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Multiple Majorana edge modes in magnetic topological insulator–superconductor heterostructures
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We numerically investigate the electronic transport properties (i.e., electron tunneling and Andreev reflection)
of a topological superconductor composed of a magnetic topological insulator and superconductors. A phase
diagram is provided to distinguish various topological phases and their corresponding distinct Majorana edge
modes. When superconductors are proximity coupled with the top and bottom surfaces of a magnetic topological
insulator thin film, a quantum phase transition from topological insulator to quantum anomalous Hall effect
passes through the regime possessing both chiral and helical edge modes. The hallmark feature is that the
coefficient of electron tunneling is quantized to be 5/4 and the remaining scattering processes exhibit an
identical probability with a magnitude of 1/4 in the coexisting states with a Chern number of N = ±1. When
the superconductors are proximity coupled with a nonmagnetic topological insulator thin film, we find that
the perfectly quantized electron tunneling or crossed Andreev reflection can alternately appear via tuning the
chemical potential.
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I. INTRODUCTION

Majorana fermions, being their own antiparticles, can
be realized as quasiparticles of topological states of quan-
tum matter in condensed matter physics [1–5]. Because
of the non-Abelian statistics and the nonlocality charac-
teristic of Majorana fermions, the braiding of Majorana
fermions is considered as the basic building block for fault-
tolerant topological quantum computations [6–9]. So far,
several proposed material systems were raised to realize such
states, e.g., semiconductor-superconductor heterostructures
[10,11], magnetic-atomic chains on top of superconductors
[12,13], and topological insulators proximity coupled with
superconductors [14–16]. Due to the superconducting prox-
imity effect to the topological insulators, the corresponding
heterostructures are also named after topological supercon-
ductors (TSCs). Depending on the time-reversal symmetry of
the gapless boundary modes, topological superconductors can
be classified into two different categories.

One is the “chiral” topological superconductor, in which
the time-reversal symmetry is broken [17–20]. It possesses
topologically protected chiral Majorana edge modes that can
be analogous to the gapless edge modes of the quantum
anomalous Hall effect [21–24], which is associated with a
nonzero Chern number C. From the view of topology, the
quantum anomalous Hall effect with a Chern number of
C = ±1 is equivalent to the chiral topological superconduc-
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tor with a Chern number of N = ±2. And the N = ±1
chiral topological superconductor can be realized when the
system undergoes a topological phase transition from the
quantum anomalous Hall effect to the normal Anderson in-
sulator. The half-integer conductance plateau observed in a
recent experiment had been used to be the evidence supporting
Majorana fermions [25]. However, the subsequent theoretical
and experimental interpretations imply that the half-integer
conductance plateau is not sufficient evidence for the exis-
tence of a single chiral Majorana edge mode [26–28].

The other is the “helical” topological superconductor, in
which the time-reversal symmetry is preserved [29–34]. It is
characterized by a Z2 topological index and possesses gapless
helical Majorana edge modes, which are composed of two
chiral Majorana edge modes with opposite chiralities, there-
fore also called the Majorana Kramers pair. By comparing the
topological properties between the quantum anomalous Hall
effect and chiral topological superconductor, it is natural to
generalize the helical edge modes of the quantum spin-Hall
insulator with twofold degrees of freedom to correspond to
the helical topological superconducting edge states. Different
from the chiral topological superconductor, the helical topo-
logical superconductor has yet to be observed in experiment.

Andreev reflection (AR) is an electron/hole transport pro-
cess that occurs at the interface of a superconductor [35]. The
local Andreev reflection converts an incident electron into a
hole back to the same terminal, and a Cooper pair is created
inside the superconductor [36–38]. The crossed Andreev re-
flection (CAR), also known as non-local Andreev reflection,
is a nonlocal process describing the process of converting an
electron incoming from one terminal into an outgoing hole
to another spatially separated terminal [39–42]. Based on
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crossed Andreev reflection, a Cooper pair in the superconduc-
tor can be split into two electrons propagating at two spatially
separated terminals while keeping their spin and momentum
entangled. These spatially separated entangled electrons are
the key building blocks for solid-state Bell-inequality experi-
ments, quantum teleportation, and quantum computation. The
probability of crossed Andreev reflection is usually smaller
than that of the local Andreev reflection. Therefore, how
to increase the efficiency of Cooper-pair splitting (probabil-
ity of crossed Andreev reflection) is crucial in engineering
entangled electron states. With the discovery of topological
materials, an intensive theoretical effort has been made in
exploring the electron/hole transport properties in topologi-
cal insulator–superconductor junctions, where high-efficiency
Cooper-pair splitters were proposed to greatly enhance the
crossed Andreev reflection and suppress other scattering pro-
cesses [43,44]. However, these theoretical proposals mostly
focused on the transport properties of the chiral topological
superconducting mode, and are rarely devoted to the other
topological superconducting modes.

In this paper, we investigate the topological superconductor
with a Chern number of N = ±1 to propose a topological
state with coexisting chiral and helical Majorana edge modes.
Compared to the quantum anomalous Hall effect, the quantum
spin-Hall effect is topologically equivalent to a topological su-
perconductor with two pairs of helical Majorana edge modes.
Thus, by coupling the quantum anomalous Hall effect to the
s-wave superconductors, the topological phase transition from
the quantum anomalous Hall effect to the quantum spin-Hall
effect may undergo a region with both chiral and helical Majo-
rana edge states. In order to clearly understand the topological
phase transition, we construct a system setup as displayed in
Fig. 1 to study the electron tunneling (ET), AR, and CAR in
the topological superconductor junction, where the left/right
terminal is the quantum spin-Hall insulator, and the central
scattering region is either the quantum anomalous Hall effect
or quantum spin-Hall effect. We find that for the quantum
anomalous Hall effect there exists a region with coexisting
chiral and helical edge states, where the transport coefficients
are, respectively, TET = 5/4 and TAR = TCAR = 1/4; for the

FIG. 1. Schematic plot of a two-terminal transport setup: In the
central region, two superconductors are placed on top and bottom
of a quantum spin-Hall insulator, while the left and right terminals
are exactly extended from the quantum spin-Hall insulator. Note
that in our paper the quantum spin-Hall insulator can be tuned to
be the quantum anomalous Hall effect by introducing time-reversal
breaking ferromagnetism. Black arrows denote the edge states, red
circles indicate electrons, and upper/lower arrows represent the spin-
up/-down states.

quantum spin-Hall effect, the quantized crossed Andreev re-
flection may appear by tuning the chemical potential via
electric gating.

II. SYSTEM MODEL HAMILTONIAN

In our paper, we adopt the system of Bi2Se3 Z2 topological
insulator thin films [45–47], and the corresponding quantum
anomalous Hall insulator (or magnetic topological insulator)
can be realized by introducing the ferromagnetic Cr and V
atoms. Its low-energy effective Hamiltonian of the surface
states near the Dirac point of the magnetic topological insu-
lator thin film can be expressed as follows on the basis of
ψk = (ct↑, ct↓, cb↑, cb↓)T :

H0(k) = υF(kyσxτz − kxσyτz ) + m(k)τx + λσz, (1)

where t/b represents the top/bottom surface state; ↑/↓ repre-
sents the spin-up/-down state; σx,y,z and τx,y,z are, respectively,
Pauli matrices in spin space and layers; and υF is the Fermi
velocity. The first term corresponds to the kinetic energy. The
second term couples the top and the bottom surface states with
m(k) = m0 + m1(k2

x + k2
y ), where m0 and m1 are, respectively,

the hybridization gap and the parabolic band component. The
last term describes the exchange field along the z axis to break
the time-reversal symmetry.

When the s-wave superconductors are proximately coupled
with the topological insulator, a topological superconductor is
produced and pairing potentials are induced. The correspond-
ing Bogoliubov–de Gennes (BdG) Hamiltonian can be written
as [18,33,48]

HBdG =
∑

k

�
†
k HBdG�k/2, (2)

where �k = [(ct
k↑, ct

k↓, cb
k↑, cb

k↑), (ct†
−k↑, ct†

−k↓, cb†
−k↑, cb†

−k↑)]T

and

HBdG =
(

H0(k) − μs �k

�
†
k −H∗

0 (−k) + μs

)
, (3)

�k =
(

i�1σy 0
0 i�2σy

)
, (4)

where μs is the potential energy, and �1/2 are, respectively,
the pairing gap functions on the top/bottom surface, respec-
tively. To preserve the time-reversal symmetry, we set μs = 0
and �1 = −�2 = �, and the BdG Hamiltonian can be rewrit-
ten in a block-diagonal form:

HBdG =
(

H+(k) 0
0 H−(k)

)
, (5)

where H±(k) = vF (kyσx ∓ kxσy) + [m(k) ± λ]σzςz ∓ �σyςy

with ςx,y,z being Pauli matrices in the Nambu space. The
BdG Hamiltonian can therefore be decoupled into two parts
with opposite chiralities, and the new basis in Eq. (5) be-
comes (ct

k↑ + cb
k↑, ct

k↓ − cb
k↓, ct†

−k↑ + cb†
−k↑, ct†

−k↓ − cb†
−k↓)T /

√
2

for H+(k) and (ct
k↓ + cb

k↓, ct
k↑ − cb

k↑, ct†
−k↓ + cb†

−k↓, ct†
−k↑ −

cb†
−k↑)T /

√
2 for H−(k).

Note that the number of edge modes of the topological
superconductor is determined by the Chern numbers N+ and
N− of the block-diagonalized Hamiltonians rather than the
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FIG. 2. (a) Phase diagram of the magnetic topological insulator thin films in the plane of exchange field λ and mass m0. (b) Phase diagram
of the proximity coupled magnetic topological insulator thin films in the plane of exchange field λ and mass m0 at fixed �1 = −�2 = � and
μs = 0. The phase boundaries intersect at four points: (0,�), (0,−�), (�, 0), and (−�, 0) in the (λ, m0 ) plane. (c–h) Corresponding band
structures (or energy spectra) of the I-VI regions as displayed in panel (b). The parameters are set to be m0 = 0.5 in panels (c), (d), and (g) and
m0 = −0.5 in panels (e), (f), and (h); � = 1 in panels (d) and (f)–(h); � = 0.3 in panels (c) and (e); λ = 0 in panels (c), (e), and (f); λ = 1 in
panels (g) and (h); and λ = 2 in panel (d). The red and blue lines represent the direction of propagation of Majorana fermions at the system
boundary, respectively.

total Chern number of N = N+ + N−, where N+/− is the
Chern number of H+/−(k). For example, the topological state
with a total Chern number of N = 1 can be composed of
N+/− = 0/1 or −1/ + 2. For the former case, the topologi-
cal superconductor possesses a single chiral Majorana edge
mode, while for the latter case the Chern number N− = 2
from H−(k) corresponds to a pair of edge modes with same
chirality, while the Chern number N+ = −1 from H+(k) cor-
responds to a single edge mode with the opposite chirality. For
concise and accurate description, the edge modes with Chern
numbers N+/− = −1/ + 2 are named after the coexistence of
chiral and helical Majorana edge modes.

When an electron comes from the left terminal, the elec-
tronic transport properties, i.e., the direct electron-tunneling
coefficient TET, the Andreev reflection coefficient TAR, and the
crossed Andreev reflection coefficient TCAR, can be numeri-
cally evaluated by [49]

TET = Tr
[

R

eeGr
ee


L
eeGa

ee

]
,

TAR = Tr
[

L

eeGr
eh


L
hhGa

he

]
,

TCAR = Tr
[

R

eeGr
eh


L
hhGa

he

]
,

where e/h represent the electron and hole, respectively.

L/R(E ) = i[�r

L/R − �a
L/R] are the linewidth functions cou-

pling the left/right terminals with the central scattering re-
gion. Gr (E ) = [E − H − �r

L − �r
R]−1 is the retarded Green’s

function and H is the BdG Hamiltonian in the tight-binding
representation.

III. ENERGY SPECTRA AND PHASE DIAGRAMS

Let us first study the phase diagram of the magnetic
topological system described in Eq. (1). Since the topo-
logical phase transition usually occurs when the bulk band
gap closes and reopens, one can determine the phase
boundaries by solving the band-crossing condition E (k) =
±

√
υ2

Fk2 ± [m(k) ± λ]2 = 0. As displayed in Fig. 2(a), the
phase diagram in the (λ, m0) plane can be divided into
four topologically different regimes by two-phase boundaries
m0 = ±λ. For the case of |m0| < |λ|, regions II and II’ are,
respectively, the quantum anomalous Hall phases with Chern
numbers of C = ±1. For the case of |m0| > |λ|, the Chern
number is C = 0, with region I being a trivial insulator and
region III being a quantum spin-Hall insulator [50].
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Next, we consider the hybrid system with the s-wave su-
perconductor proximity coupled with a magnetic topological
insulator. At fixed μs = 0, m1 = 1, and �1 = −�2 = �, the
energy dispersion is E (k) = ±

√
υ2

Fk2 + {λ ± [m(k) ± �]}2 ,
and the band gap closes at the 
 point for � ± (m0 ± λ) = 0.
Figure 2(b) displays the phase diagram of the topological su-
perconducting system. The four-phase boundaries separate the
(λ, m0) plane into nine gapped regions, including six different
topological phases. The intersections of all phase boundaries,
falling into the coordinate axis, yield the multicritical points
that are closely related to �. To confirm the phase dia-
gram from the bulk-edge correspondence, we investigate the
band spectra of the superconducting nanoribbon with periodic
boundary condition along the x direction and open boundary
condition along the y direction. The topological phases with
the corresponding band spectra are, respectively, character-
ized by the following.

(i) For m0 > |λ| + � as shown in region I, it is the normal
superconducting phase with a Chern number of N = 0. This
superconducting phase is adiabatically connected with the
trivial insulator that is shown in region I of Fig. 2(a). In the
corresponding band structure displayed in Fig. 2(c), a finite
band gap opens without gapless edge states.

(ii) For |m0| < |λ| − �, when the superconducting prox-
imity effect is infinitesimal, the weak pairing strength drives
the quantum anomalous Hall phase with the Chern number of
C = ±1 [corresponding to the II (II’) region in Fig. 2(a)] into
the superconducting phase with a Chern number of N = ±2,
as displayed in the II (II’) region of Fig. 2(b). From the
corresponding band structure shown in Fig. 2(d), one can see
that two pairs of Majorana edge modes with the same chiral-
ity emerge at both sides of the topological superconducting
ribbon.

(iii) For m0 < −|λ| − � as displayed in region III, it is a
N = 0 superconducting phase, that is adiabatically connected
with the quantum spin-Hall phase [corresponding to region III
in Fig. 2(a)]. As discussed above, a quantum anomalous Hall
state is topologically equivalent to two pairs of Majorana edge
modes with the same chirality. Therefore, in the presence of
superconducting proximity effect, the quantum spin-Hall state
can be naturally considered as a superconductor with two pairs
of helical Majorana edge states. Due to even pairs of helical
Majorana edge modes, according to the classification of Z2

topological invariants, the class of DIII superconductor with
Z2 index ν = 0 is topologically trivial. The band structures of
the two pairs of helical states can be observed in Fig. 2(e).

(iv) For |m0| < � − |λ| as displayed in region IV, due to
the s-wave superconducting proximity coupling, the transition
from the normal insulator to the quantum spin-Hall insulator
should pass through a helical topological superconductor with
the Chern number N = 0. In the special case of λ = 0, two
Majorana edge modes with opposite chiralities localizing at
one edge of the topological superconductor form a Kramers
pair, which is protected by the time-reversal symmetry. In the
case of λ �= 0 in region IV, although weak magnetic doping
breaks the time-reversal symmetry, the system is still adiabat-
ically connected with the helical topological superconductor
that is protected by time-reversal symmetry. It is known that
the phase transition from the time-reversal-invariant phase

to a trivial superconducting phase cannot occur without the
band gap closing and reopening [51]. According to the
classification of Z2 topological invariants, the class of DIII su-
perconductor with Z2 index ν = 1 is topologically nontrivial.
The band structure of the helical topological superconductor
is displayed in Fig. 2(f). One can see that the top and bottom
bands are separated by a gap and two pairs of counterprop-
agating edge modes with opposite chirality emerge at both
sides of the ribbon.

(v) For ||λ| − �| < m0 < |λ| + � shown in region V (V’),
a N = ±1 chiral topological superconducting phase emerges
during the topological phase transition from a quantum
anomalous Hall insulator to a trivial insulator. The corre-
sponding band structure is shown in Fig. 2(g). One can find
that a pair of chiral gapless edge state modes traverses across
the 
 point, which holds a chiral Majorana mode.

(vi) For −|λ| − � < m0 < −||λ| − �| shown in region VI
(VI’), there exist chiral and helical Majorana edge states with
Chern number N = ±1. Physically, the quantum spin-Hall
insulator is topologically equivalent to the superconductor
with two pairs of helical Majorana edge states, and the chi-
ral topological superconductor with Chern number N = 2
is topologically equivalent to the quantum anomalous Hall
insulator. When considering the topological phase transition
between quantum spin-Hall insulator and quantum anomalous
Hall insulator, the superconducting proximity effect annihi-
lates one chiral edge state and gives rise to the coexistence
of chiral and helical Majorana edge states. The band structure
of such coexisting states is displayed in Fig. 2(h). One can
see that three pairs of gapless edge states traverse across
the 
 point, propagating along both sides of the topological
superconductor.

IV. ELECTRONIC TRANSPORT
AND NUMERICAL ANALYSIS

To identify the various types of Majorana edge modes in
our topological superconducting system, we investigate the
quantum tunneling and Andreev reflection in the topological
superconductor composed of quantum spin-Hall insulator and
superconductor. The central region of our system setup is
a quantum spin-Hall insulator proximity coupled with two
s-wave superconductors with opposite signs of the pairing
functions at the top and bottom surfaces, and the left/right
terminals are the exact extension of the quantum spin-Hall
insulator region, as displayed in Fig. 1. In order to clearly
illustrate the electron/hole transport processes, the edge state
configurations of the topological superconductor are plotted
in Fig. 3. Due to the topological equivalence, the helical edge
modes of the quantum spin-Hall insulator are split into four
Majorana edge modes at the left and right terminals. Half of
the Majorana edge modes with the same chirality from the
upper block of Eq. (5) propagate along one direction, while
the remaining Majorana edge states from the lower block of
Eq. (5) propagate along the opposite direction. As discussed
in the previous section, the variation of the exchange field λ or
the hybridization gap m0 can result in a series of topological
phase transitions, which can be uniquely reflected from the
edge state transport features.
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FIG. 3. Schematic plot of edge mode transport in the setup shown in Fig. 1. The central TSC region is set to be (a) the N = 0 normal
superconductor, (b) the N = 1 topological superconducting edge mode, (c) N = 2 topological superconducting edge modes, (d) N = 0 helical
topological superconducting edge modes, (e) coexisting chiral and helical edge modes, and (f) N = 0 two-pair helical edge modes. Blue and
red arrows indicate, respectively, Majorana edge modes with opposite chirality.

In Fig. 4(a), at fixed � = 0.3 and m0 = 0.5, the Chern
number of the topological superconductor is N = ±2 for
|λ| > 0.8, N = ±1 for 0.2 < |λ| < 0.8, and N = 0 for |λ| <

0.2. When N = ±2 is chosen in the central region of our
considered system, two chiral Majorana edge modes propa-
gate along the system boundaries; i.e., in Fig. 3(c) one pair
of Majorana edge modes propagates along the boundaries
of the central region with the same chirality, while other
edge modes are scattered back at the interfaces between the
central region and terminals. Due to the fact that two Ma-
jorana edge modes with the same chirality can be combined
into one quantum anomalous Hall state, such configuration is
topologically equivalent to the quantum spin-Hall insulator–
quantum anomalous Hall insulator junction. Therefore, the
electron-tunneling coefficient is TET = 1, and other transport
coefficients are zero.

When the exchange field decreases, a topological phase
transition occurs, leading to N = ±1 with one Majorana edge
state being destroyed. As displayed in Fig. 3(b), one can see
that two edge modes, the propagating direction of which is
opposite to the chiral edge mode in the central region, cannot
transit through the central scattering region, while the other
two edge modes, the propagating direction of which is the
same as that of the chiral edge modes in the central region,

are split into two chiral Majorana modes with one branch of
chiral Majorana edge modes being perfectly transmitted but
the other branch being perfectly reflected. Since the single
chiral Majorana edge mode can be considered as half of the
identical copies of the quantum anomalous Hall edge mode
and contributes equally to the electron transport and Andreev
scattering, one can get TET = TLAR = TCAR = 1/4 [17,18].

When the exchange field further decreases, the central re-
gion is driven into the N = 0 normal superconducting phase.
Figure 3(a) displays that all the edge modes are completely
reflected at the interface between the central region and the left
terminal. As a result, all the electron tunneling TET, Andreev
reflection TAR, and crossed Andreev reflection are vanishing.

In addition to the exchange field, the hybridization gap
(m0) is also crucial to control the topological phase transi-
tions. In the case of m0 = −0.5, although the Chern number
of topological superconductors in the central scattering re-
gion has not been changed, the corresponding number of
edge states and the transmission coefficients are significantly
different from the case of m0 = 0.5. Figure 4(b) plots the
transmission coefficients as functions of the exchange field λ

at fixed � = 0.3 and m0 = −0.5. When |λ| < 0.2, two pairs
of helical Majorana edge states are present in the topologi-
cal superconducting region, as displayed in Fig. 3(f). Since
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FIG. 4. Transmission coefficients of electron tunneling TET,
Andreev reflection TAR, and crossed Andreev reflection TCAR vs
exchange field λ in the topological superconductor with the energy
E = 0 of the incident electron. �1 = −�2 = 0.3 for panels (a) and
(b); �1 = −�2 = 1 for panels (c) and (d). m0 = 0.5 for panels
(a) and (c); m0 = −0.5 for panels (b) and (d). The length of the
central TSC is L = 30, and the ribbon width is N = 120.

these edge modes are topologically equivalent to the quantum
spin-Hall edge modes, all the incoming edge modes from
the terminals are perfectly transmitted, giving rise to TET = 2
and TAR = TCAR = 0. To be specific, as the exchange field
is within the range of 0.2 < |λ| < 0.8, the superconducting
region experiences a topological phase transition with one
Majorana edge state emerging into the bulk, consequently
leaving three Majorana edge states with odd Chern number
N = ±1. When such edge states exist in the central topolog-
ical superconducting region, one can see that two Majorana
edge modes with the same propagation direction combined
with another Majorana edge mode propagating along the op-
posite direction form coexisting edge states appearing at the
interface between the topological superconductor and vac-
uum, as displayed in Fig. 3(e). The two edge channels with
the same chirality pass through the central scattering region
and contribute to the tunneling coefficient with a value of 1,
while another Majorana edge current in the opposite direc-
tion also passes through the central scattering region, leading
to TET = TAR = TCAR = 1/4. Therefore, the total electronic
transmission coefficient TET is 5/4, and the AR coefficient TAR

and the CAR coefficient TCAR are equal to 1/4.
Figures 4(c) and 4(d) plot the dependence of transmission

coefficients on the exchange field λ for different hybridization
gaps m0 = 0.5 and −0.5, at the fixed pairing gap � = 1. One
can see that the Chern number of the topological superconduc-
tor is N = ±2 for |λ| > 1.5, N = ±1 for 0.5 < |λ| < 1.5,
and N = 0 for |λ| < 0.5. For |λ| < 0.5, the N = 0 topologi-
cal superconducting phase exhibits counterpropagating helical
Majorana edge states. This helical topological superconductor
is analogous to the quantum spin-Hall insulator. As shown
in Fig. 3(d), one can find that one-half of the Majorana
edge states with opposite chiralities in the quantum spin-Hall
terminal region goes through the central scattering region, and
the other half of the edge modes are perfectly reflected. Since

FIG. 5. (a) Phase diagram of the superconducting system for λ =
0 in the plane of the chemical potential μs and the pairing gap �.
(b–d) Transmission coefficients of electron tunneling TET, Andreev
reflection TAR, and crossed Andreev reflection TCAR as a function of
chemical potential μs. m0 = 0.5 and � = 0.7 for panel (b), m0 = 0.5
and � = 0.2 for panel (c), and m0 = −0.5 and � = 0.2 for panel
(d). The length of the central TSC is L = 20, and the ribbon width is
N = 120.

the scattering coefficient of the helical topological supercon-
ductor is double that of the chiral topological superconductor
with Chern number N = ±1, we then have TET = TAR =
TCAR = 1/2.

In Refs. [52,53], it was shown that a quantized crossed
Andreev reflection of TAR = 1 can occur in a quantum anoma-
lous Hall insulator proximity coupled with a superconductor.
Since the helically propagating edge states of the quantum
spin-Hall insulator can be regarded as two copies of the quan-
tum anomalous Hall effect with opposite chiralities, one can
easily predict that the crossed Andreev reflection coefficient
could be doubled in the system with the quantum spin-Hall
insulator proximity coupled with superconductors. To further
confirm that the crossed Andreev reflection coefficient is ex-
actly equal to 2, λ = 0 and μs �= 0 are chosen in Eq. (3).
The time-reversal-invariant topological superconductor can be
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classified by Z2 invariant ν. As shown in Fig. 5(a), one can see
that two quantum phases in the (μs,�) plane are separated
by the boundary of �2 + μ2

s = m2
0. In the region of |m0| >√

�2 + μ2
s , one can get ν = 1, indicating a helical Majorana

edge state. In the region of |m0| <
√

�2 + μ2
s with m0 > 0,

one can get ν = 0, suggesting a trivial superconducting phase.
Furthermore, one can obtain a trivial superconducting phase
with two pairs of helical edge states in the region of |m0| <√

�2 + μ2
s with m0 < 0. As shown in Figs. 5(b)–5(d), TET,

TAR, and TCAR are dependent on the potential energy μs in
the quantum spin-Hall insulator–topological superconductor
junction. In a narrower topological superconducting region,
Majorana fermions can also tunnel between the left and right
interfaces of the topological superconductor in addition to the
normal propagation along the boundaries of the topological
superconductor. To be specific, by increasing μs, the phase
of the tunneling Majorana fermions can be regulated between
zero and π . As a result, the boundary-propagating Majorana
fermions and the tunneling Majorana fermions combine to-
gether to form electrons or holes, which can emit from the
device terminals. Because of the helical nature of the Majo-
rana edge states in our system, the perfect electron tunneling
and crossed Andreev reflection can alternately occur with
TET = 2 and TCAR = 2.

V. CONCLUSIONS

We numerically investigated topological phases of the
topological superconductor realized by a magnetic topolog-
ical insulator thin film proximity coupled with two s-wave
superconductors on the top and bottom surfaces with opposite

pairing gap functions. By adjusting the system parameters, the
topological superconductor exhibits rich topological phases
which correspond to various Majorana edge modes. In par-
ticular, a topological phase with both chiral and helical edge
modes can be achieved through a topological phase transition
between quantum spin-Hall effect and quantum anomalous
Hall effect. We further propose several transport experiments
to detect multiple Majorana edge modes. One unique transport
signature of the coexisting states with a Chern number of
N = ±1 is that the coefficient of electron tunneling is quan-
tized to be 5/4 and the remaining scattering probabilities are
quantized into 1/4. When the superconductors are proximity
coupled with a nonmagnetic topological insulator thin film, by
adjusting the chemical potential, the perfectly quantized elec-
tron tunneling or crossed Andreev reflection can alternately
appear.
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