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Overview
How do we efficiently simulate models near criticality?

Problem: critical slowing-down

The current state-of-the-art: cluster algorithms

Use global moves in clever way

We will discuss two local algorithms:

Sweeny algorithm

Simulates the random-cluster model

Worm algorithm for the Ising model

Simulates the high-temperature graphs

Both display critical speeding-up and multiple time-scales
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Sweeny’s algorithm
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Random-cluster model
Fortuin-Kasteleyn 1969

Fix a finite graph G = (V, E) and real numbers q, v > 0

Pick a random bond configuration A ⊆ E

with probability

P(A) ∝ qk(A) v|A|

k(A) = number of components of (V, A)

Integer q ≥ 2 equivalent to q-state Potts model (q = 2 Ising)

q = 1 reduces to bond percolation

q → 0 gives connected spanning subgraphs, spanning forests,
spanning trees
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Random-cluster model
Focus on two observables:

N (A) = |A|

S2(A) =
∑

clusters C in (V, A)

|C|2

N is an “energy”

χ = 〈S2〉/V is the mean cluster size, or “susceptibility”

Chayes-Machta 1997 devised a cluster algorithm valid for all real q ≥ 1

Simulates a coupled measure of bond and vertex variables

Equivalent to Swendsen-Wang when q is an integer
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Sweeny’s algorithm
The heat-bath version proceeds as follows:

Start with some configuration A ⊆ E
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Sweeny’s algorithm
The heat-bath version proceeds as follows:

Start with some configuration A ⊆ E

Choose an edge xy ∈ E uniformly at random

Determine if x ↔ y via a path not including xy

If so, occupy xy with probability v/(1 + v)

If not, occupy xy with probability v/(q + v)

Valid for all real q ≥ 0

Need an efficient way to check connectivity. . .

How do we measure the efficiency of an MCMC algorithm?

Compare Sweeny with Chayes-Machta
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General setting for MCMC
Irreducible, aperiodic, reversible Markov chain

State space S, with |S| < ∞

Transition matrix P

Stationary distribution π

Observable (random variable) X

E.g. X = N or S2. . .

Simulate Markov chain =⇒ time series X0, X1, . . .

Define the autocorrelation function

ρX(t) :=
〈XsXs+t〉π − 〈X〉2π

varπ(X)

Stationary process – start “in equilibrium” (or wait “long enough”)
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Autocorrelation times

We must consider two distinct autocorrelation times

The integrated autocorrelation time

τint,X :=
1

2

∞∑

t=−∞

ρX(t)

If X̂ is the sample mean of {Xt}
T
t=1 then we have

var(X̂) ∼ 2 τint,X
var(X)

T
, T → ∞

We get one “effectively independent” observation every 2 τint,X

time steps
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Autocorrelation times
ρX(t) typically decays exponentially as t → ∞

The exponential autocorrelation time

τexp,X := lim sup
t→∞

t

− log |ρX(t)|
and τexp := sup

X
τexp,X

Typical observables have τexp,X = τexp

Nice chains with |S| < ∞ have τexp < ∞

τint,X ≤ τexp for all X (need NOT be equal)

Start the chain with arbitrary distribution α

Distribution at time t is αP t

αP t tends to π with rate bounded by e−t/τexp
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Critical slowing-down

Near a critical point the autocorrelation times typically diverge

like

τ ∼ ξz

More precisely, we have a family of exponents:

zexp, and zint,X for each observable X.

Different algorithms for the same model can have very different

z

E.g. d = 2 Ising model

Glauber (Metropolis) algorithm z ≈ 2

Swendsen-Wang algorithm z ≈ 0.2
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Back to Sweeny’s algorithm
Simulated the d = 2 critical random-cluster model

On L × L square lattice

Simulated a number of values of 0 ≤ q ≤ 4

Measured:

N (A) = |A|

S2(A) =
∑

clusters C in (V, A) |C|
2

Measured observables after every hit

– i.e. every bond update

Natural unit of time is one sweep

– i.e. Ld hits

Cluster algorithms perform one sweep every iteration
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Dynamics ofN
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Plot shows q = 0.2 and 8 ≤ L ≤ 1024

Suggests τexp ∼ L2 hits

Good data collapse

Empirically zexp = 0 for q / 2

ρN (t) is almost a perfect exponential

Li-Sokal bound: zexp, zint,N ≥ α/ν

Applies to Sweeny and Chayes-Machta

Empirically zSweeny ≈ zChayes-Machta
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Dynamics ofS2
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Plot shows q = 0.2 and 8 ≤ L ≤ 1024

ρN (t) is shown for comparison

ρS2
(t) decays significantly in a time much less than one sweep

Critical speeding-up
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Critical speeding-up
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Plot shows q = 0.2 and 8 ≤ L ≤ 1024

ρS2
(t) vs 1 + at/Lw with w = 0.99

Good data collapse

S2 exhibits strong decorrelation on a time scale O(Lw) hits

Initial decay ρS2
(t) = f(t/Lw) with f(x) ∼ x−r

Empirically w < d for q / 2
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Some hand-waving. . .

Critical FK clusters are fractal

O(1) bond deletions can split a large cluster into two large

clusters

O(1) bond additions can join two large clusters

There are O(Ldred) edges whose removal would split a big

cluster

There are O(Ldred) edges whose addition would connect two

big clusters

dred is the red bond exponent

Coniglio 1989 gives dred for all 0 ≤ q ≤ 4 in d = 2
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A conjecture. . .

“The decorrelation of S2 is due to hitting O(1) red bonds”

This takes time O(Ld−dred)

So w = d − dred

Tim Garoni, University of Melbourne – p.17/40



A conjecture. . .

“The decorrelation of S2 is due to hitting O(1) red bonds”

This takes time O(Ld−dred)

So w = d − dred

q zexp α/ν w dred

0.0005 0 -1.9576 0.77 1.2376

0.005 0 -1.8679 0.79 1.2111

0.05 0 -1.6005 0.88 1.1299

0.2 0 -1.2467 0.99 1.0168

0.5 0 -0.8778 1.11 0.8904

1.0 0 -0.5000 1.26 0.7500

1.5 0 -0.2266 1.36 0.6398

2.0 0 (log) 0 (log) 1.49 0.5417

2.5 0.26(1) 0.2036 1.64 0.4474

3.0 0.45(1) 0.4000 1.84 0.3500

3.5 0.636(2) 0.6101 2.04 0.2375
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Summary of Sweeny results
Critical slowing down is absent for small q

zexp, zint,N comparable to their Chayes-Machta values

S2 exhibits critical speeding-up for a wide range of q

This can lead to zint,S2
< 0

Estimating zint,S2
is tricky . . .

Critical speeding-up and slowing-down can coexist

All this holds in d = 3 too

It is conceivable that most dynamics have a multiple time-scale

behavior. . .
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Worm algorithms

Tim Garoni, University of Melbourne – p.19/40



How can we simulate the Ising model?
Glauber dynamics

Flip one Ising spin at a time

Severe critical slowing-down
Sweeny dynamics

Transform Ising model to q = 2 random-cluster model

Flip one FK bond at a time

Weak critical slowing-down
Swendsen-Wang (Chayes-Machta) dynamics

Transform Ising model to q = 2 random-cluster model

Simulate joint model of Ising spins and FK bonds

Weak critical slowing-down
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Worm algorithms
Worm dynamics

Prokof’ev & Svistunov PRL 2001

Transform Ising model to high-temperature graphs

Simulate high-temperature graphs via local moves

worm diffusion

Consider simplest case

ferromagnetic, zero field, nearest-neighbor, on Ld
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State space for worm dynamics
Fix a finite graph G = (V, E)

For A ⊆ E let ∂A be the set of all vertices with odd degree in

(V, A)

For distinct x, y ∈ V define

Sx,y = {A ⊆ E|∂A = {x, y}}

and let

Sx,x = {A ⊆ E|∂A = ∅}

Sx,x is just the cycle space C(G)

Configuration space of our worm algorithm is

S = {(A, x, y)|x, y ∈ V and A ∈ Sx,y}
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High temperature expansions

The standard Ising high-temperature expansions are:

Z =
∑

A∈Sx,x

w|A| Partition function

Z〈σxσy〉 =
∑

A∈Sx,y

w|A| Two-point function

Z〈M2〉 =
∑

A∈S

w|A| Magnetization

M(σ) =
∑

x∈V σx is the Ising magnetization

w = tanh(β)

0 ≤ w ≤ 1
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Worm algorithm

The elementary move of the worm algorithm is as follows:
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Worm algorithm

The elementary move of the worm algorithm is as follows:

Start in configuration (A, x, y)

Pick uniformly at random either x or y (say, x)

Pick uniformly at random some x′ ∼ x (in G)

Propose moving to (A△xx′, x′, y)

If proposed transition would add an edge

accept with probability w

If proposed transition would remove an edge

accept with probability 1
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Worm dynamics t = 0

x, y
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Worm dynamics t = 1

y x
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Worm dynamics t = 2

y x

Tim Garoni, University of Melbourne – p.27/40



Worm dynamics t = 3

y

x
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Worm dynamics t = 4

y

x
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Worm dynamics t = 5

y x
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Worm dynamics t = 6

y

x
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Worm dynamics t = 7

y

x
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Transition matrix

Let G be a regular lattice of coordination number z

Transition matrix P on S is

P [(A, x, y) → (A△xx′, x′, y)] =
1

2

1

z





1, xx′ ∈ A,

w, xx′ 6∈ A,

And similarly for y moves. . .

All other non-diagonal elements of P are zero

P is in detailed balance with π(A, x, y) = w|A|/Z〈M2〉

For translation invariant systems 〈M2〉 = V χ
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Observables
Focus on two observables:

N (A, x, y) = |A|

D0(A, x, y) = δx,y

〈D0〉π is simply related to χ

〈D0〉π =
1

Z V χ

∑

(A,x,y)∈S

w|A|δx,y

= 1/χ

Measured observables after every hit (worm update)

Natural unit of time is one sweep (Ld hits)
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Dynamics ofN
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Critical Ising model d = 2

Good data collapse

zexp ≈ zint,N ≈ 0.379

ρN (t) is almost a perfect exponential

Li-Sokal bound zexp, zint,N ≥ α/ν applies to worm too
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Dynamics ofD0
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Critical Ising model d = 2

ρD0
(t) decays significantly in O(1) hits!

ρD0
(t) ∼ t−s with s ≈ 0.75
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Crossover
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Plot ts ρD0
(t) versus t/τint,N

Reasonable data collapse

Postulate ρD0
(t) = g(t)h(t/Ld+zexp) with g(t) ∼ t−s and s < 1

=⇒ zint,D0
= −sd + (1 − s)zexp

Gives zint,D0
≈ −1.42
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Three dimensions

Qualitatively similar behavior when d = 3:

ρD0
(t) ∼ t−s

s ≈ 0.66

Implies zint,D0
≈ −1.92

ρN (t) roughly exponential

zexp ≈ zint,N ≈ α/ν ≈ 0.174

Li-Sokal bound may be sharp for d = 3 worm algorithm

Compare Swendsen-Wang zSW ≈ 0.46

Tim Garoni, University of Melbourne – p.38/40



Practical efficiency

Swendsen-Wang seems to outperform worm when d = 2

Efficiency depends on observable, X

A simple way to compare worm and SW is to compute κ = σ2
X̂

TCPU

for both algorithms

When d = 3 and X = χ we find κworm/κSW ≈ L−0.33

With the crossover κworm/κSW ≈ 1 at around L ≈ 20

There is also a natural worm estimator for ξ

Again SW outperforms worm when d = 2

For d = 3 we find κworm/κSW ≈ L−0.32

With the crossover κworm/κSW ≈ 1 at around L ≈ 45
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Conclusions
Locality is not a sufficient condition for “badness”

Sweeny’s algorithm has comparable efficiency to

Chayes-Machta

For q / 2 Sweeny’s algorithm exhibits critical speeding-up

i.e. significant decorrelation in O(Lw) hits with w < d

We can predict w if α/ν < 0 (no critical slowing down)

The worm algorithm also exhibits decorrelation on multiple time

scales

The worm algorithm outperforms Swendsen-Wang for d = 3

Ising model for measuring χ and ξ
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