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Low-Field Phase Diagram of the Spin Hall Effect in the Mesoscopic Regime
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When a mesoscopic two dimensional four-terminal Hall cross bar with spin-orbit interaction (SOI) is
subjected to a perpendicular uniform magnetic field B, both integer quantum Hall effect (IQHE) and
mesoscopic spin Hall effect (MSHE) may exist when disorder strength W in the sample is weak. We have
calculated the low field “phase diagram” of MSHE in the (B, W) plane for disordered samples in the
IQHE regime. For weak disorder, MSHE conductance G and its fluctuations rms(G ;) vanish identically
on even numbered IQHE plateaus, they have finite values on those odd numbered plateaus induced by
SOI, and they have values Gy = 1/2 and rms(Gy) = 0 on those odd numbered plateaus induced by
Zeeman energy. At larger disorders, the system crosses over into a regime where both Gy and rms(Gy)
are finite, a chaotic regime, and finally a localized regime.
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Many recent papers have been devoted to the physics of
spin Hall effect [1] and a particular focus is the intrinsic
spin Hall generated in nonmagnetic samples by spin-
orbital interaction (SOI) [2,3]. So far, several experimental
papers have reported observations of spin Hall effect in
compound semiconductors and other systems [4].
Theoretically, it has been shown that for two dimensional
(2D) samples in the clean limit, the Rashba SOI generates a
spin Hall conductivity having a universal value of e¢/87
[3]. The presence of weak disorder destroys spin Hall
effect in large samples [5,6]. In particular, a consensus
appears to have been reached in the literature that spin
Hall effect in disordered samples generated by linear
Rashba SOI vanishes at the thermodynamical limit [6—8].

For mesoscopic samples, numerical studies have pro-
vided evidence that the mesoscopic spin Hall effect
(MSHE) can survive weak disorder [9—-12]. For a four-
probe disordered sample, MSHE conductance Gy and its
fluctuations rms(G ;) have been calculated for both linear
Rashba and Dresselhaus SO interactions [10,13]. It was
found [13] that when the system is in the diffusive regime,
the fluctuations rms(G,y) take a universal value with the
same order of magnitude as the average Gy itself, and is
independent of the system size L, the disorder strength W,
the electron Fermi energy, and the SO interaction strength.

The situation becomes very interesting and more com-
plicated when a perpendicular uniform external magnetic
field B is applied to the 2D sample [14]. In this case, Gy
and rms(Gy) become functions of B. Most importantly, a
magnetic field B can produce edge states which are re-
sponsible for the integer quantum Hall effect (IQHE).
Similar to the well-known studies of the global phase
diagram of quantum Hall effect [15], it will be very useful
to map out the low-field “phase diagram” of MSHE in
terms of the field strength B and the disorder strength W.
Such a diagram allows one to clearly understand the role
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played by the edge states and disorder. It is the purpose of
this work to present this MSHE “‘phase diagram” for four-
probe 2D disordered mesoscopic samples with linear
Rashba and/or Dresselhaus SO interactions.

Here we put “phase diagram” in quotes because the
physics we study is mesoscopic, namely, for samples in the
coherent diffusive regime characterized by the relation
between relevant length scales [ < L < . Here L is the
linear sample size, [ the elastic mean free path, and ¢ the
phase coherence length. As such, the ‘“phases” in the
“phase diagram™ are states with zero or finite values of
Gy and rms(Gyy), and no phase transitions are implied
between these states. In particular, we found that with low
disorder when IQHE is well established, both Gy and
rms(Gyy) are zero identically on the even numbered
IQHE plateaus, while they take finite values on the SOI
dominant odd numbered IQHE plateaus. For Zeeman
dominant odd numbered IQHE plateaus, Gy = 1/2 and
its fluctuation vanishes. As the disorder is increased, both
G and rms(G ) become nonzero when any edge state is
destroyed by the disorder in any IQHE plateau. Further
increase of disorder brings the system to a ‘“‘chaotic’ re-
gime where Gy = 0 while rms(Ggy) # 0, finally at even
larger disorder both Gy and rms(Ggy) vanish. These be-
haviors are organized in the low-field phase diagram which
we determine in the rest of the Letter.

We consider a 2D four-probe device schematically
shown in the inset of Fig. 1(c) (call it setup II). A MSHE
conductance Gy is measured [10] across probes labeled
2, 4 when a small voltage bias is applied across probes 1 to
3 so that a current flows between them. G can be mea-
sured the same way when there is a uniform external
magnetic field B which exists everywhere including inside
the leads. Gy is theoretically calculated from spin current
defined as I; = (1/2)(I; — I}), where I, are contributions
from the two spin channels. Note that the definition of /| is,
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FIG. 1. Transmission coefficient T, vs E(t) or B(T), where  is
the hopping energy. (a),(b) Setup 1. (c),(d) Setup IL. Inset of
(a) schematic plot of setup I; inset of (b) the corresponding flow
of edge states. Inset of (c) schematic plot of setup II; inset of
(d) the corresponding flow of edge states.

in fact, in debate for regions where SO interaction exists
[7,16]. To avoid this ambiguity we assume that in our
device the SO interaction only exists in the shaded region
[setup II in Fig. 1(c)], namely, in leads 1, 3, and in the
central scattering region, but does not exist in leads 2, 4
where we measure spin current. This way, I, is well defined
as above. For discussion purposes, we have also considered
a device [setup I, inset of Fig. 1(a)] where SO interaction is
present everywhere including inside leads 2, 4.

In the presence of linear Rashba interaction az - (o X
k) with k = k + (¢/hc)A, the Hamiltonian of the four-
probe device is

— t t .
H= Z €mCnmoCnme T 85 Z Camo (0 B)o‘a”cnma'/
nmo nmoo’

— T —im 1
IZ [Cn+1,nza'cnma'e A Com—10Cnmo + HC]

nma

—Iso Z [cl,m+1g-(i0-x)00"cnmo"

nmoao’

- Cl+l,m(r(ia-y)o'o"Cnma’eiimn +H.c.], (1)

where clm,r is the creation operator for an electron with
spin o on site (n, m), €,,, = 4t is the on site energy, t =
h?/2ua? is the hopping energy, and t,, = a,,/2a is the
effective Rashba spin-orbit coupling, g, = (1/2)gup
(with g = 4) is the Lande g factor. Here 1 = hw./2t
and w, = eB/uc is the cyclotron frequency. Throughout
this Letter, we use ¢ as the unit of energy. For L = 40a =
1 wm, t =1.5X%X 1073 eV, and t,, = 0.2¢ corresponds to
@y, =9 X 10712 eVm [14]. We choose A = (—By, 0,0)
so that the system has translational symmetry along the x
direction (from lead 1 to lead 3). Static Anderson-type
disorder is added to €; with a uniform distribution in the
interval [—W/2, W/2] where W characterizes the strength
of the disorder. The spin Hall conductance Gy is calcu-

lated from the Landauer-Buttiker formula [9]
G = (e/8m)[(Ty1 — Toy1) — (T3 — To3)]l Q)

where transmission coefficient is given by T,,; =
Tr(I',,G'T',G%). Here G™* are the retarded and advanced
Green functions of the central disordered region of the
device which we evaluate numerically. The quantities I';,
are the line width functions describing coupling of the
leads to the scattering region and are obtained by calculat-
ing self-energies due to the semi-infinite leads using a
transfer matrices method [17]. The spin Hall conductance

fluctuation is defined as rms(Gy) = \[(G%) — (Gn)?,
where (---) denotes averaging over an ensemble of
samples with different disorder configurations of the
same strength W. The devices in Fig. 1 have L X L central
square, and without loosing generality we fixed L = 40
grid points in our numerics.

Before presenting the numerically determined “‘phase
diagram” for the physics of MSHE using setup II, let us
first discuss the general physics of spin Hall current. For
this purpose we use setup I where the SOl is everywhere so
that the discussion is simpler. We first examine the spin
Hall “phase diagram’ in the absence of SOI. In a magnetic
field, edge states are formed. Figures 1(a) and 1(b) show
transmission coefficient 7,; for setup I, which measures
the number of edge states versus Fermi energy E or mag-
netic field B. We observe that 75, or the number of edge
states, increases as E for a fixed B and it decreases as B is
increased for a fixed E. Notice that the number of edge
states N can be either even or odd. The odd N region in E
or B is very narrow and is due to the Zeeman splitting that
breaks the spin degeneracy. When N is even, spin Hall
current vanishes because all the edge states are fully po-
larized with half of them pointing to one direction (say
spin-up) and the other half pointing to opposite direction
(spin-down). When N is odd, the spin Hall conductance is
1/2. At weak disorder when all the edge states survive, we
therefore conclude that Gg; = 0 when N is even and
Gy = 1/2 when N is odd. Furthermore, it is useful to ex-
amine fluctuations of the spin Hall conductance rms(G )
for these edge states: we expect no fluctuations for all edge
states. As disorder strength W is increased, we reach a
point where at least one of the edge states is destroyed and
the system is in a spin Hall liquid state characterized by
G # 0 and rms(Ggy) # 0 for any N. Further increasing
W, we expect strong scattering to bring the system into a
chaotic state of MSHE, characterized by G,z = 0 and
rms(Ggy) # 0. At even larger W, the system enters a spin
Hall insulator state where Gy = rms(Ggy) = 0.

Next, we turn on the SOI and discuss its effect on the
“phase diagram.” Figures 1(c) and 1(d) show transmission
coefficient T, for setup I versus E or B for a fixed Rashba
SOI t, = 0.2. We observe that the behavior of T,; is
similar to that of Figs. 1(a) and 1(b) except that the region
of odd N is now much larger. When N is even, spin Hall
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current vanishes as before. In the region of B when N is ®)s e —7#-T,, (setupI )

odd, two cases occur due to the competition between SOI Non-integer L ! —Q-T,, Lastun JL)

which tends to randomize the spin polarization and the
Zeeman energy which favors spin polarization along a
fixed direction. If Zeeman energy is large enough, then
Ggq = 1/2 as before with rms(Gyy) = 0, while if SOI
dominates then there is at least one edge state that has
both spin-up and spin-down components: our numerical
results show that the composition depends on systems
parameters. As a result, there is a net spin Hall current
when N is odd. This discussion becomes clearer when we
examine setup II where the spin direction can be defined.
At weak disorder when all the edge states survive, we have
the same conclusion as before; i.e., Gggy = 0 when N is
even and Gy # 0 when N is odd. We expect no fluctua-
tions for even N and for those odd N edge-states with
Gy = 1/2, but finite fluctuations for the rest of odd N
edge states. Hence, at weak disorder, we have a “‘phase” of
edge-state induced spin Hall insulator with even N char-
acterized by Gy = rms(Gyy) = 0; a phase of edge-state
induced spin Hall liquid (but fluctuationless and Zeeman
dominant) with odd N characterized by Gy = 1/2 and
rms(Ggy) = 0; and finally a phase of edge-state induced
spin Hall liquid (SOI dominant) with odd N characterized
by Gy # 0 and rms(Gyy) # 0. As we increase the dis-
order strength, the “phase diagram’ evolves through three
regimes similar to the case when SOI is off: a spin Hall
liquid regime, a chaotic regime, and a spin Hall insulating
regime.

The discussion in the last paragraph gives the entire
expectation for the low-field MSHE “phase diagram.”
The problem of this discussion is that the spin Hall current
is not well defined in regions where SO interaction exists
[7,16], such as setup I of Fig. 1(a). Therefore, in the rest of
the work we consider setup II where SO interaction does
not exist in leads 2,4 so that spin Hall current is well
defined and measurable without ambiguity. The extra com-
plication of setup II is that there is an interface between
a spatial region with ¢, = 0 and that with t,, # 0. This
interface acts as a potential barrier causing additional
scattering of edge states. In particular, at certain energies
one of the edge states goes directly from lead 1 to lead 3
due to this interface scattering. The insets of Figs. 1(b) and
1(d) show schematically the edge states for setups I and II,
respectively. In the inset of Fig. 1(d), however, an edge
state is now transmitted directly from lead 1 to lead 3 due
to the interface scattering just discussed. We have con-
firmed that this is a generic feature which occurs at differ-
ent Fermi energies. For a fixed Fermi energy, this can also
happen when B is varied. In Fig. 2(b), we plot the T, for
setup I, and 75, T, for setup II, at W = 0. We observe that
N = odd edge states are much easier to be scattered while
the N = even edge states are stable against interface scat-
tering. Therefore, the regions in the MSHE “phase dia-
gram” where N = even becomes larger for setup II than

o —@-T,, (setupIl)
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FIG. 2 (color online). (a) The edge-state plateaus in (B, W)
plane. (b). The transmission coefficient 7,; for setup I and
setup II, as well as direct transmission coefficient 73; as a
function of B in the absence of disorder. (c). The spin Hall
conductance in (B, W) plane. (d). The spin Hall conductance
fluctuation in (B, W) plane.

for setup I. For instance, the magnetic field B for the onset
of N = 2 edge state changes from 1.2 to 1.32 T due to the
interface scattering (for a device with lead width L =
1 wm). We emphasize that except for this extra complica-
tion of interface scattering in setup II, the general physics
discussion of MSHE ‘“‘phase diagram” for setup I in the
last paragraph holds perfectly for setup II.

Figure 2(a) depicts numerical results for the number of
edge states N as we vary B and W. We observe that the
edge states are gradually destroyed from the subband edge
(measured in lead 1) to the subband center when W is
increased. From Fig. 2(a) we also observe that N = 2 edge
states are more stable against disorder than that of N = 3.
Figures 2(c) and 2(d) show spin Hall conductance and spin
Hall conductance fluctuation, respectively, for W = 4 [18].
They are perfectly consistent with the general discussion
given above; namely, Gy and rms(Gy) are finite for N =
odd edge states and in regions when at least one edge state
is destroyed by disorder.

Figure 3 plots the main result of this work, the low-field
“phase diagram” of MSHE. In the numerical calculations
of this ““phase diagram,” we have computed 61 values of
B, 40 values of W from W = 0 to W = 4, and for each pair
of (B, W) we averaged over 1000 impurity configurations.
The integers in the “phase diagram’ indicate the number
of edge states N. At weak disorder, there are three possible
states: the N = even edge-state induced spin Hall insula-
tor, the SOI dominant N = odd edge-state induced spin
Hall liquid state, and the Zeeman dominant N = odd edge-
state induced fluctuationless spin Hall liquid. Since a large
magnetic field favors Zeeman term, so in N = odd plateau
the SOI dominant spin Hall liquid appears first for low
magnetic field and crosses over to Zeeman dominant fluc-
tuationless spin Hall liquid at higher field. As W increases,
the edge states become destroyed and the system enters
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FIG. 3 (color online). The low-field “‘phase diagram” of meso-
scopic spin Hall effect in (B, W) plane. Note that for disorder
strength between W = 2 to W = 20 the system is the spin Hall
liquid.

spin Hall liquid where Gy # 0 and rms(Gyy) # 0. A
chaotic state of MSHE with Gy = 0 and rms(Gyy) # 0
is reached when W is increased further. Finally, the system
enters a spin Hall insulator state where Gg =0 =
rms(Ggy) = 0 at large enough disorder. While this “phase
diagram is obtained for a particular value of Rashba SO
interaction f,, we have checked that the general topology
is the same for other values. In addition, the MSHE “‘phase
diagram” in the (z,,, W) plane for a fixed magnetic field has
similar features. We have also determined the phase
boundary between the chaotic state of MSHE and spin
Hall insulator that are shown in Fig. 3 with the same
resolution [18].

We have so far focused on linear Rashba SOI. A similar
analysis can be carried out for Dresselhaus SOI by adding a
term By, (0 .k, — ok,) in Eq. (1). It is well known that in
the absence of Zeeman energy one has I3 (e, = 0, B,) =
—I(ag, B = 0) and IG(ay, = By,) = 0. Therefore, in
the absence of Zeeman energy, the MSHE ‘“‘phase dia-
gram” for Dresselhaus SOI is the same as that of the
Rashba SOI. In the presence of Zeeman energy, our nu-
merical results for Dresselhaus SOI give a similar “phase
diagram.” When both Rashba and Dresselhaus terms are
present, a similar “‘phase diagram” is also obtained nu-
merically for z,, = 0.2 and t,,, = 0.4 (t,,p = Bso/20).

In summary, we have determined the low-field “phase
diagram™ of mesoscopic spin Hall effect. The ‘“‘phase

diagram” is characterized by values of Gy and rms(Ggy)
in the (B, W) plane and the main features include a spin
Hall liquid behavior where both Gy and rms(Ggy) are
nonzero, and by spin Hall insulator behavior where both
quantities vanish. Furthermore, the spin Hall liquid can be
induced by N = odd edge states in weak disorder, and by
destroying edge states for larger disorder. The spin Hall
insulator behavior, on the other hand, is induced by N =
even edge states, and by very large disorder. The MSHE
“phase diagram”” is found to be true for both linear Rashba
and Dresselhaus SO interactions.

This work was financially supported by RGC Grant
No. HKU 7048/06P from the government SAR of Hong
Kong and LuXin Energy Group. H.G. is supported by
NSERC of Canada, FQRNT of Québec, and Canadian
Institute of Advanced Research. Computer Center of the
University of Hong Kong is gratefully acknowledged for
the High-Performance Computing assistance.

*Corresponding author.
[1] J.E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).
[2] S. Murakami et al., Science 301, 1348 (2003).
[3] J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004).
[4] Y.K. Kato et al., Science 306, 1910 (2004); J. Wunderlich
et al., Phys. Rev. Lett. 94, 047204 (2005); S. O. Valenzuela
and M. Tinkham, Nature (London) 442, 176 (2006); X.D.
Cui et al., cond-mat/0608546.
[5] J. Inoue et al., Phys. Rev. B 70, 041303 (2004).
[6] E.G. Mishchenko et al., Phys. Rev. Lett. 93, 226602
(2004).
[71 N. Sugimoto et al., Phys. Rev. B 73, 113305 (2006).
[8] K. Nomura et al., Phys. Rev. B 72, 165316 (2005).
[9] E.M. Hankiewicz et al., Phys. Rev. B 70, 241301 (2004).
[10] L. Sheng et al., Phys. Rev. Lett. 94, 016602 (2005).
[11] B.K. Nikolic et al., Phys. Rev. B 72, 075361 (2005).
[12] D.N. Sheng et al., Phys. Rev. B 72, 153307 (2005).
[13] W. Ren et al., Phys. Rev. Lett. 97, 066603 (2006).
[14] S.Q. Shen et al., Phys. Rev. Lett. 92, 256603 (2004); Phys.
Rev. B 71, 155316 (2005).
[15] S. Kivelson et al., Phys. Rev. B 46, 2223 (1992); see also
D.Z. Liu et al., Phys. Rev. Lett. 76, 975 (1996).
[16] J.R. Shi et al., Phys. Rev. Lett. 96, 076604 (2006).
[17] M.P. Lopez-Sancho, J. M. Lopez-Sancho, and J. Rubio,
J. Phys. F 14, 1205 (1984); 15, 851 (1985).
[18] In our numerics, the spin Hall conductance is taken as zero
if Ggy < 0.002¢/47r. The same criterion is applied to the
spin Hall conductance fluctuation.

196402-4



