Maybe some local algorithms aren't that bad...?

Timothy M. Garoni

t.garoni@ms.unimelb.edu.au

MASCOS

Department of Mathematics and Statistics

The University of Melbourne

Australia

Overview

How do we efficiently simulate models near criticality?

- Problem: critical slowing-down
- The current state-of-the-art: cluster algorithms
 - Use global moves in clever way
- We will discuss two local algorithms:
 - Sweeny algorithm
 - Simulates the random-cluster model
 - Worm algorithm for the Ising model
 - Simulates the high-temperature graphs
 - Both display critical speeding-up and multiple time-scales

References/Collaborators

Youjin Deng, Timothy M. Garoni, and Alan D. Sokal, *Critical Speeding-Up in the Local Dynamics of the Random-Cluster Model*, Phys. Rev. Lett. 98, 230602 (2007).

Youjin Deng, Timothy M. Garoni, and Alan D. Sokal, *Dynamic Critical Behavior of the Worm Algorithm for the Ising Model*, Phys. Rev. Lett. 99, 110601 (2007).

Random-cluster model

Fortuin-Kasteleyn 1969

• Fix a finite graph G = (V, E) and real numbers q, v > 0

Pick a random bond configuration $A \subseteq E$ with probability

 $\mathbb{P}(A) \propto q^{k(A)} v^{|A|}$

k(A) =number of components of (V, A)

- Integer $q \ge 2$ equivalent to q-state Potts model (q = 2 Ising)
- \checkmark q = 1 reduces to bond percolation
- $q \rightarrow 0$ gives connected spanning subgraphs, spanning forests, spanning trees

Random-cluster model

$$\mathcal{N}(A) = |A|$$
 $\mathcal{S}_2(A) = \sum_{\text{clusters } \mathcal{C} \text{ in } (V, A)} |\mathcal{C}|^2$

- \mathcal{N} is an "energy"
- ▶ $\chi = \langle S_2 \rangle / V$ is the mean cluster size, or "susceptibility"
- Chayes-Machta 1997 devised a cluster algorithm valid for all real $q \ge 1$
 - Simulates a coupled measure of bond and vertex variables
 - Equivalent to Swendsen-Wang when q is an integer

- The heat-bath version proceeds as follows:
 - Start with some configuration $A \subseteq E$

- The heat-bath version proceeds as follows:
 - Start with some configuration $A \subseteq E$
 - Choose an edge $xy \in E$ uniformly at random

- The heat-bath version proceeds as follows:
 - Start with some configuration $A \subseteq E$
 - Choose an edge $xy \in E$ uniformly at random
 - Determine if $x \leftrightarrow y$ via a path not including xy

- The heat-bath version proceeds as follows:
 - Start with some configuration $A \subseteq E$
 - Choose an edge $xy \in E$ uniformly at random
 - Determine if $x \leftrightarrow y$ via a path not including xy
 - If so, occupy xy with probability v/(1+v)

- The heat-bath version proceeds as follows:
 - Start with some configuration $A \subseteq E$
 - Choose an edge $xy \in E$ uniformly at random
 - Determine if $x \leftrightarrow y$ via a path not including xy
 - If so, occupy xy with probability v/(1+v)
 - If not, occupy xy with probability v/(q+v)

- The heat-bath version proceeds as follows:
 - Start with some configuration $A \subseteq E$
 - Choose an edge $xy \in E$ uniformly at random
 - Determine if $x \leftrightarrow y$ via a path not including xy
 - If so, occupy xy with probability v/(1+v)
 - If not, occupy xy with probability v/(q+v)
- $\textbf{ Solid for all real } q \ge 0$

- The heat-bath version proceeds as follows:
 - Start with some configuration $A \subseteq E$
 - Choose an edge $xy \in E$ uniformly at random
 - Determine if $x \leftrightarrow y$ via a path not including xy
 - If so, occupy xy with probability v/(1+v)
 - If not, occupy xy with probability v/(q+v)
- $\textbf{ Solution of the set of the$
- Need an efficient way to check connectivity...

- The heat-bath version proceeds as follows:
 - Start with some configuration $A \subseteq E$
 - Choose an edge $xy \in E$ uniformly at random
 - Determine if $x \leftrightarrow y$ via a path not including xy
 - If so, occupy xy with probability v/(1+v)
 - If not, occupy xy with probability v/(q+v)
- $\textbf{ Solution of the set of the$
- Need an efficient way to check connectivity...
- How do we measure the efficiency of an MCMC algorithm?
- Compare Sweeny with Chayes-Machta

General setting for MCMC

- Irreducible, aperiodic, reversible Markov chain
 - State space S, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π
- Observable (random variable) X
 - E.g. $X = \mathcal{N}$ or $\mathcal{S}_2 \dots$
- Simulate Markov chain \implies time series X_0, X_1, \ldots
- Define the autocorrelation function

$$\rho_X(t) := \frac{\langle X_s X_{s+t} \rangle_{\pi} - \langle X \rangle_{\pi}^2}{\operatorname{var}_{\pi}(X)}$$

Stationary process – start "in equilibrium" (or wait "long enough")

Autocorrelation times

We must consider two distinct autocorrelation times

The integrated autocorrelation time

$$\tau_{\text{int},X} := \frac{1}{2} \sum_{t=-\infty}^{\infty} \rho_X(t)$$

If \widehat{X} is the sample mean of $\{X_t\}_{t=1}^T$ then we have

$$\operatorname{var}(\widehat{X}) \sim 2 \, \tau_{\operatorname{int},X} \frac{\operatorname{var}(X)}{T}, \qquad T \to \infty$$

We get one "effectively independent" observation every $2 \tau_{\text{int},X}$ time steps

Autocorrelation times

• $\rho_X(t)$ typically decays exponentially as $t \to \infty$

The exponential autocorrelation time

$$\tau_{\exp,X} := \limsup_{t \to \infty} \frac{t}{-\log |\rho_X(t)|} \quad \text{and} \quad \tau_{\exp} := \sup_X \tau_{\exp,X}$$

• Typical observables have
$$\tau_{\exp,X} = \tau_{\exp}$$

- Nice chains with $|S| < \infty$ have $au_{exp} < \infty$
- $\tau_{int,X} \leq \tau_{exp}$ for all X (need NOT be equal)
- **9** Start the chain with arbitrary distribution α
 - Distribution at time t is αP^t
 - αP^t tends to π with rate bounded by $e^{-t/\tau_{exp}}$

Critical slowing-down

Near a critical point the autocorrelation times typically diverge like

- More precisely, we have a family of exponents: z_{exp} , and $z_{int,X}$ for each observable X.
- Different algorithms for the same model can have very different
- E.g. d = 2 Ising model
 - Glauber (Metropolis) algorithm $z \approx 2$
 - Swendsen-Wang algorithm $z \approx 0.2$

Back to Sweeny's algorithm

- Simulated the d = 2 critical random-cluster model
 - On $L \times L$ square lattice
 - Simulated a number of values of $0 \le q \le 4$
 - Measured:

 - $S_2(A) = \sum_{\text{clusters } \mathcal{C} \text{ in } (V, A)} |\mathcal{C}|^2$
 - Measured observables after every hit
 - i.e. every bond update
 - Natural unit of time is one sweep
 i.e. L^d hits
 - Cluster algorithms perform one sweep every iteration

Dynamics of ${\cal N}$

Plot shows q = 0.2 and $8 \le L \le 1024$

Suggests $au_{exp} \sim L^2$ hits

- Empirically $z_{exp} = 0$ for $q \lessapprox 2$
- $\rho_{\mathcal{N}}(t)$ is almost a perfect exponential
- Li-Sokal bound: $z_{exp}, z_{int,\mathcal{N}} \geq \alpha/\nu$
 - Applies to Sweeny and Chayes-Machta
 - Empirically $z^{\text{Sweeny}} \approx z^{\text{Chayes-Machta}}$

Centre of Excellence for Mathematics and Statistics of Complex Systems

Dynamics of \mathcal{S}_2

- $\rho_{S_2}(t)$ decays significantly in a time much less than one sweep
- Critical speeding-up

Critical speeding-up

Good data collapse

- S₂ exhibits strong decorrelation on a time scale $O(L^w)$ hits
- Initial decay $\rho_{\mathcal{S}_2}(t) = f(t/L^w)$ with $f(x) \sim x^{-r}$

• Empirically w < d for $q \lessapprox 2$

Some hand-waving...

- Critical FK clusters are fractal
 - O(1) bond deletions can split a large cluster into two large clusters
 - O(1) bond additions can join two large clusters
- There are $O(L^{d_{red}})$ edges whose removal would split a big cluster
- There are $O(L^{d_{red}})$ edges whose addition would connect two big clusters
 - d_{red} is the red bond exponent
 - Coniglio 1989 gives d_{red} for all $0 \le q \le 4$ in d = 2

A conjecture...

• "The decorrelation of S_2 is due to hitting O(1) red bonds"

- This takes time $O(L^{d-d_{\text{red}}})$
- So $w = d d_{\text{red}}$

A conjecture...

• "The decorrelation of S_2 is due to hitting O(1) red bonds"

• This takes time $O(L^{d-d_{\text{red}}})$

• So $w = d - d_{\text{red}}$

q	$z_{ m exp}$	lpha/ u	w	d_{red}
0.0005	0	-1.9576	0.77	1.2376
0.005	0	-1.8679	0.79	1.2111
0.05	0	-1.6005	0.88	1.1299
0.2	0	-1.2467	0.99	1.0168
0.5	0	-0.8778	1.11	0.8904
1.0	0	-0.5000	1.26	0.7500
1.5	0	-0.2266	1.36	0.6398
2.0	0 (log)	0 (log)	1.49	0.5417
2.5	0.26(1)	0.2036	1.64	0.4474
3.0	0.45(1)	0.4000	1.84	0.3500
3.5	0.636(2)	0.6101	2.04	0.2375

Summary of Sweeny results

- Critical slowing down is absent for small q
- $\mathbf{z}_{exp}, z_{int,\mathcal{N}}$ comparable to their Chayes-Machta values
- \checkmark S_2 exhibits critical speeding-up for a wide range of q
 - This can lead to $z_{int,S_2} < 0$
 - Estimating z_{int,S_2} is tricky ...
- Critical speeding-up and slowing-down can coexist
- All this holds in d = 3 too
- It is conceivable that most dynamics have a multiple time-scale behavior...

How can we simulate the Ising model?

Glauber dynamics

- Flip one Ising spin at a time
- Severe critical slowing-down
- Sweeny dynamics
 - Transform Ising model to q = 2 random-cluster model
 - Flip one FK bond at a time
 - Weak critical slowing-down
- Swendsen-Wang (Chayes-Machta) dynamics
 - Transform Ising model to q = 2 random-cluster model
 - Simulate joint model of Ising spins and FK bonds
 - Weak critical slowing-down

- Worm dynamics
 - Prokof'ev & Svistunov PRL 2001
 - Transform Ising model to high-temperature graphs
 - Simulate high-temperature graphs via *local* moves
 - worm diffusion
- Consider simplest case
 - ferromagnetic, zero field, nearest-neighbor, on L^d

State space for worm dynamics

- Fix a finite graph G = (V, E)
- For A ⊆ E let ∂A be the set of all vertices with odd degree in
 (V, A)
- **•** For distinct $x, y \in V$ define

$$\mathcal{S}_{x,y} = \{A \subseteq E | \partial A = \{x, y\}\}$$

and let

$$\mathcal{S}_{x,x} = \{A \subseteq E | \partial A = \emptyset\}$$

- $S_{x,x}$ is just the cycle space C(G)
- Configuration space of our worm algorithm is

$$\mathcal{S} = \{(A, x, y) | x, y \in V \text{ and } A \in \mathcal{S}_{x, y}\}$$

High temperature expansions

The standard Ising high-temperature expansions are:

$$Z = \sum_{A \in \mathcal{S}_{x,x}} w^{|A|}$$
$$Z \langle \sigma_x \sigma_y \rangle = \sum_{A \in \mathcal{S}_{x,y}} w^{|A|}$$
$$Z \langle \mathcal{M}^2 \rangle = \sum_{A \in \mathcal{S}} w^{|A|}$$

Partition function

Two-point function

Magnetization

•
$$\mathcal{M}(\sigma) = \sum_{x \in V} \sigma_x$$
 is the Ising magnetization

• $w = \tanh(\beta)$

The elementary move of the worm algorithm is as follows:

• Start in configuration (A, x, y)

- Start in configuration (A, x, y)
- Pick uniformly at random either x or y (say, x)

- Start in configuration (A, x, y)
- Pick uniformly at random either x or y (say, x)
- Pick uniformly at random some $x' \sim x$ (in G)

- Start in configuration (A, x, y)
- Pick uniformly at random either x or y (say, x)
- Pick uniformly at random some $x' \sim x$ (in G)
- Propose moving to $(A \triangle xx', x', y)$

- Start in configuration (A, x, y)
- Pick uniformly at random either x or y (say, x)
- Pick uniformly at random some $x' \sim x$ (in G)
- Propose moving to $(A \triangle xx', x', y)$
 - If proposed transition would add an edge accept with probability w

- Start in configuration (A, x, y)
- Pick uniformly at random either x or y (say, x)
- Pick uniformly at random some $x' \sim x$ (in G)
- Propose moving to $(A \triangle xx', x', y)$
 - If proposed transition would add an edge accept with probability w
 - If proposed transition would remove an edge accept with probability 1

Transition matrix

J Let G be a regular lattice of coordination number z

9 Transition matrix P on S is

$$P[(A, x, y) \to (A \triangle xx', x', y)] = \frac{1}{2} \frac{1}{z} \begin{cases} 1, & xx' \in A, \\ w, & xx' \notin A, \end{cases}$$

- And similarly for y moves...
- All other non-diagonal elements of P are zero
- P is in detailed balance with $\pi(A, x, y) = w^{|A|}/Z \langle \mathcal{M}^2 \rangle$
- For translation invariant systems $\langle \mathcal{M}^2 \rangle = V \chi$

Observables

Focus on two observables:

• $\mathcal{N}(A, x, y) = |A|$

•
$$\mathcal{D}_0(A, x, y) = \delta_{x, y}$$

• $\langle \mathcal{D}_0
angle_\pi$ is simply related to χ

$$\langle \mathcal{D}_0 \rangle_{\pi} = \frac{1}{Z V \chi} \sum_{(A,x,y) \in \mathcal{S}} w^{|A|} \delta_{x,y}$$

= $1/\chi$

- Measured observables after every hit (worm update)
- Natural unit of time is one sweep (L^d hits)

Centre of Excellence for Mathematics and Statistics of Complex Systems

Dynamics of ${\cal N}$

 $\rho_{\mathcal{N}}(t)$ is almost a perfect exponential

Li-Sokal bound $z_{exp}, z_{int,\mathcal{N}} \geq \alpha/\nu$ applies to worm too

Dynamics of \mathcal{D}_0

Critical Ising model d = 2

AUSTRALIAN RESEARCH COUNCIL

Crossover

Plot $t^s \rho_{\mathcal{D}_0}(t)$ versus $t/\tau_{\text{int},\mathcal{N}}$

Reasonable data collapse

• Postulate $\rho_{\mathcal{D}_0}(t) = g(t)h(t/L^{d+z_{exp}})$ with $g(t) \sim t^{-s}$ and s < 1

$$\implies z_{\text{int},\mathcal{D}_0} = -sd + (1-s)z_{\exp}$$

• Gives
$$z_{\text{int},\mathcal{D}_0} \approx -1.42$$

Centre of Excellence for Mathematics and Statistics of Complex Systems

Three dimensions

Qualitatively similar behavior when d = 3:

- $\rho_{\mathcal{D}_0}(t) \sim t^{-s}$
- $s \approx 0.66$
- Implies $z_{\text{int},\mathcal{D}_0} \approx -1.92$
- $\rho_{\mathcal{N}}(t)$ roughly exponential
- $z_{\exp} \approx z_{\text{int},\mathcal{N}} \approx \alpha/\nu \approx 0.174$
- Li-Sokal bound may be sharp for d = 3 worm algorithm
- Compare Swendsen-Wang $z_{SW} \approx 0.46$

Practical efficiency

- Swendsen-Wang seems to outperform worm when d = 2
- Efficiency depends on observable, X
- A simple way to compare worm and SW is to compute $\kappa = \sigma_{\widehat{X}}^2 T_{CPU}$ for both algorithms
- \checkmark When d = 3 and $X = \chi$ we find $\kappa_{worm}/\kappa_{SW} \approx L^{-0.33}$
 - With the crossover $\kappa_{worm}/\kappa_{SW} \approx 1$ at around $L \approx 20$
- There is also a natural worm estimator for ξ
- Again SW outperforms worm when d = 2
 - For d = 3 we find $\kappa_{worm}/\kappa_{SW} \approx L^{-0.32}$
 - With the crossover $\kappa_{worm}/\kappa_{SW} \approx 1$ at around $L \approx 45$

Conclusions

- Locality is not a sufficient condition for "badness"
- Sweeny's algorithm has comparable efficiency to Chayes-Machta
- ✓ For $q \leq 2$ Sweeny's algorithm exhibits critical speeding-up i.e. significant decorrelation in $O(L^w)$ hits with w < d
- We can predict w if $\alpha/\nu < 0$ (no critical slowing down)
- The worm algorithm also exhibits decorrelation on multiple time scales
- The worm algorithm outperforms Swendsen-Wang for d = 3Ising model for measuring χ and ξ

