and theorresponding vaany density is �t = 0:21 207(2).The triritial q = 1 Potts model. It is already known for a long time [26℄ that the triritial q = 1 Pottsmodel is equivalent with the ritial Ising model. The Ising lusters of the ritial Ising model, a group ofspins onneted by bonds between equal nearest-neighbor spins, are desribed by the magneti exponent ofthe triritial q = 1 Potts model. Here, we shall illustrate this equivalene, starting from the dilute q-statePotts model (8.5), whih, for the ase q = 1, simpli�es asH = �KXhnni�i�j +DXk �k ; (� = 0; 1) : (8.6)For D ! �1, the vaanies are exluded, and the random-luster representation desribes the `pure' bond-perolation problem. Thus, the random-luster representation of Eq. (8.6) orresponds with a mixed site-bond perolation model. Beause of the attration between the non-vaanies, this dilute model is di�erentfrom the onventional site-bond perolation model [27℄, in whih the vaanies are randomly distributed overthe lattie, i.e., di�erent sites are unorrelated. Nevertheless, in general, one expets that the dilute q ! 1Potts model, desribed by Eq. (8.6), is still in the perolation universality lass, and the question arises if ithas a triritial point. The answer follows after substituting the relation � = (s + 1)=2 in Eq. (8.6). Apartfrom a onstant, the Hamiltonian (8.6) redues to the Ising model in a magneti �eld:H = �K(I) Xhnni sisj �HXk sk ; (si = �1) ; (8.7)with the relations K(I) = K=4 ; and H = �D=2 + zK=4 ; (8.8)where z is the lattie oordination number. Thus, the Ising ritial point at K(I) and H = 0 appears inthe dilute q ! 1 Potts model (8.6) at Kt = 4K(I) and Dt = 2zK(I) . Sine the ritial singularity is notperolation-like, this point quali�es as the triritial point of the q ! 1 Potts model. The spin up-downsymmetry of the ritial Ising model yields the vaany density of the dilute Potts model �t = 1=2 attriritiality. The relation (8.8) shows that the temperature-like parameters, K and D, ontribute to K(I)and H in the Ising model. Therefore, the leading and subleading thermal exponents of the two-dimensionaltriritial q = 1 Potts model simply follow asyt1 = y(I)h = 15=8 and yt2 = y(I)t = 1 : (8.9)The leading magneti exponent of the two-dimensional triritial q = 1 Potts model is yh1 = 187=96 [26℄.118



8.2.2 Monte Carlo methodsThe Hamiltonian for the q-state Potts model remains invariant under a global permutation of two of the qPotts states. Thus, one an apply the onventional Swendsen-Wang [28℄ and Wol� [29℄ luster algorithmsto simulate these models. However, for most triritial models de�ned above (exept for the triritial q = 1Potts model), these luster algorithms are apparently not suitable or suÆient, sine they do not operate onthe vaanies. For unonstrained systems, a simple solution is to ombine these onventional algorithms andthe Metropolis method. However, the problem arises what sort of Monte Carlo algorithm is appropriate foronstrained systems. In priniple, one an apply a Kawasaki-like Monte Carlo method [30℄, whih is partile-onserving. Unfortunately, this method su�ers from serious ritial-slowing-down, and thus simulations arerestrited to small system sizes. This may be one of the reasons why the number of numerial investigationsin this subjet is rather limited.In the present work, we make use of the so-alled geometri luster method [31{33℄, whih is developed onthe basis of spatial symmetries, suh as invariane under the spatial inversion and rotation operations. Thisalgorithm moves groups of spins/partiles or vaanies over the lattie in aordane with the Boltzmanndistribution, so that the total numbers of spins/partiles and vaanies are onserved. It has been shown [31{33℄ for several models that the perolation threshold of the geometri lusters oinides with the phasetransitions, so that ritial-slowing-down is e�etively suppressed.Then, the onstraint is fully realized by a ombination of the Wol� and geometri luster methods, ofwhih the former ips between variables in di�erent Potts states. A partiular feature of suh onstrainedsimulations is that they hardly su�er from ritial-slowing-down even near triritiality.8.2.3 Sampled quantitiesConventional quantities. During Monte Carlo simulations, we sampled several quantities, inluding themoments of the order parameter and the energy density et. The magneti suseptibility is then obtainedfrom the utuations of the order parameter m as � = L2hm2i. For the BC model (8.1), m is just themagnetization density; for Baxter's hard-square lattie gas,m is the di�erene of the vaany densities on thetwo sublatties of the square lattie, i.e.,m = �(1)��(2); and for the triritial q = 3 and 4-state Potts models,we de�ne m2 = 12Pi 6=j(�i��j)2 where �i is the density of the ith Potts state. An energy-like quantity e wassampled as nearest-neighbor orrelations for the BC and the q = 1, 3, and 4-state Potts models with vaanies.For Baxter's hard-square lattie gas, the nearest-neighbor sites annot be oupied simultaneously, so thatwe sampled e as next-nearest-neighbor orrelations. On this basis, a spei�-heat-like quantity is de�ned asC = L2(he2i�hei2), whih is proportional to the seond derivative of the redued energy with respet to theoupling onstant K. Moreover, we sampled energy-energy orrelations ge(r) = he0eri � hei2. For a lattiewith linear system size L, the distane r was taken as the half diagonal distane, i.e., r = p2L=2. Sine thevaany density � also behaves energy-like, we de�ne a ompressibility-like quantity P = L2(h�2i � h�i2),whih is expeted to behave analogously as C.In Monte Carlo studies of ritial phenomena, the universal Binder ratio [34℄ plays a useful role. Thus,we sampled several dimensionless quantities asQm = hm2i2hm4i ; Qe = h(e� e)2i2h(e� e)4i ; and Q� = h(�� �)2i2h(�� �)4i ; (8.10)where e = hei and � = h�i.Struture fators. Apart from the singular behavior of physial observables, a seond-order phasetransition is generally aompanied by long-range orrelations in time and spae, and thus large-sale spatialutuations exist for the physial observables, suh as the magnetization density m and the energy densitye. It is thus justi�ed to investigate the inuene of the onstraint on these spatial utuations. For thispurpose, we de�ne a set of quantities on the basis of spatial inhomogeneities of the magnetization, the energy,and the vaany density. Consider the Fourier expansion of the order parameter m(x; y) for a system of sizeL: mk;l = 1L2 Z L0 dxdy m(x; y) exp[2�i(xk + yl)=L℄ : (8.11)119



Obviously, m0;0 is just the global magnetization density m, and the magneti suseptibility is � = L2hm2i =L2hm20;0i; the number mk;l (k 6= 0 or l 6= 0) represents spatial inhomogeneity of m(x; y). Sine we areespeially interested in utuations on the largest sales, we de�ne a suseptibility-like quantity �s in termsof mk;l for the smallest wave numbers:�s = L2hm�1;0 �m1;0 +m0;�1 �m0;1i = L2hm2si ; (8.12)where, for later onveniene, a quantity ms has been introdued. We shall refer to �s as the struture fatorof the suseptibility �.Analogously, we sampled the struture fator of the spei� heat C as Cs = L2he�1;0 �e1;0+e0;�1 �e0;1i =L2he2si, and that of the ompressibility P as Ps = L2h��1;0 � �1;0 + �0;�1 � �0;1i = L2h�2si, where ek;l and �k;lare obtained from Fourier expansions of the energy and the vaany density, e(x; y) and �(x; y), respetively.On this basis, we sampled the following dimensionless ratiosQsm = hm2si2hm4si ; Qse = he2si2he4si ; and Qs� = h�2si2h�4si : (8.13)The physial meaning of these struture fators an be gleaned from a omparison with the onventionalquantities. For instane, both � and �s represent utuation strengths of the order parameter m, and anbe expressed in terms of a summation involving the magneti orrelation funtion, whose saling behavioris desribed by the orrelation funtion exponents � and �. Thus, we expet that, in unonstrained systems, the struture fators, �s, Cs, and Ps, display the same saling behavior as �, C, and P , respetively.However, as we shall see, there are interesting di�erenes in onstrained systems.8.3 Finite-size saling behavior in onstrained systemsA �nite-size analysis of onstrained phenomena preisely at triritiality has reently been reported [14℄.This analysis follows the basi idea of the Fisher renormalization mehanism, whih has been formulatedfor ritial systems [6℄. In this setion, we shall briey review and moreover generalize the proedures inRef. [14℄, suh that we an also aount for onstrained saling behavior due to deviations from the triritialvaany density.As a �rst step, we express the �nite-size saling formula of the redued free energy near triritiality asf(t1; t2; L) = L�dfs(Lyt1t1; Lyt2t2; 1) + fa(t1; t2) ; (8.14)where t1 and t2 are the leading and subleading thermal �elds, respetively. In the language of the BC model,t1 and t2 are analyti funtions of the oupling onstant K and the hemial potential D. The symbolsfs and fa are the singular and analytial parts of the free energy, respetively. The expetation value ofvaany density h�i follows by di�erentiation as�h�(t1; t2)i = �f�D = a1Lyt1�df (1;0)s (t1Lyt1 ; t2Lyt2) + a2Lyt2�df (0;1)s (t1Lyt1 ; t2Lyt2)+ a1f (1;0)a (t1; t2) + a2f (0;1)a (t1; t2) ; (8.15)where a1 = �t1=�D and a2 = �t2=�D are onstants. The supersripts (i; j) represent i di�erentiations withrespet to t1 and j di�erentiations to t2. Linearization at the triritial point yields�Æ� = b1L2yt1�d t1 + b2Lyt1+yt2�d t2 + b3t1 + b4t2 + � � � ; (8.16)where b1, b2, b3, and b4 are onstants, and Æ� = h�(t1; t2)i � h�(0; 0)i is the deviation of the vaany densityfrom its triritial value. The onstraint that the vaany density is �xed at the triritial value yields Æ� = 0in Eq. (8.16). As a onsequene, the thermal �elds t1 and t2 are related, but in a way whih still dependson whih terms in the right-hand-side of Eq. (8.16) dominate. We onsider the ase of large L and thendistinguish three ases: 120



1. for 2yt1 � d > 0 and yt1 + yt2 � d > 0, one has Lyt1t1 / Lyt2t2, i.e., t2 >> t1 and K �Kt ' t2, sothat the leading thermal exponent of the onstrained systems is equal to the subleading exponent yt2;2. for 2yt1� d > 0 but yt1+ yt2� d < 0, one has Lyt1t1 / Ld�yt1t2. The leading thermal exponent is thusrenormalized as yt1 ! d� yt1. Again, we have t2 >> t1 and K �Kt ' t2.3. for 2yt1�d < 0, i.e., the unonstrained spei� heat does not diverge at triritiality, t1 is approximatelyproportional to t2, and no exponent renormalization ours.Therefore, for a triritial system with a divergent spei� heat (2yt1 � d > 0), the leading thermalexponent yt1 is renormalized to d� yt1 under the onstraint, while the subleading one remains unhanged.Thus, the �nite-size saling relation for the di�erene of K to the triritial point is (K � Kt) ! (K �Kt)Ld�yt1 + a0(K �Kt)Lyt2 , with a0 a onstant.Next, we onsider the ase that the �xed vaany density � di�ers slightly from the triritial value �t,i.e., Æ� = �� �t 6= 0 in Eq. (8.16). We �rst onsider ases 1 and 2, i.e., 2yt1 � d > 0. We rewrite Eq. 8.16 asLyt1 t1 = �b�11 [(Æ�+ b4t2)Ld�yt1 + b2t2Lyt2 + � � � ℄ ; (8.17)where we have omitted the term with amplitude b3 whih ontributes a smaller power of L than the left-handside. After substitution in Eq. (8.14), negleting less relevant terms, we obtainf(t1; t2; L) = L�dfs(�b�11 Ld�yt1(Æ�+ b4t2)� (b2=b1)Lyt2t2; Lyt2t2; 1) + fa(0; t2) ; (8.18)whih an be written more simply asf(t1; t2; L) = L�df 0s(Ld�yt1t01; Lyt2t2) + fa(0; t2) ; (8.19)where t01 � Æ� + b4t2. This means that the deviation (� � �t) from the triritial density ombines witht2 to at as a saling �eld with a renormalization exponent d � yt1, i.e., the �nite-size e�et of this linearombination is multiplied by Ld�yt1 .In the onstrained system, we wish to express the onstrained free energy in K and � instead of t2 and �.In ases 1 and 2, the onstraint equation (8.16) shows that t1 << t2 for large L. Sine t1 and t2 are writtenas linear ombinations of K and D, we may write K �Kt ' t2 apart from orretions with negative powersof L. Thus we have t01 = Æ�+ �(K �Kt) and t2 = K �Kt (8.20)Then, the saling behavior of onstrained quantities an be obtained from di�erentiations of Eq. (8.19)with respet to appropriate saling �elds.For ase 3, no exponent renormalization ours and Æ� approahes a linear ombination of t1 and t2, i.e.,the distane �� �t behaves in leading order as the saling �elds t1 and t2, independent of L.The essential element of the above proedure is the solution of the onstraint equation, Æ� =onstant, interms of a relation between K and D. In the parameter spae (t1; t2), this solution is skethed in Fig. 8.1.The path of the onstrained system, the dashed line, is singular at triritiality, and for the ase 2yt1�d > 0,renormalization of ritial exponents ours.As mentioned earlier, in addition to uniform utuations, a seond-order phase transition is also a-ompanied by inhomogeneous large-sale spatial utuations. Without the onstraint, these two types ofutuations display the same saling behavior. However, their behavior beomes qualitatively di�erent inonstrained systems when the uniform utuations are suÆiently strongly suppressed by the onstraint.A good test for suh a di�erene is to ompare the ritial behavior of the struture fators �s, Cs, andPs with �, C, and P , respetively. Aording to Eq. (8.19), the exponents desribing the behavior of Cand P are modi�ed as long as 2yt1 � d > 0. In ontrast, sine the onstraint does not lead to a hangeof the universality lass, one may expet that the leading �nite-size saling behavior of Cs and Ps remainsunhanged at triritiality. This will be on�rmed by our numerial data later.We onlude this setion by pointing out the following impliit assumption. In the derivation of Eq. (8.16),we require that the expetation value h�i of the vaany density is a onstant; while, in fat, we should require121
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9Monte Carlo study of bakbone exponents
By means of Monte Carlo simulations and �nite-size analyses, we determine the bakbone exponent of severalq-state Potts model in two and three dimensions.9.1 The q-state Potts model in two dimensionsWe determine the bakbone exponent Xb of several ritial and triritial q-state Potts models in twodimensions. The ritial systems inlude the bond perolation, the Ising, the q = 2 � p3, 3, and 4-statePotts, and the Baxter-Wu model, and the triritial ones inlude the q = 1 Potts model and the Blume-Capelmodel. For this purpose, we formulate several eÆient Monte Carlo method and sample the probability P2of a pair of points onneted via at least two independent paths. Finite-size-saling analysis of P2 yields Xbas 0:3566(2), 0:2696(3), 0:2105(3), and 0:127(4) for the ritial q = 2�p3, 1; 2, 3, and 4-state Potts model,respetively. At triritiality, we obtain Xb = 0:0520(3) and 0:0753(6) for the q = 1 and 2 Potts model,respetively. For the ritial q ! 0 Potts model it is derived that Xb = 3=4. From a saling argument, we�nd that, at triritiality, Xb redues to the magneti exponent, as on�rmed by the numerial results.9.1.1 IntrodutionThe integer q-state Potts model [1℄ is an extension of the Ising model, and has been a subjet of intenseresearh interest for deades. It an be generalized to the random-luster model of all q � 0 [4℄. For a reviewsee [5℄. This model has been shown to be very rih in its behavior. In two dimensions, the nature of theritial singularities is now well established. In the study of ritial phenomena, the Potts model has beomean important testing ground for various methods and approahes.However, there is still a number of ritial exponents, of whih the exat values have not been obtained.These exponents haraterize geometri properties of the ritial Potts models, and seem to have no analoguein the thermodynamis. Among them there are fratal dimensions of `bakbones' [7℄ and of `hemial'paths [18℄.Here, we shall briey review de�nitions of these quantities, in the language of the perolation model [3℄,a speial ase of the Potts model for q ! 1. Consider a bond perolation model on the square lattie; eahedge of the lattie is oupied by a `onduting' bond with probability p, or is `empty' with probability 1�p.At the ritial point p = 1=2 [3℄, a perolating luster, whih onsists of sites onneted via these ondutingbonds, will grow arbitrarily large. Suppose one has a perolating luster, whih ontains two sites S1 andS2 separated by a distane r. The bakbone [7℄ is then de�ned as the set of sites from whih ondutingpaths exist both to S1 and S2, suh that both paths have no bonds in ommon, i.e., the paths are mutuallyindependent. Thus, if a potential di�erene is applied to S1 and S2, the bakbone onsists exatly of thosesites through whih urrent would ow, apart from the so-alled `Wheatstone bridges'. At ritiality, thetotal number of sites or bonds in the bakbone sales as Nb / rd�Xb , where d = 2 and Xb are the spatial135



and the bakbone saling dimension, respetively. The hemial path [18℄ is de�ned as the shortest pathbetween S1 and S2. Its average length at ritiality behaves as l / rd�Xmin , with Xmin the orrespondingsaling dimension. Another exponent of interest is related to the so-alled `red' bonds. Suppose a bondin the perolating luster arries all the urrent and thus beomes `hot' after some time, then this bondis named a red bond [7, 18℄. A luster with one or more red bonds will, if any red bond is ut, split intodisonneted sub-lusters. The total number of red bonds in the perolating luster behaves as Nr / rd�Xr ,with Xr the red-bond saling dimension.As mentioned earlier, the `geometri' exponents, suh as Xb, Xr, and Xmin, haraterize geometristrutures of ritial systems, and are thus of some physial relevane. For instane, the bakbone andred-bond saling dimensions Xb and Xr are related to the eletri ondutivity of a random network [26℄.The hemial path dimension Xmin is the analogue in perolation of the dynami saling exponent of ritialphenomena [19℄.Among these exponents, the red-bond dimensionXr has been identi�ed with another exponentXp [10,11℄,whih governs the RG ow of the bond probability p for ritial systems. As a result, exat values of Xr anbe alulated from the theory of the Coulomb gas [9℄; these values are also inluded in the predition of theonformal �eld theory [10, 14, 42℄. However, exept for the speial ase q ! 0, exat values have not beenobtained for Xb and Xmin. Numerous theoretial attempts have been arried out. For the perolation modelq ! 1, a relation was assumed by Herrmann and Stanley [18℄ as Xb = Xr �Xmin, whih satis�es numerialtests quite well so far. However, this onjeture apparently annot be generalized to the ritial q ! 0 Pottsmodel, where Xb = Xr = Xmin, as shown later. It was also assumed that Xb(q ! 1) = 7=16 [15, 16℄, whihis, however, not onsistent with urrent estimations. More reently, Xb(q ! 1) has been related to a partialdi�erential equation [17℄, whih, unfortunately, appears to be intratable, even numerially.In parallel with these theoretial attempts, several numerial determinations of Xb have been ahieved.Signi�ant progress is obtained by Monte Carlo simulations [18{20℄. The basi idea of these simulations isto ount the total number of sites or bonds in the bakbones. For instane, for the perolation model inthe `bus-bar' geometry, Grassberger [19℄ determined Xb = 0:3569(8). Slow onvergene applies to Xb in thisase. For the q = 2 and 3-state Potts models, it has been estimated [20℄ that Xb = 0:25(1) and 0:25(2),respetively.Another approah was taken by Jaobsen and Zinn-Justin [22℄ reently. They applied a transfer-matrixmethod, and obtained Xb = 0:3569(6) for the perolation model. Instead of the total number of sites in thebakbones, they investigated the orrelation length of k-onneted lusters [43℄, where k � 1 is an integer. Aluster is onsidered to be k-onneted if, by eliminating any k� 1 sites or onduting bonds, no separationinto disonneted sub-lusters is possible. This means that any two sites in the luster are onneted via atleast k independent paths without any bond in ommon. At ritiality, the behavior of these k-onnetedlusters is dominated by a family of exponents Xk. Moreover, it has been shown that X2 = Xb [44℄, so thatone an estimate Xb by studying 2-onneted lusters.In suh transfer-matrix alulations, the �nite system sizes are restrited to relatively small values, sinethe omputer memory required inreases exponentially with linear size L. For instane, in Refs. [22℄, L islimited to 2 � L � 10. This e�et, together with the aforementioned slow �nite-size onvergene, makes itdiÆult to determine Xb aurately.In this paper, we present another Monte Carlo study of the bakbone exponents. However, in omparisonwith the earlier Monte Carlo studies [18{20℄, we apply a new sampling proedure. As mentioned above, theearlier methods involve ounting proedures for the number of sites or bonds in the bakbone. In otherwords, for a luster of interest, all dangling bonds have to be identi�ed and exluded. This appears to bea time-onsuming task. Instead, in the present work, we sample the probability P2(r) that a pair of sites,separated by a distane r, are onneted via at least two independent paths. For later onveniene, we shallrefer to the quantity P2(r) as the `bakbone orrelation funtion'. The sampling proedure for P2(r), whihwill be desribed in detail later, has a speed at least of the same order as the well-known Wol� lustermethod [45℄. We note that, in omparison with Refs. [18{20℄, our proedure to sample P2(r) is more in linewith that used in Ref. [22℄.The sampling proedure for P2(r) an be applied to the general q-state Potts model with any valueof q � 0. Further, with this tehnique, we simply investigate systems with periodi boundary onditions136



rather than in the `bus-bar' geometry [19,20℄. Thus, one avoids any �nite-size orretion assoiated with thesurfaes in the `bus-bar' geometry. This will be on�rmed later.In the present work, several ritial and triritial q-state Potts systems are investigated. The values ofq are hosen as q = 2 � p3, 1, 2, 3, and 4 for the ritial systems, and q = 1 and 2 at triritiality. Theritial q = 1 and 2 Potts models are just the bond perolation and the Ising model, respetively, and thetriritial q = 2 system is the Blume-Capel model [46, 47℄. For q = 4, we avoid slow �nite-size onvergeneby investigating a dilute q = 4 Potts model and the Baxter-Wu model [48℄.For these systems, extensive simulations were performed to determine Xb. In order to suppress ritialslowing down, we make use of various eÆient luster Monte Carlo algorithms. For instane, for the diluteq = 4 Potts and the Blume-Capel model, a geometri luster method [49℄ was used to move vaanies onlatties. Another example is the simulation of the ritial q = 2�p3 Potts model. For this this purpose, weformulate a Monte Carlo method for the Potts model with non-integer q > 0. This method hardly su�ersfrom ritial slowing down for small q > 0.9.1.2 ModelsWe start from the Hamiltonian of the dilute q-state Potts model on the square lattie [5℄, whih readsH=kBT = �KXhi;ji Æ�i;�j (1� Æ�i;0)�DXk Æ�k;0 (� = 0; 1; � � � ; q) : (9.1)Eah site is oupied by a Potts variable with � = 1; � � � ; q or by a vaany � = 0, and the sum h i is over allnearest-neighbor sites. The abundane of the vaanies is ontrolled by the hemial potential D. Nonzeroouplings K our only between equal Potts variables, i.e., variables with nonzero values of �.Just as the `pure' Potts model, this model an be represented by Kasteleyn-Fortuin (KF) lusters [4,50℄,with eah site of the lattie also oupied by a vaany or a Potts variable. A nearest-neighbor bond is plaedbetween eah pair of equal, nonzero Potts variables with the probability p = 1� exp(�K). We emphasizethat, for any pair of nearest-neighbor sites, no bond is present if any of them is a vaany. The whole lattieis then deomposed into lusters, i.e., the aforementioned KF lusters. This model is also referred to as arandom-luster model with a partition sumZ = Xfv;bgunb qn wnv ; (u = eK � 1 and w = eD) ; (9.2)where the sum is over all mutually onsistent vaany and bond on�gurations, and nb, n, and nv are thetotal number of bonds, KF lusters, and vaanies, respetively. Aording to �nite-size saling, the averagesize of these KF lusters at ritiality is governed by the magneti saling dimension Xh. With the partitionsum (9.2), the Potts model is now also well de�ned for any non-integer q � 0.For D = �1, the vaanies are exluded, and the system redues to the `pure' Potts model. In this ase,the model is self-dual, and the ritial point follows [5℄ as u = exp(K) � 1 = pq on the square lattie.With suÆiently abundant vaanies, triritial systems, desribed by Eqs. (9.1) and (9.2), an be obtained.Apart from these KF lusters, we also investigate so-alled `Potts' lusters [10, 11, 42℄, de�ned as sets ofPotts variables in the same state, onneted by nearest-neighbor bonds. In other words, onduting bondsare always present between nearest-neighbor Potts variables as long as they are in the same state. Exponentsdesribing Potts lusters are normally di�erent from those for KF lusters. For instane, the q = 2 Pottslusters, i.e., Ising lusters, are desribed by the magneti exponent of the triritial q = 1 Potts model [9{11℄,di�erent from that of the ritial Ising model. Exponents for q = 3 and q = 4 Potts lusters have also beenpredited as Xh = 7=80 and 1=8 [42℄.Among the systems inluded in the present work, most of the systems an be desribed by Eqs. (9.1) or(9.2), exept the Blume-Capel, and the Baxter-Wu model, whih will be desribed later.For the q = 4 Potts model, logarithmi orretions arise due to the marginal �eld assoiated with thefugaity of vaanies [5℄. In order to avoid suh orretions, we investigate a dilute system at the pointwhere this marginal �eld vanishes. We shall refer to this point, although somewhat impreisely, as the137



`�xed' point. By means of a transfer-matrix alulation [51℄, we loate this �xed point as Kt = 1:45790(1),Dt = 2:478438(2), and �t = 0:21207(2) for the vaany density. The preision of this result is onsideredsuÆient for our later investigation of the bakbone exponents.For the ase of q = 4, besides the aforementioned dilute system, we also investigate the Baxter-Wumodel [48℄, whih is de�ned on the triangular lattie asH=kBT = �KX�;r�i�j�k ; (� = �1) ; (9.3)where the sum is over every up- and down-triangular fae of the lattie. It has been shown that this modelbelongs to the universality lass of the q = 4 Potts model, and that logarithmi orretions are absent [48℄.This means that the Baxter-Wu model also sits at the aforementioned �xed point. The ritial point is givenby K = ln(1 +p2)=2 [48℄.For the Ising and the Blume-Capel model, instead of Eq. (9.1), the Hamiltonian readsH=kBT = �K(I)Xhi;ji�i�j +D(I)Xk �2i ; (� = �1; 0; 1) ; (9.4)where vaanies are also denoted as � = 0. We mention that, instead p = 1�exp(�K), the bond probabilityfor the KF lusters is now p = 1 � exp(�2K(I)). Analogously, for the hemial potential D(I) = �1, thesystem redues to the `pure' Ising model, with the ritial point at K(I) = ln(1 + p2)=2. By means of atransfer-matrix alulation [51℄, we loate, with a suÆient preision, the triritial point of the Blume-Capelmodel as K(I)t = 1:6431759(1), D(I)t = 3:2301797(2), and �t = 0:4549506(2).9.1.3 AlgorithmsThe Monte Carlo investigation of the bakbone exponents of the aforementioned systems involves two parts,i.e., the simulation and the sampling proedure.Monte Carlo simulationsFor pure Potts systems with integer q, one an simply use the standard Wol� proedure [45℄. In the presentpaper, these systems inlude the bond perolation, the Ising, and the q = 3 Potts model. For the dilutesystems, i.e., the Blume-Capel and the q = 4 Potts model, luster algorithms to ip between vaaniesand Potts variables are generally not available. For this reason, we �x the global vaany density at itsequilibrium value, so that ritial slowing down due to utuations in the number of vaanies is avoided.Cluster steps satisfying this onservation law are realized by a geometri luster algorithm [49℄. It movesgroups of vaanies and Potts variables over the lattie in aordane with the Boltzmann distribution. Thisgeometri luster method is based on spatial symmetries, suh as the spatial inversion symmetry. A detailedaount an be found in Ref. [49℄.Simulations of the Baxter-Wu model [48℄, whih involves three-spin interations, an be performed asfollows [52℄. The triangular lattie is divided into three sublatties, one of the sublatties is randomly hosen,and its spins are `frozen'. Sine eah elementary triangle ontains one spin from eah sublattie, only two-spin interations remain e�etively. Further, the Hamiltonian (9.3) is unhanged if all spins on these twosublatties are ipped. Due to this symmetry, one an now apply the Wol� luster method on these twosublatties.For the 0 < q < 1 Potts model, we formulate a Monte Carlo method on the basis of the random-lusterrepresentation Eq. (9.2), whih uses bond variables l = 0 or 1. For simpliity, we illustrate this methodpreisely at the ritial point u = pq:1. Randomly hoose a bond variable l, onneting sites i and j.2. Draw a uniformly distributed random number 0 � r � 1,(a) if r < pq=(1 +pq), the edge l is oupied by a bond, i.e., l = 1.138



W 4=1W 1=1 W 2= α W 3= α

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�j

i

(2)

j

i

(4)

j

i

(1)

j

i

(3)Figure 9.1: Relative weights of the bond variables between neighboring sites i and j for the ritial Pottsmodel. Existing paths or bonds are represented by solid lines, while dashed lines means that nopath or bond is present. The relative weights between state (1) and (2) and those between (3)and (4) are spei�ed as Wi with � = pq.(b) if r > 1=(1 +pq), no bond is present at the edge l, i.e., l = 0.() if pq=(1 + pq) � r � 1=(1 + pq), set l = 0, and hek whether sites i and j are onneted. Ifthey are not l = 1; otherwise l = 0.3. Current Monte Carlo step is ompleted, and goto 1.Figure 9.1 illustrates possible onnetivities of sites i and j and their relative weights. Aording to theproedure desribed above, the transition probability from (1) to (2) is T1!2 = pq=(1+pq), and that from(2) to (1) is T2!1 = 1=(1+pq). Sine equilibrium statistis implies that the probability p1=p2 is 1=pq, onehas p1T1!2 = p2T2!1. Thus, the ondition of detailed balane is satis�ed between states (1) and (2). Thesame argument applies to states (3) and (4).For small values of q, we observe that this method hardly su�ers from ritial slowing down. A similarproedure for q > 1 has already been published [53℄. Using the proedure desribed in Ref. [53℄, we simulatedthe q = 2 +p3 Potts model. In this ase, we did observe serious ritial slowing down, in agreement withthe Li-Sokal bound [54℄ for the dynami exponent. This is due to the rather strong energy utuations forq > 2, espeially when the marginal ase q = 4 is approahed. In Ref. [53℄, this Monte Carlo tehnique wasused to loate the marginal value of q in three dimensions, and it was laimed that no ritial slowing downours. This stands, however, in a remarkable ontrast with our �ndings near q = 4 in two dimensions.Sampling proedureHere, we illustrate, in the language of the bond perolation model, the sampling proedure of the bakboneorrelation funtion P2(r).Step 1, form a KF luster. We shall illustrate the onstrution of a KF lusters as follows. Suppose aperolation model is de�ned on a L�L square lattie with periodi boundary onditions, and there are twosites A and B separated by a distane L=2. The task of this step is to form a KF luster F from site A, andthen to hek whether B is also inluded in F, so that A and B are onneted via onduting bonds. Forthe Potts model with integer q, the sites in this KF luster just form the Wol� luster [45℄. In the standardWol� algorithm, if two nearest-neighbor sites are already in the luster, it is not neessary to hek whetherthe bond between them is present or absent. However, we are interested in the bakbone orrelation funtionhere. If A and B are onneted, one then asks how many mutually independent paths exist between A andB. Thus, all edges between nearest-neighbor sites within F have to be heked. We introdue a variableC = 0; 1, and 2, representing that there is no path, only one path, and at least two mutually independentpaths between A and B, respetively. First, the edge variables on the lattie are initialized as ei = �1 with1 � i � 2L2. The value ei = 1 represents that the ith edge is oupied by a bond, and ei = 0 standsfor an empty edge. Sine only one KF luster is formed, not all edges of the square lattie are neessarilyvisited during the formation of F. The edges, whih are not visited, keep their value ei = �1. After thisinitialization, uniformly distributed random numbers are drawn for eah edge onneting to a neighbor in139
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Figure 9.2: Outline of the proedure to determine the onnetion variable C. The path W is shown as thethik line, and the remaining onduting bonds are shown as the thin lines. The bonds on Ware temporarily eliminated �rst. In �gure (a), the remaining path stops at 5. After the bondsbetween A, 1; � � � , and 5 are restored, the path onnets to B, so that C = 2. In �gure (b), thebond between 3 and 4 is a red bond, and thus the path stops at site 3, so that C = 1.the same state. The edge is oupied by a bond if r � p and is empty if r > p. The sites onneted viathese bonds are inluded in F, as stored in a stak memory S. Next, a site j is read and erased from S. Then,the edges onneting to site j are heked. If they have not been visited (ei = �1), new random numbersare used to determine whether they are oupied. Repetition of this proedure reates a list of oupiededges and sites, and thus a luster F is formed. The determination of the bakbone between A and B indeedrequires that eah bond between sites in F is visited. This proedure osts some additional omputer timein omparison with the algorithm growing a Wol� luster [3℄.If the site B is not in the luster F, i.e., A and B are not onneted, one has C = 0, and the urrentMonte Carlo step is ompleted; otherwise, it ontinues as follows.Step 2, a path W is formed between A and B. This an be done by an `ant' walking from A throughthe onduting bonds. Suppose the ant is urrently at site j, it ontinues its journey by randomly hoosinga onduting bond onneting to j, exluding the one it just passed. The ant does not pass a bond twieunless it arrives at a `dead' end. The `dead end is de�ned as a site whose onneted nearest-neighbor siteshave all been visited. In this ase, the ant walks bak along the `old' road until it �nds a `new' bond whih ithas not visited. Sine site B is also in F, the ant will always arrive at site B. The aforementioned path W isjust omposed of the bonds through whih the ant has passed one and only one. An example is shown inFig. 9.2a, where the path W is represented the thik solid line, and the sites on it are spei�ed as 1; 2; � � � ; n.The next task is to hek whether there is any red bond on W . If only one independent path an beformed between A and B, then at least one red bond ours on the path W . Furthermore, if any of thesebonds is ut o�, the ant annot arrive at site B. An ineÆient way is as follows. Temporarily eliminate abond b on W , and then let the ant restart its journey. If the ant an still arrive at B, the bond b annotbe a red bond, and thus is restored. Suppose all the bonds on the path W pass this test, then no red bondours between A and B, so that C = 2; Otherwise, C = 1. In this way, however, the ant may beome tootired to walk. Therefore, we apply a more eÆient proedure.Step 3, temporarily eliminate all the bonds on W , and let the ant restart its journey from A to B. Supposethe ant annot arrive at B; this does not neessarily mean, however, that there are red bonds. For instane,in Fig. 9.2a, after the elimination of the whole path, the ant an only arrive at site 5. This indiates thatthe bonds between A; 1; � � � , and 5 are not red bonds, and may thus be restored. Then, the ant ontinuesits journey and arrives at B. In this ase, no red bond ours on the path W , and C = 2. An example ofopposite ase is given in Fig. 9.2b. Following the same steps the ant annot go beyond site 3, sine the bondbetween sites 3 and 4 is a red bond. In this ase, one has C = 1.In pratial appliations of this proedure, one an still improve the eÆieny by some triks. Forinstane, during the formation of the path W , the site B may at as an `attrator', so that W will not gotoo far from B and the ant need not ontinue its journey randomly. Furthermore, after the elimination ofW , instead of having the ant restart the journey, one an form a new luster from A on the basis of theremaining bonds, and then hek whether it inludes B. In the ase that B is not inluded, one restore the140
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de�nitions of the `geometri' quantities in Se. 9.1.1, whih inlude the bakbone, the red-bond, and thehemial-path exponents. From these de�nitions, one knows that the aforementioned path P is just thehemial path, and that the bakbone preisely onsists of all the bonds on P. Furthermore, all these bondsare red bonds. Sine the red-bond saling dimension is exatly known Xr = 3=4 [10, 55℄, one simply hasthat X2 = Xb = Xmin = 3=4 for q ! 0. In fat, the statement that Xb = Xr = Xmin holds for any type ofspanning tree.In the remaining part of this setion, we present our Monte Carlo determinations of Xb for the systemsdisussed in Se. 9.1.2. Periodi boundary onditions apply to all these systems. The aforementioned site Awas hosen at random, and site B is hosen at a distane r = L=2 in the x diretion from A. Further, wehose a site D also separated from A a distane L=2 but in the y diretion.The orrelation funtions P1 and P2 were sampled both in the x and y diretions, suh that P1 =[P (x)1 + P (y)1 ℄=2 and P2 = [P (x)2 + P (y)2 ℄=2. Moreover, we sampled another bakbone orrelation funtion P22that A is simultaneously onneted to B and D by at least two mutually independent paths.Aording to �nite-size saling, the quantities P1, P2, and P22 behave at ritiality asP1 = L�2Xh(a0 + a2Lyi + a3L�2 + a4L�3) ; (9.6)P2 = L�2Xb(b0 + b1Lyib + b2Lyi + b3L�2 + b4L�3) ; and (9.7)P22 = L�3Xb(0 + 1Lyib + 2Lyi + 3L�2 + 4L�3) ; (9.8)where yi is the exponent of the leading irrelevant thermal saling �eld, and we have assumed integer orretionexponents (of 1=L). The amplitudes ai, bi, and i are unknown onstants. In omparison with the magnetiorrelation funtion P1, the `geometri' quantities P2 and P22 may be expeted to su�er from additional �nite-size orretions, with unknown assoiated exponents yib. More rapidly deaying orretions are negletedhere. The unknown amplitudes and exponents are determined from multivariate least-square analysis usingthe Levenberg-Marquardt method [56℄. For the systems in the present work, the values of Xh, obtained fromthe �ts of P1, are all in exellent agreement with their exat results [9℄, and need not be disussed in thiswork.The bond perolation modelFor this model, the system sizes L were taken in the range 8 � L � 240. The data for P2 are shown inFig. 9.5, and do not indiate the presene of large �nite-size orretions. Equation (9.7) was �tted to theMonte Carlo data aording to the least-square riterion, and the exponent yib was left as a free parameter.We observed that the terms with amplitudes b2, b3, and b4 do not derease the residual �2, and thus theywere not inluded in the �t. We obtain Xb = 0:3566(2) and yib = �1:27(4), where the error bars are twiethe statistial standard deviations. Compared to Ref. [19℄, it seems that our Monte Carlo data su�er lessseriously from �nite-size orretions. This may be due to our hoie of a geometry with periodi boundaryonditions instead of the `bus-bar' geometry. For larity, we plot the value of P2L2Xb � b0 as a funtion ofL�1:27 in Fig. 9.4, where Xb = 0:3566(2) and b0 = 0:742(2) are taken from the �t. The apparent linearityindiates that, indeed, �nite-size orretions of P2 an be well aounted for by a single power law b1Lyib .The Ising model and the triritial q = 1 Potts modelThe simulations were performed for ritial Ising systems on square latties in the range 6 � L � 240.The quantities P2 and P22 were sampled both for KF and Ising lusters. As mentioned above, the Isinglusters are desribed by the magneti dimension Xh = 5=96 of the triritial q = 1 Potts model [9{11℄.The Monte Carlo data for P2 of the KF lusters are shown in Fig. 9.6, whih indiates that 2Xb � 0:54.Equations (9.7) and (9.8) were simultaneously �tted to P2 and P22, respetively, so that Xb and yib appearsin the �t only one. In addition to the terms with yib, the �t also inluded a orretion with yi = �2. Weobtain Xb = 0:2696(3) and yib = �0:87(4) for KF lusters, and Xb = 0:0520(3) for Ising lusters. Here, theerror bars are again two standard deviations. As expeted, for the Ising lusters Xb is in a good agreementwith Xh = 5=96 = 0:5208 � � � of the triritial q = 1 Potts model.142
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phase transitions in magneti systems, the perolation provides a fasinating illustration [3℄ of many impor-tant onepts of ritial phenomena in terms of geometri properties. Both models an be exatly mappedonto the random-luster model [4℄, in whih thermodynami singularities of the Ising model an also be rep-resented in terms of perolation lusters. For an introdution, we start with the Hamiltonian of the q-statePotts model [5℄ on the square lattieH=kBT = �KXhi;ji Æ�i;�j ; (� = 1; 2; � � � ; q) ; (9.10)where the sum is over nearest-neighbor (NN) spins andK is the oupling strength. The random-luster modelis obtained as follows. Between eah pair of NN sites, a bond is plaed with the probability p = 1�exp(�K),so that the whole lattie is deomposed into onneted lusters, i.e., the well-known Kasteleyn-Fortuin (KF)lusters [4℄. The statistial weight of eah bond-variable on�guration is given by the partition funtion ofthe random-luster model Zr(q;K) =Xb vnbqn ; (v = eK � 1) : (9.11)Here, the sum is over all bond-variable on�gurations, and nb and n are the total numbers of bonds and KFlusters, respetively. It an be shown [4,5,50℄ that the partition sum of the Potts model (9.10) is equivalentwith Zr in Eq. (9.11). The Ising and perolation models are the speial ases with q = 2 and q ! 1,respetively. Near the ritial point K(q), the saling properties of KF lusters in Eq. (9.11) are governedby the thermal and magneti saling �elds.Besides the thermal and magneti saling dimensions Xt and Xh, there is still a number of ritialexponents, whih haraterize struture properties of ritial KF lusters in Eq. (9.11) and do not havethermodynami analogue. Among them there are fratal dimensions [7℄ of `bakbones' and of `red' bonds.From the saling behavior of Nb,In omparison with the two-dimensional ase, exat results are sare for ritial behavior in threedimensions. Therefore, investigations have to depend on approximations suh as �- and series expansions,and Monte Carlo tehniques. Extensive studies have been arried out and signi�ant results have beenahieved [3, 27{35, 41℄. For instane, the perolation threshold of the bond-perolation on the simple-ubilattie was determined [27℄ as p = 0:248 821 6(5), and the bakbone dimension was reported [36℄ as Xb =1:145(15). From quantities suh as the mean luster size, the thermal and magneti saling dimensions wereestimated [3, 27, 28, 41℄ as Xt = 1:141(3) and Xh = 0:477(3), respetively. For the Ising model, there is alsosome onsensus [29{35℄ that the values of Xt and Xh are 0:413 and 0:518, respetively, with di�erenes onlyin the last deimal plae. However, it seems that so far little attention has been given to the geometriexponents of the Ising model, suh as Xb and Xr.9.2.2 ModelsWe start with the Hamiltonian of a dilute Ising model on the simple-ubi lattieH=kBT = �KXhi;ji sisj +DXk s2k (s = 0;�1) : (9.12)The spins assume the values �1 and 0. Those in state s = 0 are referred to as vaanies. The abundane ofvaanies is ontrolled by the hemial potential D, and nonzero ouplings K our only between NN Isingspins. For D ! �1, the vaanies are exluded, and the model redues to the `pure' Ising model, i.e., the's spin- 12 model [2℄. This model has been investigated extensively, and the ritial point was determined [35℄as K = 0:22 165 455(3). Along the ritial line K(D), the amplitude of the irrelevant saling �eld with theexponent yi = �0:821(5) varies as a funtion of D. It was reported [29,35℄ that this amplitude is very smallnear D = ln 2.The present paper investigates the dilute Ising model (9.12) with D = ln 2. At this point, the ritialoupling and the orresponding vaany density were determined [29,35℄ as K = 0:39 342 225(5) and �v =0:400 694(1), respetively. During the simulations, we �xed the global density of vaanies at the ritial147
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Table 9.2: The data for P1 and P2 � 10 for the ritial bond-perolation model in three dimensions. Thenumbers in parentheses are the statistial errors at the last deimal plae.6 8 10 12 14 16P1 :20747(3) :15496(2) :12411(2) :10378(2) :08926(1) :07839(1)P2 :13899(6) :06889(4) :04049(3) :02641(2) :01846(2) :01359(2)18 20 24 28 32 36P1 :06996(1) :06321(1) :05301(1) :045719(9) :040200(9) :035905(9)P2 :01039(2) :00815(1) :00537(1) :003801(8) :002803(8) :002149(7)40 48 60 80P1 :032465(9) :027260(8) :022031(8) :016723(8)P2 :001694(7) :001117(6) :000676(5) :000354(5)
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10Geometri properties of Potts on�gurations
We investigate the geometri properties of several Potts models in two and three dimensions.10.1 The ritial and triritial Potts model in two dimensionsWe investigate geometri properties of the general q-state Potts model in two dimensions, and de�ne geomet-ri lusters as sets of lattie sites in the same Potts state, onneted by nearest-neighbor bonds with variableprobability p. We �nd that, besides the random-luster �xed point, both the ritial and the triritialPotts model have another �xed point in the p diretion. For the ritial model, the random-luster �xedpoint pr is unstable and the other point pg � pr is stable; while pr is stable and pg � pr is unstable attriritiality. Moreover, we show that the �xed point pg of a ritial and triritial q-state Potts model anbe regarded to orrespond to pr of a triritial and ritial q0-state Potts model, respetively. In terms of theoupling onstant of the Coulomb gas g, these two models are related as gg0 = 16. By means of Monte Carlosimulations, we obtain pg = 0:6227(2) and 0:6395(2) for the triritial Blume-Capel and the q = 3 Pottsmodel, respetively, and on�rm the predited values of the magneti and bond-dilution exponents near pg.10.1.1 IntrodutionThe geometri desription of utuations near a ritial point has been a subjet of a long history, whih goesbak to the formulation of phase transitions in terms of the droplet model [1℄. For the general q-state Pottsmodel [8, 47℄, the ritial singularities an be represented in terms of Kasteleyn-Fortuin (KF) lusters [4, 9℄.For larity, we start from the Hamiltonian of the q-state Potts model on the square lattieH=kBT = �KXhi;ji Æ�i;�j ; (� = 1; 2; � � � ; q) ; (10.1)where the sum is over all nearest-neighbor (NN) sites, and K is the oupling strength. This model an beexatly mapped onto a random-luster model [9℄. Between eah pair of NN sites, a bond is plaed withthe probability p = 1� exp(�K), so that the whole lattie is deomposed into onneted lusters, i.e., theaforementioned KF lusters. The statistial weight of eah bond-variable on�guration is expressed by thepartition sum of the random-luster model asZ(q;K) =Xb vnbqn ; (v = eK � 1) : (10.2)The sum is over all bond-variable on�gurations, and nb and n are the total numbers of bonds and KFlusters, respetively. 155



The partition sum (10.2) de�nes the general Potts model with non-integer q � 0, whih has a ontinuousand a �rst-order phase transition for 0 � q � 4 and for 4 < q, respetively. Near the ritial point K(q), thedistribution of KF lusters reets ritial singularities of the Potts model (10.1). For instane, the salingproperties of the average size of ritial KF lusters are determined by the magneti exponent Xh(q). Exatvalues of Xh(q) have already been obtained by the theory of the Coulomb gas [22,48℄, and are also inludedwithin the preditions of the onformal �eld theory [23,49℄. In terms of the oupling onstant of the Coulombgas g, Xh(g) is expressed as Xh(g) = (g � 2)(6� g)8g ; (10.3)where g is related to q as q = 2+2 os(g�=2) with 2 � g � 4 for the ritial branh of the Potts model [22,48℄.Apart from KF lusters, so-alled Potts lusters [15{17,19℄ have reeived onsiderable attentions, whihare de�ned as sets of NN sites in the same Potts state. Thus, bonds are alway present between any pair of NNsites as long as they are oupied by the same Potts variable. For ritial Potts models (10.1), the exponentsfor the Potts lusters are generally di�erent from those for the KF lusters. A well known example is theIsing model (q = 2). The exponent for the Ising lusters, i.e., the q = 2 Potts lusters, is X(p)h = 5=96 [15{17℄,equal to the magneti exponent of the triritial q = 1 Potts model. Here, the supersript (p) refers to thePotts lusters. For the bond perolation model (q = 1), all lattie sites belong to the same Potts luster,and thus X(p)h (q = 1) = 0. Apparently, X(p)h (q) 6= Xh(q) in these ases. Within the preditions of theonformal �eld theory, Vanderzande [19℄ interpreted X(p)h = 7=80 and 1=8 for the ritial q = 3 and 4-statePotts models, respetively. However, for the general non-integer 0 � q � 4 Potts model, exat value of X(p)hhas not been reported yet, as far as we know. This is one purpose of the present work.The triritial Potts model [8℄ an be obtained by inluding vaanies in the 'pure' Potts model (10.1).The question then arises what ritial exponents desribe Potts lusters of the general triritial q-state Pottsmodel. From Refs. [15{17,19℄, it is known that, for the ritial Potts model, the exponent X(p)h approahesthe magneti exponent Xh as q inreases. Partiularly, X(p)h = Xh for q = 4. Sine the triritial branhof the Potts model is an extension of the ritial Potts model [8℄, we simply assume that, for the triritialPotts model, the Potts lusters and the KF lusters are desribed by the same ritial exponents. This willbe on�rmed numerially later.Moreover, both for the ritial and the triritial Potts model, we investigate a general type of `geometri'lusters, whih are de�ned analogously as the aforementioned KF lusters, but the bond probability an havea variable value 0 � p � 1. Thus, KF and Potts lusters are just the speial ases of geometri lusters withp = 1� exp(�K) and 1, respetively. For the ritial Potts model, it is generally believed that, in terms ofgeometri lusters, the perolation threshold pg oinides with the ritial point of the orresponding Pottsmodel or random-luster model pr, i.e., pg = pr = 1 � exp(�K). In ontrast, at triritial points Kt,we show that the perolation threshold pg does not oinide with pr = 1 � exp(�Kt), but 0 < pg < pr.Furthermore, ritial exponents near pg are di�erent from those near pr. On the basis of the theory of theCoulomb gas, we predit values of ritial exponents near pg for the triritial q-state Potts model.To on�rm these preditions, we perform Monte Carlo simulations for the triritial Blume-Capel [21℄and the q = 3 Potts model [8℄. Numerial data learly demonstrate the existene of pg for the triritialPotts model, and on�rm the predited ritial exponents.10.1.2 General analysisWe start from the ritial Potts model, desribed by Eq. (10.1). For this model, the statistial properties ofgeometri lusters an be obtained from a `mixed' Potts model [4℄ with the HamiltonianH=kBT = �JXhi;ji(Æ�i;�j � 1)Æ�i;�j �KXhi;ji Æ�i;�j : (10.4)The seond term is just the aforementioned `pure' q-state Potts Hamiltonian (10.1); the �rst term ontainsauxiliary Potts variables � = 1; 2; � � � ; s, and ontrols the distribution of bond variables. One an express156
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Figure 10.1: RG ows of Potts models in the parameter spae (K; p). Figures (a) and (b) apply to theritial and the triritial Potts model, respetively. The dashed lines represent the random-luster model p = 1 � exp(�K), The points, `r..' and `g..', represent the random- and thegeometri-luster �xed point, pr and pg, respetively. Arrows show the diretion of the RGows.the partition sum of Eq. (10.4) in bond variables, and di�erentiate the resulting free energy with respetto the parameter s. Taking the limit s ! 1, one obtains the distribution of geometri lusters with bondprobability p = 1� exp(�J). Partiularly, if one hooses J = K, Hamiltonian (10.4) assumes a simple formand desribes the random-luster model (10.2).For this `mixed' Potts model (10.4), the renormalization-group (RG) ow is skethed in Fig. 10.1(a) inthe parameter spae (p;K) with p = 1 � exp(�J). The dashed line represents the random-luster modelwith J = K. At the ritial point K = K, in terms of geometri lusters, the perolation threshold is justpr = 1� exp(�K). Thus, pr an be onsidered as a �xed point in the spae (p;K), whih is unstable bothin the bond-probability diretion p and along the dashed line J = K. The saling properties in these twodiretions are desribed by the bond-dilution and the thermal saling �eld, respetively. We shall denotetheir assoiated exponents as yp and yt, respetively, where yp is also referred to be the red-bond exponent [6℄.Near the random-luster �xed point pr, exat values of the bond-dilution and the thermal exponents,yp and yt, have already been obtained by various methods. For instane, on the basis of the theory of theCoulomb gas, it has been derived [6,16,17℄ that the saling dimensions, Xp = 2� yp and Xt = 2� yt, satisfyXp(g) = 18g (3g � 4)(g + 4) ; (10.5)and Xt(g) = 6� gg ; (10.6)respetively, where g is the oupling onstant of the Coulomb gas, as mentioned before. Furthermore, forintegers 0 � q � 4, Xp(q) and Xt(q) are also inluded in the preditions of the onformal �eld theory. Forlarity, we start from the Ka formula desribing salar observables [23, 49℄Xi;j(q) = [im� j(m+ 1)℄2 � 12m(m+ 1) ; (m � 1) ; (10.7)where the positive integer m is related to the onformal analomy  as  = 1� 6=m(m+ 1). For the ritialbranh of the Potts model, one has pq = 2 os[�=(m + 1)℄. It is known that Xp(q) and Xt(q) an beidenti�ed as Xi;j with oordinates (i = 0; j = 2) and (i = 2; j = 1), respetively. We also mention that theaforementioned magneti exponent Xh(q) an be interpreted as Xi;j with i = j = (m+ 1)=2.For the ritial Potts model (2 � g � 4), Eq. (10.5) yields Xp(q) � 2, whih indiates that the bond-dilution �eld is relevant at the random-luster �xed point pr, as shown in Fig. 10.1(a). Thus, geometri157



lusters at pr, i.e., KF lusters, and those with the bond-probability p 6= pr are desribed by di�erentexponents. For p < pr, we expet that the behavior of geometri lusters is dominated by the trivial p = 0�xed point; while geometri lusters with p > pr, inluding Potts lusters, are desribed by a stable �xedpoint pg > pr, shown in Fig. 10.1(a). For later onveniene, we shall refer to the point pg as the geometri-luster �xed point. For the ase of the Ising model on the square lattie, it has been found [17℄ that pg � 1:08,in an unphysial region.The above disussions apply to the ritial branh of the Potts model. For the triritial Potts model,it is already known [22, 48℄ that the magneti and thermal exponents, Xh(q) and Xt(q), are still given byEqs. (10.3) and (10.6), respetively, but with the oupling onstant in the range 4 � g � 6. Aordingly, forintegers 0 � q � 4, Xt(g) and Xh(g) an be interpreted as X1;2 and Xm=2; m=2 in the Ka formula (10.7),respetively. On this basis, for the triritial Potts model, we simply assume that the bond-dilution exponentXp(q) is still given by Eq. (10.5) with 4 � g � 6, and thus orresponds to X2;0 in the Ka formula (10.7).To distinguish the ritial and the triritial branh of the Potts model, later, we shall express ritialexponents as a funtion of g only. Table 10.1 lists values of g, Xp(g), and Xh(g) for the Potts model withinteger 0 � q � 4.
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Table 10.1: The bond-dilution and the magneti exponents, Xp and Xh for the two-dimensional Potts model. The supersripts (r) and (g)represent the random- and the geometri-luster �xed point, pr and pg , respetively. the oupling onstant of the Coulomb gas isdenoted as g, and the positive integer m is related to the onformal anomaly  as  = 1� 6=m(m+ 1).Random-luster �xed point Geometri-luster �xed pointq(r) g(r) m(r) X(r)p X(r)h X(g)p X(g)h m(g) g(g) q(g)rit 0 2 1 3=4 0 15=4 �3=16 1 8 triial 1 8=3 2 5=4 5=48 35=12 0 2 6 0 rit2 3 3 35=24 1=8 21=8 5=96 3 16=3 1 ial3 10=3 5 33=20 2=15 143=60 7=80 5 24=5 2 + 2 os(2�=5)4 4 1 2 1=8 2 1=8 1 4 4tri 3 14=3 6 65=28 2=21 143=84 15=112 6 24=7 2 + 2 os(2�=7) ritrit 2 5 4 99=40 3=40 63=40 21=160 4 16=5 2 + 2 os(2�=5) ialial 1 16=3 3 21=8 5=96 35=24 1=8 3 3 20 6 2 35=12 0 5=4 5=48 2 8=3 1
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Xh is given by Eq. (10.3), so that, after the substitution g = 16=g0, X(g)h (g) follows asX(g)h (g) = (8� g)(3g � 8)32g : (10.8)The same proedure applies to other ritial exponents, and the resulting values are onsistent with theexisting preditions for the ritial Potts model with q = 1; 2; 3, and 4. For larity, we list values of X(g)h andX(g)p in Tab. 10.1 for integer 0 � q � 4.10.1.3 Monte Carlo investigationTo on�rm the preditions in Se. 10.1.2, we perform Monte Carlo simulations for the triritial Blume-Capeland q = 3 Potts models.The triritial Blume-Capel modelThe Ising model with vaanies, also alled the Blume-Capel model [21℄, is de�ned on the square lattie,with the Hamiltonian H=kBT = �KXhi;ji�i�j +DXk �2k (� = 0;�1) : (10.9)The vaanies are denoted as � = 0, and D is the hemial potential of the Ising spins � = �1. We mentionthat, in this ase, the bond probability for KF lusters is p = 1� exp(�2K).For D ! �1, the vaanies are exluded, and the model redues to Onsager's spin- 12 model [18℄. Theritial oupling onstant K is an inreasing funtion of the hemial potential D, and the ritial lineK(D) terminates at a triritial point. By means of a sparse transfer matrix tehnique, we have determinedthe triritial point [50℄ as Kt = 1:6431759(1), Dt = 3:2301797(2), and �t = 0:4549506(2) for the vaanydensity. The preision improves signi�antly over that of the existing results [51℄ Kt = 1:64(1); Dt =3:22(2), and is onsidered to be suÆient for our present investigation.For this model (10.9), however, no luster Monte Carlo method to ip between vaanies and Ising spinsis generally available. Thus, during the simulations, we �xed the total number of vaanies in order to avoidthe ritial slowing down due to utuations in the number of vaanies. This was realized by a reentlydeveloped geometri luster algorithm [37℄, whih moves groups of vaanies and Ising spins on the lattiein aordane with the Boltzmann distribution. A detailed aount of the geometri luster method an befound in Refs. [37℄.The Monte Carlo simulations were performed at the triritial point. For �nite systems, however, thetotal number of vaanies V at triritiality is generally not an integer, so that the atual simulations tookplae at V� = [Vt℄ = [�tL2℄ and V+ = [Vt℄ + 1, where square brakets [ ℄ denote the integer part of thenumber in it. For a sampled quantity A, its value At at the triritial point is approximated asAt = A+(Vt � V�) +A�(V+ � Vt)V+ � V� ; (10.10)and the statistial error margin of At is taken asÆAt = 1V+ � V�p[ÆA+(Vt � V�)℄2 + [ÆA�(V+ � Vt)℄2 : (10.11)Sine we are interested in geometri properties of the Blume-Capel model, the aforementioned geometrilusters have to be onstruted with bond probability 0 � p � 1 during the sampling proedure. This wasrealized by a Swendsen-Wang-like algorithm [13℄. For a bond- and vaany-variable on�guration, we denotethe total number of geometri lusters as N, and the size of the ith luster as si. The following quantitieswere sampled S2 = 1L2 h NXi s2i i ; S4 = 1L4 h NXi s4i i ; and r = hS2i2=hS4i : (10.12)161
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Table 10.2: The hull-luster saling dimensions XH for the ritial and the triritial Potts model in twodimensions. The supersripts (r) and (g) represent the random- and the geometri-luster �xedpoint, pr and pg, respetively.Critial Potts model Triritial Potts modelq 0 1 2 3 4 3 2 1 0X(r)H 0 1=4 1=3 2=5 1=2 4=7 3=5 5=8 2=3X(g)H 3=4 2=3 5=8 7=12 1=2 5=12 3=8 1=3 1=4the thermal, and the bond-dilution exponent, shown in Tab. 10.1. We have performed extensive MonteCarlo simulations, and on�rmed some preditions. As another example, we onsider the fratal dimensionof the hull or external perimeter of a luster, whih onsists of all the absent bonds surrounding the lusterof interest. For the ritial Potts model, exat values of the hull-luster saling dimension X(r)H near therandom-luster �xed point pr have already been given [6℄ asX(r)H = (g � 2)=g ; (10.18)with g the oupling onstant. By assuming that this formula applies to the triritial branh of the Pottsmodel, and aording to the relation gg0 = 16 between the �xed points pr and pg , we obtain near thegeometri-luster �xed point pg X(g)H = (8� g)=8 : (10.19)The values of X(r)H and X(g)H for integers 0 � q � 4 are listed in Tab. 10.2.From Tab. 10.1, the geometri-�xed point pg of the bond-perolation model orresponds to pr of thetriritial q = 0 Potts model.
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10.2 The ritial and the triritial Ising model in three dimen-sionsUsing the Wol� and geometri luster algorithms and �nite-size saling analysis, we investigate the ritialIsing and the triritial Blume-Capel model with nearest-neighbor interations on the simple-ubi lattie.The sampling proedure involves the deomposition of the Ising on�guration into geometri lusters, eahof whih onsists of a set of nearest-neighboring spins of the same sign onneted with bond probability p.These lusters inlude the well-known Kasteleyn-Fortuin lusters as a speial ase for p = 1 � exp(�2K),where K is the Ising spin-spin oupling. A dimensionless ratio R is then de�ned on the basis of the sizedistribution of these geometri lusters. We observe that, unlike the ase of two-dimensional triritiality, theperolation threshold of geometri lusters oinides with Kasteleyn-Fortuin lusters. Further, we determinethe orresponding red-bond exponents as yr = 0:757(2) and 0:501(5) for the ritial Ising and the triritialBlume-Capel model, respetively. On this basis, we onjeture yr = 1=2 for the latter model.10.2.1 IntrodutionSeond-order thermodynami transitions are generally aompanied by long-range orrelations both in timeand spae. It is thus plausible that the preise mirosopi struture of the system under onsiderationbeomes unimportant as far as the universal aspets of the transition are onerned, and transitions inmany di�erent physial systems an be within the same universality lass. It has been suspeted long timeago [1{6℄ that, as indiated by the divergene of spatial orrelation lengths, thermodynami singularities neara ritial point an be represented in terms of some sort of `geometri lusters'. For instane, one may relatespontaneous long-range order below a ritial temperature to the formation of an `in�nite' luster. As earlyas in 1967, Fisher [1℄ introdued a phenomenologial droplet model for the two-dimensional Ising model, inwhih `geometri lusters' onsist of nearest-neighboring (NN) Ising spins of the same sign. These lusters arereferred to as Ising lusters, and topologial onsiderations imply [7℄ that its perolation threshold oinideswith the thermal ritial point in two dimensions, at least for the square lattie. However, it an also beshown [7℄ that Ising lusters are too `dense' to orretly desribe ritial orrelations of the Ising model.For the q-state Potts model (for a review, see Ref. [8℄), whih inludes the Ising model as a speial aseq = 2, a solution was given by Kasteleyn and Fortuin [9, 10℄ in 1969. The Hamiltonian of a lattie Pottsmodel with nearest-neighbor (NN) interations only an be expressed asH=kBT = �KpXhiji Æ�i�j ; (� = 1; 2; � � � ; q) ; (10.20)where the sum h i is over all NN pairs and K is the oupling onstant. A orret geometri representation ofthis model an be obtained as follows. For eah pair of NN spins in the same Potts state, a bond is plaedwith with a probability pKF = 1 � exp(�Kp), suh that the whole lattie is then deomposed into groupsof spins onneted via the oupied bonds, whih are known as the Kasteleyn-Fortuin (KF) lusters. Thestatistial weight of eah bond-variable on�guration is then given by the partition sumZ(u; q) =Xb unbqn (u = eKp � 1) ; (10.21)where the sum is over all bond-variable on�gurations, and nb and n are the total numbers of bonds and KFlusters, respetively. As early as 1932, this partition sum had already appeared in the work of Whitney [11℄,and the orresponding model is referred to as the random-luster model. It an be shown [8{10℄ that therandom-luster model an be exatly mapped onto the q-state Potts model. The perolation threshold ofthe former ours preisely at the thermal ritial point in the latter. Saling properties of KF lusters nearritiality are governed by ritial exponents of the Potts model (10.20). For instane, the fratal dimensionof KF lusters at ritiality is idential to the magneti saling dimension Xh. In fat, one may view thepartition sum (10.21) as a generalization of the Potts model to noninteger q. It also inludes some speialases suh as q ! 0 and 1, where the latter redues to the unorrelated bond-perolation model [12℄. It was167
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be determined.In addition to the ritial Ising model, the present work also investigates the triritial Ising model in threedimensions [35℄. Sine the upper triritial dimensionality of O(n) systems is three, exat information for someuniversal quantities is available, one of the rare ases in three dimensions. Exat values of ritial exponentsan be obtained from renormalization alulations [35℄ of the Landau-Ginzburg-Wilson Hamiltonian, andeven from mean-�eld analyses. The leading and subleading thermal exponents [35℄ are yt1 = 2 and yt2 = 1,and those magneti ones are yh1 = 5=2 and yh2 = 3=2, respetively. However, no exat results or numerialdeterminations for the red-bond exponent yr have been reported to our knowledge; and it is even not obviouswhere perolation threshold of geometri lusters ours at triritiality. It seems thus justi�ed to performa Monte Carlo investigation for the triritial Ising model in three dimensions.10.2.2 Monte Carlo methods and sampled quantitiesFor simpliity, we hose the spin- 12 and the triritial Blume-Capel model as the subjet of our simulations,so that the Hamiltonian of both models an be expressed by Eq. (10.23). The systems are de�ned on theL� L� L simple-ubi lattie with periodi boundary onditions.For the spin- 12 model, as desribed by Eq. (10.23) for D ! �1, one an simply apply the Swendsen-Wang and Wol� luster algorithms. In this ase, the ritial point on the simple-ubi lattie is known [31℄as K = 0:22 165 455(3), where the number in brakets ( ) is the error margin in the last deimal plae.The �nite-size analysis in Ref. [31℄ used a tehnique that Monte Carlo data for 11 Ising systems weresimultaneously �tted, suh that universal parameters only our only one. In the present investigation, thepreision of the above determination of K is onsidered to be suÆient.However, for the general Blume-Capel model (10.23) in the presene of vaanies, the Swendsen-Wang orWol� luster simulations beome inomplete, sine they at only on Ising spins. In this ase, the Metropolismethod, whih allows utuations of vaanies, an be used in a ombination with these luster methods.Further, for the speial ase D = 2 ln 2, a full-luster simulation has also been developed [25,36℄ by mappingthe system (10.23) onto a spin- 12 model with two independent variables �1 = �1 and �2 = �1. Neartriritiality, however, no eÆient luster method is available so far to ip between vaanies and Ising spins.This problem was partly solved in Ref. [38℄ by means of the so-alled geometri luster method [25,37℄. Thisalgorithm was developed on the basis of spatial symmetries, suh as invariane under spatial inversion androtation operations. It moves groups of Ising spins and vaanies over the lattie in aordane with theBoltzmann distribution, so that the magnetization and the vaany density are onserved. A ombinationof the Metropolis, Wol�, and geometri steps signi�antly suppresses the magnitude of ritial-slowing-down. Suh simulations, together with other tehniques suh as the aforementioned simultaneous �nite-sizeanalysis, yield [38℄ the triritial point as Kt = 0:7133(1) and Dt = 2:0332(3) on the simple-ubi lattie.The vaany density �v at the triritial point is �v = �vt = 0:6485(2) [38℄. These results are onsistent withestimations [39, 40℄ from other soures Kt = 0:706(4), Dt = 2:12(6), and �vt = 0:652(6), within two errormargins quoted in the brakets ( ).The alulations in the present work inlude two parts: the Monte Carlo simulations and the formationof geometri lusters with bond-oupation probability pg. The latter step is performed as follows. For eahpair of NN Ising spins of the same sign, a uniformly distributed random number r is drawn, and a bond isplaed if r < pg. This is done in an analogous way as in the well-known Swendsen-Wang proedures. In thisase, the whole lattie is deomposed into geometri lusters. The size of eah luster, de�ned as the totalnumber of lattie sites in the luster, is determined and used to alulate the quantitiesl2 = 1N2 Xi n2i and l4 = 1N4 Xi n4i ; (10.24)where ni is the size of the ith geometri luster, and N = L3 is the volume of the system. For KF lustersin whih the bond probability pg = pKF = 1� exp(�2K), it an be shown that the quantities in Eq. (10.24)are related to the magnetization m ashm2i = hl2i and hm4i = 3hl22i � 2hl4i : (10.25)170



The �rst equality in Eq. (10.25) is derived as follows for the spin- 12 model. We denote the numbers of plusand minus spins as N+ and N�, respetively, so that the total magnetization is M = N+ �N�. Sine allspins in a KF luster are of the same sign, M an be written in terms of luster sizes of KF lusters asM = Pi ni�i, where �i is the sign of spins in the ith luster. The sign �i assumes +1 and �1 with equalprobability, and is unorrelated between di�erent KF lusters. Thus, one hasm2 = 1N2 Xi Xj ninj�i�j = 1N2 Xi n2i : (10.26)The derivation of the seond equality in Eq. (10.25) follows along similar lines.On the basis of the quantities l2 and l4, we de�ne a dimensionless ratio R asR = hl2i2=(3hl22i � 2hl4i) ; (10.27)whih is equal to the magneti ratio Q = hm2i2=hm4i for KF lusters, i.e., for pg = pKF. For the bondprobability pg 6= pKF, R will be di�erent from Q; its value reets the geometri luster size distribution.Further, the saling behavior as a funtion of the distane pg � pKF is governed by the red-bond exponentyr.10.2.3 ResultsSpin- 12 modelSimulations of the spin- 12 model were performed at K = 0:22 165 455(3) [31℄, where the bond-oupationprobability in KF lusters satis�es pKF(K) = 1�exp(�2K) = 0:35 809 124(5). The system sizes were takenin the range 6 � L � 48, and we sampled the geometri quantities l2, l4, and R, and the magneti ratio Q.Several Wol� luster steps were arried out between onseutive sampling proedures. Part of the data forR is shown in Fig. 10.10, indiating that the perolation threshold of geometri lusters is near pg � 0:358,onsistent with the random-luster �xed point pKF(K). Aording to the least-squares riterion, we �ttedthe data of R by R(pg; L) = R0 + 4Xk=1 rk[(pg � pg)Lyr ℄k + 3Xj=1 ajLyj +(pg � pg)Ly1+yr + b(pg � pg)2Lyr ; (10.28)where R0 is the universal number at pg. The terms with amplitudes rk desribe the e�et of the bond-dilution�eld, and those with aj aounts for �nite-size orretions. We set the exponent y1 = yi = �0:821(5) [31℄,the leading irrelevant exponent of the three-dimensional Ising universality lass. Other exponents of theorretion terms, as desribed in Ref. [31℄, take values as y2 = d�2yh = �1:964 and y3 = yt�2yh = �3:375.The term with y2 arises from the �eld dependene of the analyti part of the free energy, and that with y3is introdued by the nonlinear dependene of the thermal saling �eld on the physial magneti �eld. Theterm with amplitude  aounts for the `mixed' e�et of the bond-dilution �eld and the irrelevant thermal�eld. The last term arises from nonlinear dependene of the bond-dilution �eld on the bond probabilitypg. The data for Q were also inluded in the �t by Eq. (10.28) with pg = pKF(K). Further, we inludedthe Q data at K, published in Ref. [31℄. These data, partiular those for larger system sizes L = 48, 64,128, and 256, were found very helpful in the numerial analysis. To obtain a satisfatory �t by Eq. (10.28)aording to the least-squares riterion, it was neessary to disard the R data for small system sizes L � 6.We obtain R0 = 0:6238(8), p = 0:35 809 135(15) = pKF(K), and yr = 0:757(2), where the error marginsare quoted as two standard deviations. The estimation of R0 is in good agreement with the Binder ratioQ = 0:6241(4) [31℄. We mention that, in Eq. (10.28), the ontributions from the terms with b and  aresigni�ant. This is indiated by Tab. 10.3, whih lists detailed results of the above �t.171
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11Edge transitions of two-dimensional triritial Potts mod-els
Using Monte Carlo tehniques and �nite-size analysis, we investigate several two-dimensional lattie modelswith open edges, inluding the Blume-Capel model and the q = 1 and 3 Potts models with vaanies. Atbulk triritiality, we �nd that the open edges are dominated by the vaanies when the surfae ouplings Ksand the hemial potential Ds of the vaanies assume the bulk values. When Ks and/or Ds is suÆientlyenhaned, an edge phase transition takes plae, beyond whih spontaneous one-dimensional order ourson the edges. Edge phase transitions an also be indued by a surfae magneti �eld Hs. We numeriallydetermine a number of edge ritial exponents and derive phase diagrams in terms of Ks, Ds, and Hs. In thelow-temperature region, we observe �rst-order transitions when Ks and Ds are varied; the assoiated hys-teresis loops of surfae quantities are remarkably asymmetri. Some further insight in these edge transitionsis provided by the exat equivalene of the triritial q = 1 Potts model and the Ising model.11.1 IntrodutionsWhile theoretial physiists frequently study phase transitions in systems with periodi boundary onditions,in reality systems generally have surfaes. Thus, there may be a need to onsider the e�ets due to thepresene of surfaes. For a d-dimensional system ontaining Ld atoms, the relative fration of atoms at ornear a surfae is of order 1=L, and hene for large L it is usually justi�ed to neglet the surfae e�ets onbulk properties of the material. However, near a phase transition, orrelations beome long-ranged, so thatrelatively small perturbations an produe large responses. Therefore, surfae e�ets an beome signi�ant,and in many ases they annot be ignored. Indeed surfae phase transitions have been the subjet ofonsiderable researh interest in the past deades [1{11℄. Many theoretial and numerial methods have beendeveloped, inluding mean-�eld approximations, high- and low-temperature expansions, renormalizationgroup (RG) tehniques, onformal �eld theory, and Monte Carlo simulations et.Most of these results apply to three-dimensional systems, and in this ontext, we briey review surfaeritial phenomena of the Ising model on a simple-ubi lattie with two open surfaes in the z diretionand periodi boundary onditions in the xy plane [1,4,8,10℄. The Hamiltonian of this system an be dividedinto two parts: bulk terms and surfae terms, i.e.,H=kBT = �KXhiji(b)sisj �HXk (b)sk �KsXhlmi(s)slsm �HsXn (s)sn : (11.1)The spins assume values �1, and interations our between nearest-neighbor spins. The �rst two sumsaount for the bulk, and the last two sums involve spins on the open surfaes. For a �nite ube with linearsize L, the surfae terms onern an area 2L2, beause there are surfaes both at z = 0 and at z = L.177



ordinary

extraordinary

special

surface

1/K

κ

1/K c
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it may be expeted that only the ordinary transition exists on the one-dimensional surfaes. It has furtherbeen argued [1℄ that the surfae dimensionality d = 2 is the lower ritial dimensionality for the speial,the surfae, and the extraordinary transitions. This is onsistent with exat results for the Ising model intwo dimensions. Exat alulations of surfae e�ets in this model [15,16℄ were not restrited to the ritialregion but overed in the entire temperature range. At the bulk ritiality, it was shown that, for any �nitesurfae oupling Ks, the transition on the open edges is just the ordinary transition. The orrespondingsurfae magneti exponent is y(o)hs = 1=2 [15, 16℄, di�erent from the bulk exponent yh = 15=8 [13℄. Thesurfae magnetization density ms and the surfae suseptibility �s at the ordinary transition appear to beof logarithmi nature [15, 16℄, i.e.,ms(Hs) / Hs j lnHsj (K = K; jHsj << 1) ; (11.2)and �s(t) / j ln jtjj (Hs = 0; jtj = jK �Kj << 1) ; (11.3)where �s is de�ned as �ms=�Hs.The statement that only ordinary transitions our on the edges an be generalized to the ritial branhof the q-state Potts model in two dimensions. For a review of the Potts model, see Ref. [17℄. For thismodel, the nature of the bulk ritial singularities is now well established. This is mostly due to exatalulations [18,19℄, Coulomb gas theory [20℄, and onformal �eld theory [3℄. In the ontext of the Coulombgas theory [20℄, a sequene of universal exponents an be exatly expressed in terms of a single parameter g,i.e., the oupling strength of the Coulomb gas. The parameter g satis�es q = 2+2 os(g�=2), with 2 � g � 4and 4 � g � 6 for the ritial and the triritial branh of the Potts model, respetively. The leading thermaland magneti exponents of the Potts model are [20,21℄ yt = 3�6=g and yh = (g+2)(g+6)=8g, respetively.For the ordinary surfae transition of the ritial Potts model, Cardy [5{7℄ employed boundary onformal�eld theory, and expressed the surfae magneti exponent y(o)hs in terms of the bulk thermal exponent yt asy(o)hs = 2� 3=(3� yt) = 2� g=2 (2 � g � 4) : (11.4)A remarkable feature of Eq. (11.4) is that y(o)hs is a dereasing funtion of the Coulomb gas oupling g. Inpartiular, for the q = 4 Potts model (g = 4), Eq. (11.4) yields y(o)hs = 0, so that the surfae magnetisaling �eld is marginal. It seems natural that Eq. (11.4) an also be applied to g > 4, just as the aboveexpressions for the bulk exponents yt and yh [20,21℄. This appliation then yields that the surfae magnetisaling �eld is irrelevant for the triritial Potts model. On the other hand, it is known that, near a seond-order transition, the strength of ritial utuations and the sensitivity to perturbations are reeted by themagnitudes of the ritial exponents yt and yh. For the Potts model, yt = 3� 6=g is an inreasing funtionof g, and, for 0 < q < 4, yh is larger on the triritial branh than on the ritial one. Thus, one mightnaively expet that the surfae e�ets, inluding that of the surfae magneti �eld Hs, beome stronger asg inreases. Further exploration of this paradox seems justi�ed.Reently, boundary onformal �eld theory has reeived onsiderable researh interest [22{27℄. In theontext of statistial physis, this has been applied to the triritial Ising model in two dimensions. Thismodel is onsidered to orrespond with an integral sattering theory of massive kinks [22℄, and it preservessuperonformal symmetry. By means of fatorisable S matrix, fusion rules, and symmetry arguments, variousboundary operators were onjetured [23℄ and the orresponding renormalization ows were onstruted. Aphysial interpretation of these boundary phenomena was then provided by A�ek [24℄, indiating thepossible emergene of spontaneous edge order if the bulk is in the triritial state. Moreover, this senariohas been numerially on�rmed in Ref. [28℄.The present paper extends the work in Ref. [28℄. First, as a diret illustration of the existene of theedge transitions in triritial Potts models in two dimensions, we make use of the exat equivalene of thedilute q = 1 Potts model with the Ising model in a magneti �eld [29℄. Thus, the exat information aboutthe edge ritial phenomena in the latter model an be reformulated in the language of the former model.Then, using suitable Monte Carlo methods, we simulate the Blume-Capel (BC) model [30,31℄ and the q = 3Potts model with vaanies. From the �nite-size analysis of the numerial data, we derive a number of edgephase diagrams in terms of surfae parameters, and determine several surfae ritial exponents.179



11.2 Dilute 1-state Potts modelThe dilute Potts model is obtained by inluding vaanies in the orresponding \pure" Potts model. On theL � L square lattie with periodi boundary onditions, to whih we shall refer as the torus geometry, theHamiltonian of the dilute q-state model readsHP=kBT = �K LXx;y=1(1� Æ�x;y ;0)(Æ�x;y ;�x+1;y + Æ�x;y ;�x;y+1)�D LXx;y=1 Æ�x;y ;0 ; (11.5)where the lattie site is oupied by a vaany � = 0 or a Potts variable with � = 1; 2; � � � ; q. Nonzeroouplings K our only between Potts variables, and the hemial potential D ontrols the onentration ofthe vaanies. In Eq. (11.5), we have introdued the subsript P to represent periodi boundary onditions.For the speial ase q = 1 Eq. (11.5) redues, apart from a onstant, toHP=kBT = �K LXx;y=1�x;y(�x+1;y + �x;y+1) +D LXx;y=1�x;y (� = 0; 1) : (11.6)For D ! �1, the vaanies are exluded, and the �rst sum of Eq. (11.6) is just a onstant. Nevertheless,the random-luster representation of Hamiltonian (11.6) orresponds with the bond-perolation model withbond-oupation probability p = 1 � exp(�K), so that Eq. (11.6) still desribes perolation phenomena.In the presene of vaanies, Eq. (11.6) desribes a orrelated dilute bond-perolation model, whih anbe transformed into the Ising model in a magneti �eld. This follows from substitution of s = 2� � 1 inEq. (11.6), whih yieldsH(i)P =kBT = �K(i) LXx;y=1 sx;y(sx+1;y + sx;y+1)�H(i) LXx;y=1 sx;y (s = �1) ; (11.7)with the relations K(i) = K=4 and H(i) = �D=2 +K ; (11.8)where the supersript (i) refers to the Ising model. In the absene of a magneti �eld H(i), the Isingmodel (11.7) has a ritial point at K(i) = K(i) = ln(1 + p2)=2 [13℄. This point is not perolation-like; itserves as the triritial point of the q = 1 Potts system (11.6). Equation (11.8) yields the triritial point asK = Kt = 2 ln(1 +p2) and D = Dt = 4 ln(1 +p2); the up-down symmetry of Ising spins implies that thetriritial vaany density is � = 1=2. Further, it follows from Eq. (11.8) that the leading and the subleadingthermal exponents of the triritial Potts model are equal to the magneti and the thermal exponent ofthe Ising model, respetively, so that yt1 = 15=8 and yt2 = 1. The leading magneti exponent is known asyh1 = 187=96 [20℄. In the low-temperature region K(i) > K(i) , the Ising model undergoes a �rst-order phasetransition when the magneti �eld H(i) hanges sign. In other words, the dilute q = 1 Potts model (11.6)has a line of �rst-order phase transitions at D = 2K for K > Kt.Beause of the attration between the vaanies, the dilute q = 1 model (11.6) is di�erent from theonventional site-bond perolation problem [32℄. In the latter system, the vaanies are randomly distributedover the lattie sites, and then bonds are plaed with probability 0 � p � 1 between all nearest-neighboringoupied sites. Apart from that, sites and bonds are unorrelated. A limiting ase is the `pure' site-perolationmodel, in whih the bond-oupation probability is 1. This model is still in the perolation universality,so that no triritial point exists for the onventional site-bond perolation problem. In ontrast, for aorrelated dilute q-state Potts model desribed by Eq. (11.5), it has been found [29, 33℄ that the triritialpoint ours for any value in the ontinuous range 0 � q � 4.In order to investigate the surfae e�ets, we de�ne the orrelated perolation model (11.6) on an openylinder, i.e., the L�L square lattie with periodi and free boundary onditions in the x and the y diretion,respetively. As for the three-dimensional ase, the surfae ouplings Ks and the hemial potential Ds an180



assume di�erent values from those in the bulk. The Hamiltonian HO on the open ylinder an be writtenas the sum of HP in Eq. (11.6) and their di�erene, whih readsHO=kBT �HP=kBT = K LXx=1�x;1�x;L �K�k LXx=1(�x;1�x+1;1 +�x;L�x+1;L)�D�d LXx=1(�x;1 + �x;L) ; (11.9)where �k = Ks=K � 1 and �d = Ds=D � 1 represent the enhanements of the surfae oupling and thehemial-potential, respetively. The subsript O is for the open ylinder. The sums in the right-hand sideof Eq. (11.9) are only over spins sitting on the edges y = 1 and y = L. Thus, the surfae e�ets an beregarded to ontain two parts: the �rst term in Eq. (11.9) aounts for the geometri e�et due to `missing'neighbors for spins at the surfae layers, and the last two sums desribe the enhanements of the surfaeparameters Ks and Ds. E�etively, the �rst term serves as a perturbation whih dereases the orrelationsalong the lines y = 1 and y = L. After substituting � = (s+1)=2 in Eq. (11.9), one obtains the Ising modelon a ylinder with open endsH(i)O =kBT �H(i)P =kBT = K4 LXx=1 sx;1sx;L � K4 �k LXx=1(sx;1sx+1;1 +sx;Lsx+1;L)�H(i)s LXx=1(sx;1 + sx;L) ; (11.10)with a surfae magneti �eld H(i)s H(i)s = [K(2�k � 1)� 2D�d℄=4 : (11.11)Due to the equivalenes of Eqs. (11.6) and (11.7), and of Eqs. (11.9) and (11.10), the edge transitionsof the Ising model an now be reformulated in the language of the dilute q = 1 Potts model. In thehigh-temperature region K > Kt, no transition ours on the one-dimensional edge. At bulk ritiality,the Ising model exhibits an ordinary edge transition at H(i)s = 0, and the surfae magneti exponent isy(o)hs = 1=2 [15, 16℄. In the ontext of the triritial q = 1 Potts model (11.9), this means that, as indiatedby the relation (11.11), an edge transition an be indued by varying the surfae ouplings Ks and thehemial potential Ds. For instane, for the ase �d = 0, the edges of the Potts model are dominated byvaanies (� = 0) or by Potts variables (� = 1) for �k < 1=2 or �k > 1=2, respetively. Sine Ks and Dsare temperature-like parameters, we refer to suh an edge transition as the `speial transition'. The surfaethermal exponent is simply obtained as y(s)ts (q = 1) = 1=2. In the low-temperature regionK > Kt, the bulk ofthe Potts model (11.9) is in a two-phase equilibrium along the line D=K = 2, as disussed above. Therefore,a small perturbation due to an enhanement �k or �d indues a �rst-order transition, whih involves thebulk as well as the edges. Fig. 11.2 skethes the phase diagram of the dilute q = 1 Potts model (11.9) forthe ase �d = 0.For the q = 1 Potts model at bulk triritiality, Eq. (11.11) yields a line of `speial' ritial points in the(�k; �d) plane, as shown in Fig. 11.3.11.3 Blume-Capel modelThe previous setion indiates that, also in two-dimensional systems, speial phase transitions an our.However, the dilute q = 1 Potts model desribed by Eq. (11.9) is only a speial ase. For instane, theoupling onstants and the hemial potential in this Potts model are just the magneti �eld in the Isingmodel. In the following two setions, we shall investigate the Blume-Capel (BC) model and the dilute q = 3Potts model. 181
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Under Cardy's well-known onformal mapping [3℄, the semi-in�nite ylinder is be transformed into asemi-in�nite plane. The exponential deay of orrelations along the ylinder is ovariantly transformed intoalgebrai deay into the bulk of the semi-in�nite plane. Thus, the thermal orrelation length along theylinder reads �t = L=(2�Xt1), with the leading thermal saling dimension Xt1 = 2 � yt1 = 1=5 [20, 21℄.Aording to the least-squares riterion, we �tted the � data by the formula�(r; L) = �t + L�2Xt1 [	(r) + 	(nL� r)℄(a0 + a1Lyi + a2L�2 + � � � ) ; (11.14)with the funtion 	(r) = (er�=L � e�r�=L)�2Xt1 ; (11.15)where r is the distane to one of the open ends. A justi�ation of Eqs. (11.14) and (11.15) an be foundin Refs. [14, 34℄. The term  (nL � r) in Eq. (11.14) is due to the symmetry between the positions r andnL�r. The parameters a0, a1, and a2 are unknown onstants, and yi = �1 is the leading irrelevant thermalexponent of the triritial q = 2 universality lass [20, 21℄. For L ! 1 and r = L=2, the bulk vaanydensity �(r; L) approahes the triritial value �t = 0:4 549 506(2) [33℄. We �xed the values of yi and �t,and disarded the data for small system sizes L � 8 and for small distanes y � L=4. Then, the �t yieldsXt1 = 0:198(3), in good agreement with the theoretial value Xt1 = 1=5.Speial phase transitionsAs for the ase of the triritial q = 1 Potts model, we expet that the geometri e�et in the triritial BCmodel an be asymptotially ompensated by the enhanements of surfae parameters Ks and Ds. To testthis expetation, we used a ombination of the Wol� and Metropolis methods to simulate the BC model onopen ylinders with size L� L. The simulations were performed at bulk triritial point mentioned above,and we took the surfae parameters as �d = 0 and Hs = 0. The system sizes assumed 14 odd values in therange 9 � L � 121, and we sampled the magnetization density and the vaany density � for several valuesof �k. Further, we de�ned two dimensionless ratios asQb = hm2bi2=hm4bi and Qs = hms1ms2i2=h(ms1ms2)2i ; (11.16)where mb, ms1, and ms2 are the magnetization density on the lines y = (L + 1)=2, y = 1, and y = L,respetively. These dimensionless quantities are losely related to the Binder ratio, and they are useful inMonte Carlo analyses of ritial points, beause their asymptoti values at ritiality are universal.The absolute value of the surfae magnetization jmsj and the edge vaany density �s for system sizeL = 15 are shown in Figs. 11.6 and 11.7, respetively. These �gures illustrate that, for oupling enhane-ments �k > 0:6, the open edges are dominated by Ising spins so that spontaneous order ours on theone-dimensional edges. Further, the lean intersetion of the Qb data in Fig. 11.8 reveals a seond-orderphase transition near �k = 0:56. We �tted the data of Qb and Qs by the formulaQ(�k; L) = Q + 4Xk=1 ak(�k � �k)kLky(s)ts + b1Ly1 + b2Ly2 + b3Ly3 +b4Ly4 + (�� �k)Ly(s)ts +y1 + n(�� �k)2Ly(s)ts ; (11.17)where the terms with b1, b2, and b3 aount for �nite-size orretions. The exponent y1 = yi = �1 arises fromthe leading irrelevant thermal saling �eld [20,21℄. More generally, we expet analyti �nite-size orretionswith exponents yj = �n with integer n � 1. Thus, the exponents y2, y3, and y4 were taken as �2, �3,and �4, respetively. The term with  desribes the `mixed' e�et of the relevant and the irrelevant thermalsaling �eld, and the last term in Eq. (11.17) is due to the fat that the surfae thermal saling �eld an bea nonlinear funtion of �k. After a uto� for small system sizes L � 11, the �t of Qb yields Qb = 0:765(4),�k = 0:5660(4), and y(s)ts = 0:407(8), and the �t of Qs yields Qs = 0:566(3), �k = 0:5664(4), andy(s)ts = 0:395(7). These two �ts are onsistent with eah other, and the results for y(s)ts are equal to the exatvalue 2=5 [23, 24℄ within the estimated error margins.185
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Table 11.2: Monte Carlo data for the seond moment m2s of the surfae magnetization density at the ex-traordinary transition in the triritial BC model. The surfae parameters are Hs = 0, �d = 0,and �k = 0:805.L 9 11 13 15 17m2s :91729(1) :91560(1) :91399(1) :91262(1) :91145(1)L 19 21 23 25 29m2s :91044(1) :90960(1) :90886(1) :90821(1) :90717(1)L 33 37 45 55 65m2s :90631(1) :90562(1) :90459(1) :90367(1) :90299(1)L 85 105 145 185m2s :90206(1) :90151(1) :90076(1) :90031(1)
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11.4 Triritial 3-state Potts modelThe Hamiltonian of the dilute q = 3 Potts model in the torus geometry is desribed by Eq. (11.5) withq = 3. The bulk phase diagram of this model is analogous to that of the Blume-Capel model desribedby Eq. (11.12). At triritiality, the leading and subleading bulk thermal exponents are yt1 = 12=7 andyt2 = 4=7, respetively, and the magneti ones are yh1 = 40=21 and yh2 = 22=21 [20, 21℄. By means ofa sparse transfer-matrix tehnique, the triritial point on the square lattie has been determined [33℄ asKt = 1:649 913(5) and Dt = 3:152 173(10); the triritial vaany density is �t = 0:34 572(5).On the L� L open ylinder, the Hamiltonian of the dilute q = 3 Potts model readsHO=kBT �HP=kBT = K LXx=1 Æ�x;1;�x;L(1� Æ�x;1;0)�K�k LXx=1[Æ�x;1;�x+1;1(1� Æ�x;1;0) + Æ�x;L;�x+1;L(1� Æ�x;L;0)℄�D�d LXx=1(Æ�x;1;0 + Æ�x;L;0)�Hs1 LXk=1(Æ�x;1;1 + Æ�x;L;1) + Hs12 LXk=1(Æ�x;1;2 + Æ�x;L;2) +Hs12 LXk=1(Æ�x;1;3 + Æ�x;L;3) : (11.20)The surfae magneti �eld Hs1 serves to enhane the statistial weight of the Potts state � = 1 with respetto states � = 2 and � = 3.In analogy with the BC model, the system (11.20) has a line of bulk ritial points for K < Kt, in thesame universality lass as the `pure' q = 3 Potts model. Thus, only the ordinary phase transition ours onthe open edges, with a surfae magneti exponent y(o)hs = 1=3, as predited by Eq. (11.4). For K > Kt, a�rst-order transition an be indued by enhanements of the surfae ouplings and the hemial potential.In the present work, we onentrate on the ase that the bulk is preisely at the triritial point.11.4.1 Speial phase transitionsWe simulated the triritial q = 3 Potts model (11.20) on the L�L open ylinder by means of a ombinationof the Metropolis and Wol� methods, with the linear size in the range 7 � L � 65. The bulk parameterswere set at the aforementioned triritial point, and the surfae parameters at Hs1 = 0 and �d = 0. Theedge order parameter was de�ned as m2s = [(�1� �2)2+(�2� �3)2+(�3� �1)2℄=2, in whih �i is the densityof the edge spins in state i. Aordingly, we sampled the ratio Qs1 = hm2si2=hm4si. The Qs1 data are partlyshown in Fig. 11.18. They indiate a speial edge transition near �k = 0:7. The Qs1 data were �tted byEq. (11.17), in whih the orretion exponents were �xed at y1 = yi = �10=7 [3℄, y2 = �1, y3 = �2, andy4 = �3. We obtain Qs1 = 0:941(2), �k = 0:702(2), and y(s)ts = 0:282(5). Near this speial phase transition,i.e., �k = 0:702(2) and �d = 0, we also analyzed the edge suseptibility �s by Eq. (11.18). The �t yieldsX(s)hs = 0:133(15).11.4.2 Field-driven edge transitionsNext, we simulated the triritial q = 3 Potts model (11.20) in the presene of the surfae magneti �eldHs1; the other surfae enhanements were taken as �k = �d = 0. The system sizes were taken as 10 oddvalues in the range 7 � L � 49, and we sampled the bulk ratio Qb in Eq. (11.16). Analogous to the ase ofthe triritial BC model, edge phase transitions are introdued by the �eld Hs1. Nevertheless, the symmetrybetween the positive and the negative �eld is now absent. The Qb data were �tted by Eq. (11.17), and wefound two edge transitions at Hs1 = 0:5710(15) and �2:27(3). At these two points, the asymptoti values ofthe ratio Qb are 0:462(4) and 0:232(8), respetively; those of the renormalization exponent yfhs are 0:278(8)193
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