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We find theoretically a new quantum state of matter—the valley-polarized quantum anomalous Hall state
in silicene. In the presence of Rashba spin-orbit coupling and an exchange field, silicene hosts a quantum
anomalous Hall state with Chern number C ¼ 2. We show that through tuning the Rashba spin-orbit
coupling, a topological phase transition results in a valley-polarized quantum anomalous Hall state, i.e., a
quantum state that exhibits the electronic properties of both the quantum valley Hall state (valley Chern
number Cv ¼ 3) and quantum anomalous Hall state with C ¼ −1. This finding provides a platform for
designing dissipationless valleytronics in a more robust manner.
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Silicene, the counterpart of graphene [1] for silicon, has a
honeycomb geometry and low-buckled structure. Due to its
novel electronic properties, such as a special Dirac-cone
structure in the low-energy spectrum, silicene has attracted
much attention both theoretically and experimentally [2–9].
Distinct fromgraphene,silicenepossessesastronger intrinsic
spin-orbit coupling (SOC) and a considerable bulk band gap
can open at the Dirac points. Therefore, silicene becomes a
good candidate to realize the quantum spin Hall state [3,4], a
quantized response of a transverse spin current to an electric
field [10–13]. On the other hand, a tunable extrinsic Rashba
SOC from the mirror symmetry breaking about the silicene
plane destroys this effect [10,11]. Interestingly, we theoreti-
cally show below that this helps establish another striking
topological effect—the quantum anomalous Hall effect
(QAHE) [14–20]. Unlike the quantum Hall effects from
Landau-level quantization, the QAHE originates from the
joint effects of SOC and local magnetization. Although the
QAHE has been proposed for over 20 years, there was only
evidence of its realization in amagnetic topological insulator
until recently [20].
Similar to real spin, valleys K and K0 in honeycomb

structures provide another tunable binary degree of freedom
to designvalleytronics. By breaking the inversion symmetry,
e.g.,bythe introductionofstaggeredABsublatticepotentials,
a bulk band gap opens to host a quantum valley Hall effect
(QVHE) [21–26] characterized by a valley Chern number
Cv ¼ CK − CK0 . Besides extrinsic Rashba SOC, intrinsic
Rashba SOC also exists in silicene due to its low-buckled
structure. Considering that intrinsic and extrinsic Rashba
SOCs in silicenegivedifferent responses at valleysK andK0,
it is natural to expect that a new topological phase may
arise due to the coexistence of intrinsic and extrinsic

Rashba SOCs in silicene. Below, we show that the QVHE
canalsobeproduced fromthe interplaybetween intrinsic and
extrinsic Rashba SOCs in silicene without introducing
staggeredABsublatticepotentials, and thestrikingproperties
of both the QAHE and the QVHE can coexist in our new
discovered topological phase.
In this Letter, we report the theoretical finding of a

valley-polarized quantum anomalous Hall (QAH) phase in
silicene.Whenthe time-reversal symmetry isbrokenfromthe
exchange field, the competition between intrinsic and extrin-
sic Rashba SOCs results in a new topological phase; i.e., a
bulkbandgapclosingand reopeningoccurswith the increase
of extrinsic Rashba SOC. Through analyzing the resulting
Berrycurvaturesof theoccupiedvalencebands,weshowthat
the nonzero Chern number directly indicates a QAH phase.
Surprisingly, we further find that valleysK andK0 contribute
to different Chern numbers, i.e., CK ¼ 1 but CK0 ¼ −2. This
imbalance signals a quantum va]lley Hall phase with valley
Chern number Cv ¼ 3. Our finding not only provides a
platform to design low-power electronics but also advances
the application of silicene-based valleytronics.
In the tight-binding approximation, the Hamiltonian for

silicene in the presence of SOCs and an exchange field can
be written as [3,4]

H ¼ −tX
hijiα

c†iαcjα þ it0
X

hhijiiαβ
νijc

†
iασ

z
αβcjβ

− itSO
X

hhijiiαβ
μijc

†
iαðσ × d̂ijÞzαβcjβ

þ itR
X
hijiαβ

c†iαðσ × d̂ijÞzαβcjβ þM
X
iαβ

c†iασ
z
αβciβ; (1)
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where c†iα(ciα) is a creation (annihilation) operator for an
electron with spin α on site i. The first term represents
the nearest neighbor hopping term with hopping energy t.
The second term is the effective SOC involving the
next-nearest neighbor hopping with amplitude t0.
νij ¼ dj × di=jdj × dij, where di and dj are two nearest
neighbor bonds connecting the next-nearest neighbor sites.
The summation over h� � �i (hh� � �ii) runs over all the nearest
(next-nearest) neighbor sites. The third and fourth terms are
respectively the intrinsic and extrinsic Rahsba SOC with
tSO and tR the corresponding strengths. d̂ij ¼ dij=jdijj,
where dij represents a vector from site j to i, and μij ¼ �1
for an A or B site. The last term is an exchange field M,
which arises from the interaction with a magnetic substrate.
By transforming the real-space Hamiltonian in Eq. (1)

into a 4 × 4 matrix HðkÞ for each crystal momentum k on
the basis of {ψA↑, ψA↓, ψB↑, ψB↓}, the band structure of
bulk silicene can be numerically obtained by diagonalizing
HðkÞ. Figures 1(a)–1(f) plot the evolution of the bulk band
structure along with the increase of extrinsic Rashba SOC
tR. Thanks to the absence of intervalley scattering, valleys
K and K0 remain good quantum numbers and distinguish-
able. In the absence of extrinsic Rashba SOC tR=t ¼ 0, one
can see that bulk band gaps open at valleysK andK0. When
the Fermi level lies inside the bulk energy gap, it is known
that this insulating state is a QAH insulator, which is
characterized by a nonzero Chern number C [27–29]
calculated from

C ¼ 1

2π

X
n

Z
BZ

d2kΩn; (2)

where Ωn is the momentum-space Berry curvature for the
nth band [27,30,31]

ΩnðkÞ ¼ −X
n0≠n

2Imhψnkjvxjψn0kihψn0kjvyjψnki
ðεn0 − εnÞ2

: (3)

The summation is over all occupied valence bands in the
first Brilloin zone below the bulk energy gap, and vxðyÞ is
the velocity operator along the xðyÞ direction. The absolute
value of C corresponds to the number of gapless chiral
edge states along any edge of the two-dimensional system.
When tR=t ¼ 0, the Chern number obtained from the tight-
binding Hamiltonian is C ¼ 2. Furthermore, by evaluating
the Berry curvature and then integrating over the neighbor-
hood of the K or K0 point, we can obtain the Chern number
of each valley based on the continuum model Hamiltonian.
The Chern number contribution of each valley is found to
be CK ¼ CK0 ¼ 1. In this case, the corresponding valley
Chern number Cv ¼ CK − CK0 is vanishing. As plotted in
Figs. 1(b)–1(f), when the extrinsic Rashba SOC gradually
increases from tR=t ¼ 0.01 to tR=t ¼ 0.09, we find that the
bulk band gap at valleyK always increases. To our surprise,
the corresponding bulk band gap at valley K0 closes and
reopens twice, signaling two possible topological phase
transitions.
Let us now explore the topological properties of the

resulting two phases based on the Chern number calcu-
lation described in Eq. (2). In the first phase after the gap
reopening shown in Fig. 1(d), the Chern number is obtained
to be C ¼ −1. Since the bulk gap near valley K does not
close, the resulting Chern number remains unchanged as
CK ¼ 1. However, the corresponding contribution from
valley K0 becomes CK0 ¼ −2. Naturally, this imbalance of
the Chern number contributions from valleys K and K0
gives rise to a nonzero valley Chern number Cv ¼ 3. This
means that the new topological insulating effect is both a

FIG. 1 (color online). Evolution of band structures of the bulk [(a)–(f)] and zigzag-terminated [(g)–(l)] silicene as a function of
extrinsic Rashba SOC tR at fixed intrinsic Rashba SOC tSO and exchange fieldM. (a) tR ¼ 0. Bulk energy gaps open around the K and
K0 Dirac points. The size of the bulk gap near valleyK is exactly the same as that near valleyK0. (b)–(f) tR=t ¼ 0.01, 0.031, 0.045, 0.067,
0.09, respectively. Along with the increasing of tR, the bulk gap around valley K gradually increases, while the bulk gap near valley K0
closes twice [see panels (c) and (e)] and reopens twice [see panels (d) and (f)]. (g)–(l) The valley-associated gapless edge modes at valley
K is unchanged, but those for valley K0 change; i.e., there are two or one pair of edge modes after the bulk gap reopens. Colors are used
to label the edge modes localized at opposite boundaries. Other parameters are set to be t0=t ¼ 0.002, tSO=t ¼ 0.08, and M=t ¼ 0.5.
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QAHE and a QVHE. In the presence of short-range
disorders, intervalley scattering is inevitable, e.g., at the
upper boundary, edge mode A can be easily scattered back
into modeD (or F), and at the bottom boundary edge mode
B can be scattered back into mode C (or E) [see Fig. 2(d)].
Therefore, only one pair of edge modes F (or D) and E (or
C) can survive due to the protection from spatial separation.
In this case, the Chern numbers at valley K and valley K0
are respectively CK ¼ 0 and CK0 ¼ −1. The total Chern
number is still C ¼ −1 while the valley Chern number
becomes Cv ¼ 1. To sum up, under any kind of disorder,
our proposed state is a QAH state exhibiting a net valley-
polarized current. For simplicity, hereinafter we name it a
valley-polarized QAH state. To our knowledge, this is the
first time such a phase is reported. To further explore this
new phase, in Fig. 2(a) we show the contour of its Berry
curvature distribution in the (kx, ky) plane. Figure 2(b) plots
the Berry curvature as a function of kx at fixed
ky ¼ 2π=

ffiffiffi
3

p
. One can find that the Berry curvatures are

mainly localized around the valley points, and obviously
the Berry curvature density near valley K is different from
that near valley K0. This is a direct consequence of the
inequality of the Chern number carried by valley K and K0.
In another new phase after the second topological phase
transition for even larger tR [see Fig. 1(f)], the Chern
number becomes C ¼ 2 again, where CK ¼ CK0 ¼ 1 and the
corresponding Cv ¼ 0, indicating that this phase is the
conventional QAH state. In this way, we have realized a
Chern-number-tunable QAHE by controlling the extrinsic
Rashba SOC strength.
In addition to the Chern number, the gapless edge mode

inside the bulk energy gap provides a more intuitional
picture to characterize the QAHE. Figures 1(g)–1(l) plot the
one-dimensional band structure of a zigzag-terminated
silicene ribbon. One can observe that at valley K there
is always one pair of edge modes for any extrinsic Rashba
SOC strength, while at valley K0 the corresponding edge
modes vary along with the topological phase transitions,
i.e., after the first and second topological phase transitions
there are respectively two and one pair of edge modes. To
better reflect the special properties of the valley-polarized

QAH phase, in Fig. 2(c) we provide the magnified band
structure of Fig. 1(j) to analyze the edge modes labeled
A-F. It can be seen that the pair of edge bands labeled A and
B connect the conduction band with the valance band at
valley K, whereas the other two pairs of edge bands labeled
C, D, E, and F connect the conduction band with the
valence band at valley K0. Through studying the wave
function distribution of the gapless edge states inside the
bulk band gap shown in Fig. 2(c) and from the energy
dispersion, we find that the edge modes of the valley-
polarized QAHE have the form plotted in Fig. 2(d): (1) there
are three edge states localized at each boundary, (2) for the
upper (lower) boundary, two edge states encoded with
valley K0 propagate from right (left) to left (right) while one
encoded with valley K counterpropagates from left (right)
to right (left), and (3) a valley-polarized edge current is
produced.
Below, we present a simple theory to reveal the physics

behind the formation of this valley-polarized QAHE
through strictly solving the low-energy continuum model
Hamiltonian. By expanding the tight-binding Hamiltonian
shown in Eq. (1) in the vicinity of valleys K and K0, a four
band low-energy Hamiltonian can be written as

H ¼ vðησxkx þ σykyÞ1s þ ηλ0σzsz þ λSOσzðkysx − kxsyÞ
þ λRðησxsy − σysxÞ þM1σsz; (4)

where η ¼ �1 label valley degrees of freedom. σ and s are
Pauli matrices representing, respectively, the AB-sublattice
and spin degrees of freedom. The Fermi velocity, effective
SOC, and intrinsic and extrinsic Rashba SOC are given by
v ¼ ffiffiffi

3
p

t=2, λ0 ¼ 3
ffiffiffi
3

p
t0, λSO ¼ 3tSO=2, and λR ¼ 3tR=2,

respectively. Through diagonalizing Eq. (4), the energy
spectrum can be expressed as [32]

ε21;2;3;4¼M2þk2v2þ2λ2Rþk2λ2SO

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4Rþk2ðM2v2−2ηMvλRλSOþλ2Rðv2þλ2SOÞÞ

q
;

(5)

FIG. 2 (color online). (a) Contour of Berry curvature distribution in (kx, ky) plane for the valley-polarized QAHE. (b) Berry curvature
distribution as a function of kx at fixed ky ¼ 2π=

ffiffiffi
3

p
. (c) The band structure of zigzag-terminated silicene exhibiting the valley-polarized

QAHE [same as that in Fig. 1(j)], where colors are used to label the edge modes localized at opposite boundaries. (d) Valley-associated
edge modes for the valley-polarized QAHE.
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where ε1 ¼ −ε4 (ε2 ¼ −ε3) correspond to high (low)
energies. When the extrinsic Rashba term is turned off,
i.e., λR ¼ 0, the four eigenenergies become valley inde-
pendent. Therefore, the contribution from each valley is
identical, giving rise to a nonpolarized QAHE. After
turning on the extrinsic Rashba term, we find that for
valley K (η ¼ þ1), ε2 ¼ −ε3 < 0 is valid for any λR,
signaling no band gap inversion, while for valley K0
(η ¼ −1), ε2 ¼ ε3 ¼ 0 can be satisfied for a certain
extrinsic Rashba SOC strength. At k ¼ 0, the four eige-
nenergies are separated. Therefore, the gap closing occurs
at a finite momentum k. To verify our analysis, in Fig. 3 we
plot the band gap evolution as a function of extrinsic
Rashba SOC tR for both valleys K and K0. One can observe
that the band gap for valley K always opens, indicating that
the phase is not changed. But for valley K0, the band gap
closes and reopens at a critical tR, indicating that a
topological phase transition occurs near valley K0 at jkj ¼
0.20 [33]. The topologically different responses of valleys
K and K0 arise from the interplay between the intrinsic and
extrinsic Rashba SOCs. As shown in the third term of
Eq. (4), the momentum-related intrinsic Rashba SOC
couples with the pseudospin degree of freedom of the
AB sublattice, which produces a varying staggered poten-
tial in the momentum space, and usually the AB staggered
sublattice potential can induce a QVHE [21,22]. The fourth
term in Eq. (4) is the valley-dependent extrinsic Rashba
SOC, which can lead to the conventional QAHE in the
presence of an exchange field [17]. Therefore, the com-
petition between the extrinsic and intrinsic Rashba SOCs
results in the coexistence of the QAHE and the QVHE,
giving rise to the newly proposed valley-polarized QAHE.
Finally, we provide a phase diagram in the (tSO, tR)

plane. Figure 4 clearly shows that there are three topo-
logical phases separated by two dotted lines representing
the topological phase boundaries. Here, we use colors to
signify the size of the corresponding bulk band gap. From

the Chern number calculation, we show that the Chern
number in phase I is identical to that in phase III, i.e.,
C ¼ 2. However, in phase II the Chern number is C ¼ −1
and the valley Chern number is Cv ¼ 3, which is exactly the
newly found valley-polarized QAHE.
In summary, through tuning the Rashba spin-orbit

coupling in silicene, we numerically find a new topological
phase—the valley-polarized quantum anomalous Hall state.
Different from the conventional quantum anomalous Hall
state, the new topological phase has not only a quantized
Chern number C ¼ −1, but also a nonzero valley Chern
number Cv ¼ 3. Therefore, it possesses the properties of
both the quantum anomalous Hall effect and the quantum
valley Hall effect, and can be considered as a good
candidate for designing dissipationless valleytronics. The
Rashba spin-orbit coupling can serve as a topological
switch to drive silicene from a conventional quantum
anomalous Hall phase to a valley-polarized quantum
anomalous Hall phase, which can be realized by controlling
the adatom coverage in silicene.
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