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We report a theoretical investigation on conductance fluctuation of mesoscopic systems. Extensive numerical
simulations on quasi-one-dimensional, two-dimensional, and quantum dot systems with different symmetries
[circular orthogonal ensemble, circular unitary ensemble (CUE), and circular symplectic ensemble (CSE)]
indicate that the conductance fluctuation can reach a universal value in the crossover regime for systems with
CUE and CSE symmetries. The conductance distribution is found to be a universal function from diffusive to
localized regimes that depends only on the average conductance, dimensionality, and symmetry of the system.
The numerical solution of DMPK equation agrees with our result in quasi-one dimension. Our numerical
results in two dimensions suggest that this universal conductance fluctuation is related to the metal-insulator
transition. In the localized regime with average conductance (G)<0.3, the conductance distribution seems to
be superuniversal independent of dimensionality and symmetry.
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I. INTRODUCTION

One of the most important features in mesoscopic system
is that the conductance in the diffusive regime exhibits uni-
versal features with a universal conductance fluctuation
(UCF) that depends only on the dimensionality and the sym-
metry of the system.! There exist three ensembles or symme-
tries according to the random matrix theory (RMT):? (1) cir-
cular orthogonal ensemble (COE) (characterized by
symmetry index B=1) when the time-reversal and spin-
rotation symmetries are present, (2) circular unitary en-
semble (CUE) (B8=2) if time-reversal symmetry is broken,
and (3) circular symplectic ensemble (CSE) (B8=4) if the
spin-rotation symmetry is broken while time-reversal sym-
metry is maintained. In the diffusive regime, the UCF is
given by rms(G)=c,/Be*/ h, where c;=0.73,0.86,0.70 for
quasi-one dimension (1D), two dimensions (2D), and quan-
tum dot (QD) systems and 8=1,2,4.1? Although the RMT
can apply to both diffusive and localized regimes, so far the
universal conductance fluctuation has been addressed and es-
tablished only in the diffusive regime. When the system is
away from the diffusive regime, some universal behaviors
have been observed. For instance, the conductance distribu-
tion of quasi-1D systems (8=1) with surface roughness was
found to be universal in the crossover regime, independent of
details of the system.? For quasi-1D systems with 8=1,2,
the conductance distribution obtained from tight-binding
model agrees with the numerical solution of DMPK
equation.* In high dimensions, conductance distribution at
the mobility edge of metal-insulator transition was also
shown numerically to be universal for 2D systems with
B=2,4 and a 3D system with 8=1.3 In the localized regime,
the conductance distribution of 3D systems® is qualitatively
different from that of quasi-1D systems where the conduc-
tance distributions obey log-normal distribution.” It would be
interesting to further explore the universal behaviors of these
systems and ask the following questions: Is there any univer-
sal behaviors away from mobility edge? Is it possible to have
a UCF beyond the diffusive regime? If there is, what is the
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nature of the UCF? It is the purpose of this work to investi-
gate these issues.

To do this, we have carried out extensive numerical cal-
culations for conductance fluctuations rms(G) in quasi-1D,
2D, and QD mesoscopic systems for different symmetries
B=1,2,4. Our results can be summarized as follows. (1) We
confirmed that in the diffusive regime, the value of UCF is
given by rms(G)=c,/\Be*/h, where ¢,=0.73,0.86,0.70 for
quasi-1D, 2D, and quantum dot systems. The conductance
distribution in this regime was found to be Gaussian as ex-
pected. (2) From diffusive to localized regimes, the conduc-
tance distribution was found to be a universal function that
depends only on the average conductance for quasi-1D, 2D,
and QD mesoscopic systems and for B=1,2,4. (3) We found
that there exists a second UCF in the crossover regime for
B=2.,4 but not for B=1. Our results show that the UCF
depends weakly on the symmetries of the system and as-
sumes the following value: rms(G)=c,e?/h. Here, for B=2,
we found ¢,;=0.56*0.01,0.68 =0.01,0.58 £0.01 for quasi-
1D, 2D, and QD systems, respectively, while for S=4, we
have ¢,=0.55*0.01,0.66=0.02,0.56*0.01. The conduc-
tance distribution in this regime was found to be one-sided
log-normal in agreement with previous results.” (4) For
quasi-1D systems, the UCF occurs when the localization
length ¢ is approximately equal to the system size L, i.e.,
é~L for B=2,4. For 2D systems, we found that the
occurrence of UCF is related to the metal-insulator transi-
tion. (5) In the localized regime with (G)<0.3, the conduc-
tance distribution does not seem to depend on dimensionality
and symmetry. (6) For quasi-1D systems, the numerical so-
lution of DMPK equation® agrees with our results.

II. NUMERICAL RESULTS

A. Theoretical method

In the numerical calculations, we used the same tight-
binding Hamiltonian as that of Ref. 9,
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FIG. 1. (Color online) [(a)—(c)] Average conductance and [(d)-
(f)] its fluctuation vs disorder strength W for different symmetry

index B in quasi-1D systems. Insets: localization length vs W for
B=2,4.
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where ¢! s the creation operator for an electron with spin

o on site (n,m), €,,,=4t is the on-site energy, t=%>/2ua’ is
the hopping energy, and ¢,,=a,,/2a is the effective Rashba
spin-orbit coupling. Here, the magnetic flux ¢=7%w./2t and
w.=eB/uc is the cyclotron frequency. We choose
A=(-By,0,0) so that the system has translational symmetry
along x direction (from lead 1 to lead 3). Static Anderson-
type disorder is added to the on-site energy with a uniform
distribution in the interval [-W/2,W/2], where W character-
izes the strength of the disorder. The conductance G is cal-
culated from the Landauer-Buttiker formula G=(2¢%/h)T,
where the transmission coefficient 7 1is given by
T=Tr(I'yG'T';G*). Here, G" are the retarded and advanced
Green’s functions of central disordered region of the device
which we evaluate numerically. The quantities I';, are the
line width functions describing coupling of the left or right
leads to the scattering region. The conductance fluctuation is
defined as rms(G) =\{G?)—(G)?, where () denotes aver-
aging over an ensemble of samples with different disorder
configurations of the same strength W. In the following, the
average conductance and its fluctuation are measured in unit
of e?/h; the magnetic field is measured using magnetic flux
¢ and ¢ is used as the unit of energy.

B. Conductance fluctuation in quasi-one dimension

We first examine average conductances (G) and their fluc-
tuations rms(G) vs disorder strength W in quasi-1D systems
with different symmetry index B (see Fig. 1). In our numeri-
cal simulation, the size of quasi-1D systems is chosen to be
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402000 for B=1,2 [Figs. 1(a) and 1(b)] and 40 X 800 for
B=4 [Fig. 1(c)]. Each point in Fig. 1 is obtained by averag-
ing 9000 configurations for =1 and 15 000 configurations
for B=2,4. In Fig. 1, data with different parameters are
shown. For instance, with 8=2, (G) and rms(G) vs W are
plotted for different Fermi energies with fixed ¢»=0.0628 and
different magnetic flux with fixed Fermi energy £=3.8. From
Fig. 1, we see that in the diffusive regime where (G)>1,
there is a plateau region for rms(G) with the plateau value
approximately equal to the known UCF values rms(G)
:0.73/\f',8:0.73,0.52,0.365 (marked by solid lines). This
suggests that one way to identify UCF is to locate the plateau
region in the plot of rms(G) vs disorder strength and the
plateau value should correspond to UCF. This method has
been used to identify universal spin-Hall conductance
fluctuation'? that was later confirmed by RMT.!! Importantly,
there exists a second plateau region for S=2,4 but not for
B=1. The plateau value approximately equals to
rms(G)=0.56+0.01 for =2 and rms(G)=0.55=+0.01 for
B=4. In this regime, we found that (G)=1 which clearly
corresponds to the crossover regime. To confirm that the first
and second plateaus are indeed in the diffusive and crossover
regimes, respectively, we have calculated the localization
length £ of the quasi-1D system (insets of Fig. 1). It is clear
that near the first plateau where W~0.4 for B=2 and
W~1 for B=4, we have £> L with L the length of quasi-1D
system while near the second plateau, we have &~L
(see insets of Fig. 1).

According to the UCF in the diffusive regime, it is tempt-
ing to conclude that this second plateau should correspond to
a UCF. However, in making such a claim, one has to answer
following questions: (1) is the plateau behavior universal?
(2) if it is, whether can it be observed in a wide range of
parameters? (3) how is our result compared to the theoretical
predictions whenever available? (4) does such a universal
behavior exists in high dimensions? In the following, we
provide evidences that the plateau indeed corresponds to a
UCE.

To answer the first question, we plot rms(G) vs (G) in
Fig. 2(a) by eliminating W. The fact that all curves shown in
Fig. 1 with different parameters [Fermi energy E, magnetic
flux ¢, and spin orbit interaction (SOI) strength ¢,,] collapse
into a single curve for each B strongly indicates that rms(G)
vs (G) is universal. To further demonstrate this universal
behavior, we have calculated the conductance fluctuation for
a quasi-1D system with both magnetic flux and Rashba SOI.
Although the Hamiltonian of this system is still unitary, both
time-reversal and spin rotation symmetries are broken. Ac-
cording to the diagrammatic perturbation theory,'> the UCF
is reduced by a factor of 2 when SOI is turned on. This is
true with or without the magnetic field (8=1 or 2). From
RMT point of view, both systems (B #0, t,,=0) and (B#0,
t,, #0) are unitary ensembles and obey the same statistics.
The fact that energy spectrum for (B #0, t,,=0) is doubly
degenerate accounts for the factor of 2 reduction for the sys-
tem (B#0, t,,# 0). In Fig. 2(a), we have plotted rms(G) vs
(G) for the system with (B# 0, t,,# 0). Once again, we see
that all data from different parameters collapse into a single
curve. If we multiply this curve by a factor of 2, it collapses
with the curve of B=2 [see inset of Fig. 2(a)]. From
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FIG. 2. (Color online) Conductance fluctuation vs average con-
ductance for [(a) and (b)] quasi-1D systems, (c) QD systems, and
(d) 2D systems.

Fig. 2(a), we see that in the diffusive regime with (G)>1,
the long plateau for each B corresponds to the known UCF
(marked by solid lines). For B=1, there is only one plateau.
For B=2,4, however, a second plateau region is in the neigh-
borhood of (G)~1. For =2, rms(G) is approximately a
constant hence universal in the region (G)=(0.6,1.4) while
for B=4, this region is narrower with (G)=(0.7,0.9). Look-
ing at Fig. 2(a), it seems that the second plateau region is
narrower than the first one. But if we look at rms(G) vs W,
where W can be controlled experimentally, the crossover re-
gion is enlarged since in the crossover regime (G) is not very
sensitive to W while in the diffusive regime it is the opposite.
Indeed, in Fig. 1(f), we do see that the ranges of the first and
second plateau regions are comparable. If we fix W and plot

(G) and rms(G) vs the length of the system (s=L/[), the
crossover regime is enlarged further. These results are shown
in Figs. 3(a) and 3(c) where the symbols represent our nu-
merical result and solid lines correspond to exact solution of
DMPK equation (to be discussed below). We see that the

FIG. 3. (Color online) [(a) and (c)] Average conductance and its
fluctuation vs s for quasi-1D systems and [(b) and (d)] compared to
results of DMPK equation for different N=4,6,...,18. Arrow
points the direction of increasing N.
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FIG. 4. (Color online) Average conductance and its fluctuation
vs W for QD systems with 8=1,2,4.

window of the second plateau is much larger than the first
one.

Since the statistics of transmission eigenchannels of
quasi-1D systems can be described by DMPK equation, we
have numerically solved it'* for 8=2,4 and compared our
numerical results of tight-binding model to that of DMPK.
Figures 3(b) and 3(d) show the numerical solution of DMPK
equation for B=2,4 with different N=4,6,...,18, where N

is the number of transmission channels. Here, s=L/[, where

L is the length of quasi-1D systems and [ is the average
mean-free path.>!* Figure 3 clearly shows that in the diffu-
sive regime where 1 <<s<<N, the first plateau corresponds to
the usual UCF and there exists a much wider second plateau
in the crossover regime where s and N are comparable to
plateau value equal to our identified UCF. Figures 3(a) and
3(c) show the comparison between the results of DMPK and
that of quasi-1D tight-binding model. The rms(G) vs (G) of
DMPK equation is plotted in Fig. 2(b) where selected data
from Fig. 2(a) are also plotted for comparison. The agree-
ment between numerical and theoretical results is clearly
seen.

C. Conductance fluctuation in two dimensions

Now we examine the conductance fluctuation for QD sys-
tems. In the numerical calculation, the size of QD is L XL
with L=100 and the width of the lead Ly=10 for 8=2,4,
while for B=1 we used L=150. Figure 4 depicts (G) and
rms(G) vs W for B=1,2,4. Each point in Fig. 4 was ob-
tained by averaging 9000 configurations for =1 and 20 000
configurations for 8=2,4. Similar to quasi-1D systems, we
see only one plateau region in the diffusive regime for
B=1 with plateau value close to the known UCF value
rms(G)=0.70. In addition to the first plateau in the diffusive
regime, there exists a second plateau for 8=2,4 which we
identify to be the regime for UCF. The UCF is again in the
crossover regime where (G)~1 with the value UCF(B8=2)
=0.58=0.01 and UCF(B8=4)=0.56*+0.01. In Fig. 2(c), we
plot rms(G) vs {(G). It shows that all curves for each 8 col-
lapse into a single curve showing universal behaviors. Fig-
ures 4(e) and 4(f) show that the universal regime can be quite
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FIG. 5. (Color online) Localization length, average conduc-
tance, and conductance fluctuation of 2D symplectic systems for
different L with E=2.3 and t,,=0.4. (a) &/L; vs W. (b) rms(G) vs
(G) for different L=60,70,...,120. (c) rms(G) and {(G) vs W.

large. Finally, we have also calculated the conductance fluc-
tuation for 2D systems and similar behaviors were found [see
Fig. 2(d)]."> In particular, the values of UCF are found to be
UCF(B=2)=0.68 +0.02 and UCF(B8=4)=0.66*0.01.

Now we provide further evidence of the universal behav-
ior of UCF. In 2D systems, there can be a metal-insulator
transition (MIT) for 8=2,4 but not for 8=1. This somehow
coincides with our findings that there is a UCF regime for
B=2,4 but not for B=1. To explore this correspondence fur-
ther, we have calculated the localization length of the 2D
system using the transfer-matrix approach.'® Here we calcu-
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late the localization length & for quasi-1D systems with fixed
length 1 000 000 and different widths L, [see Fig. 5(a)]. Fig-
ure 5(a) depicts the localization length &/L, vs disorder
strength for B=4. The intersection of different curves gives
an estimate of the critical disorder strength of MIT of the 2D
system.!” Figure 5(a) shows that for an infinite 2D system,
there is a MIT around W_.=6.1. For a mesoscopic 2D system,
the critical region becomes a crossover region around the
same W, and it is in this region where the UCF is found. To
see how our UCF evolves with increasing of system size L,
we have calculated rms(G) vs W for finite 2D systems with
different sizes L=50+10n, where n=1,2,...,7. As shown in
Fig. 5(c), for a fixed W that is beyond the crossover regime,
e.g., W=7, the fluctuation decreases as L increases so that
rms(G) —0 at L— 0. Importantly, the value of the second
plateau (the UCF) does not change with L. In addition, both
(G) and rms(G) converge at W,=6.1 for different L. This
means that when L goes to infinity, we should have
rms(G)=cg in the vicinity of critical region where cg is the
UCF. This again suggests that the UCF is driven by MIT and
is an universal quantity. Finally rms(G) vs (G) is plotted in
Fig. 5(b) for different L which shows the universal behavior
that is also independent of L. Similar behaviors were also
observed for 2D systems with §=2.'8

D. Universal conductance distribution

We have demonstrated in Fig. 2 that the conductance fluc-
tuation vs average conductance is a universal function from
diffusive to localized regime. In the following, we will show
that the conductance distribution P(G) is also a universal
function from diffusive to localized regime that depends only
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FIG. 6. (Color online) The conductance distribution P(G) vs G at fixed (G)=0.5,0.8,2.0 for 2D systems with B=1,2,4. (a)—(c)
correspond to (G)=0.5 and B=1,2,4. (d)-(f) correspond to (G)=0.8 and B=1,2,4. (g)—(i) correspond to (G)=2.0 and B=1,2,4.
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FIG. 7. (Color online) The conductance fluctuation rms(G), its third and fourth moments y; and vy, vs (G) for [(a)—(c)] QD systems panel
and (d)—(f) quasi-1D systems panel as well as (g)—(i) 2D systems panel with 8=1,2,4. In each panel, different symmetries with=1,2,4 are
denoted by symbols with red, blue, and green colors, respectively. Different symbols such as square, circle, star, etc. are used to represent

different parameters.

on the average conductance (G). To do this, we have plotted
P(G) vs G at fixed (G)=0.2,0.5,0.8,2.0 for 2D systems with
B=1,2,4 using different parameters (see Fig. 6). It can be
seen that in each panel, conductance distributions for differ-
ent system parameters collapse into a single curve. For
(G)=0.5, conductance distributions in panels (a)—(c) are al-
most the same for different 8 which is consistent with the
fact that rms(G) are the same. For (G)=2.0, however, the
conductance distributions depend on B corresponding to dif-
ferent rms(G). This clearly suggests that the conductance
distribution is a universal function that depends only on av-
erage conductance in 2D.

Since it is not practical to plot P(G) vs G for all (G), we
will show that the second (rms(G)), third (7,), and fourth
(y,) moments'® of conductance vs (G) are universal func-
tions that depend only on dimensionality and symmetry of
the system (Fig. 7). Indeed, for QD, quasi-1D, and 2D sys-
tems, similar universal features in rms(G) were also found
for v, and 7y, with different 8.2° We see that the conductance
fluctuation, the third moment, and fourth moment of conduc-
tance y; and 7y, are universal functions that depend only on
(G), symmetry, and dimensionality. In Fig. 8(a), we have
plotted conductance fluctuation for all systems (QD, quasi-
1D, and 2D systems) and all symmetries S=1,2,4 for vari-
ous parameters. It is interesting to see that in the localized
regime with (G) < 0.3, the conductance fluctuations collapse
into a single curve. This suggests that conductance distribu-
tion is superuniversal that is independent of dimensionality
and symmetry. Indeed, from Fig. 8(b), we have shown the

conductance distributions for all systems and symmetries at
(G)=0.2 and they give the same conductance distribution.
From Fig. 8(c), we see that at (G)=0.6, deviation from uni-
versal behavior is clearly seen. It is likely that this superuni-
versal behavior persists in 3D and clearly more work needs
to be done to resolve this issue.

In summary, we have carried out extensive simulations on
conductance fluctuations of quasi-1D, QD, and 2D mesos-
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FIG. 8. (Color online) The conductance fluctuation and conduc-
tance distribution are depicted for all data from quasi-1D, QD, 2D
systems with=1,2,4. (a) Conductance fluctuation. [(b) and (c)]
Conductance distributions at fixed (G)=0.2 and 0.6, respectively.
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copic systems for orthogonal, unitary, and symplectic en-
sembles. Our results show that in addition to the usual UCF
in the diffusive regime, there exists a UCF in the crossover
regime between metallic and insulating regimes for unitary
and symplectic ensembles but not for the orthogonal en-
semble. We found that the conductance distribution is a uni-
versal function from diffusive to localized regimes that de-
pend only on average conductance, dimensionality, and
symmetry of the system. In quasi-1D systems, this universal
function agrees with the result from DMPK equation.
Our analysis suggests that this UCF is driven by MIT in 2D
systems. In the localized regime with (G)<0.3, our results

PHYSICAL REVIEW B 81, 085114 (2010)

seem to show that the conductance distribution is superuni-
versal independent of dimensionality and symmetry of the
system.
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