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Steady-advection-reaction equation

e The steady advection-reaction equation with homogeneous inflow boundary condition is
B-Vu+puu=f in Q,

u=20 onoQ—,

with 8 € R the advection velocity, .. the reaction coefficient, and f the source term.

The inflow boundary 9Q~ is defined as

89~ := {x € 0Q | B(x) - n(x) < 0}.

e The steady advection-reaction equation can also be written in the conservative form
V- (Bu) + fiu = 0,
withpg:=p—V-g.
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Steady-advection-reaction equation

e The data n and 8 are assumed to be in the function spaces,

pelL=(Q),  BelLipQ)]%
with Lip(2) the space spanned by Lipschitz continuous functions: v € Lip(Q2) if there exists
a Lipschitz constant Ly s.t. Vx,y € Q,
v(x) —v(y)l < Lvlx = yl,
with |x — y| the Euclidian norm of x — y in R,

o In addition, we assume that Q is a polyhedron in R? and that there exists a jo > 0 s.t.

]
fel?(Q) and N=p=5V-B>p aeinQ
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Steady-advection-reaction equation

o Since j € [Lip(2)]? there holds 5 € [W'>(Q)]% with [|V ;I e < Lg;»
vie{1,---,d}, with (84, -+, Bg) = B (Brenner and Scott, Math. Theory. FEM, 2008).

We also define L[} = maxqi<i<d Lﬁi'

e The regularity assumption on 3 can be weakened to a bound on ||B||[Loo(ﬂ)]d and
IV - Blleo (@)

e Define the parameters

7o 1= {max(||ull o) Le)} s Be = IBllee@as

which can be considered as a reference time and velocity.

o Note, 7¢ is finite since if || 1|| oo (q) = Lg = 0 this implies A = 0, which contradicts
N> po>0ae. inQ.
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Graph space
Next we need to consider the function spaces in which the solution of the advection-reaction
equation must be sought.

o Let C5°(R2) be the space of infinitely differentiable functions with compact support, which is
dense in L2(Q).

For a function v € L?(R), the statement 3 - Vv € L?(Q) means that the linear form
CF@36m = [ vV-(as) e,
is bounded in L2(Q). That is there exists Cy s.t.
Vo C@) [ vV-(89) < Culldllzgoy

Using the Riesz representation theorem, the function 3 - Vv is thus defined as the function
representing the linear form — [, vV - (8¢) in L2(Q).
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-
Graph space

e Proof.

- [ v wo =~ [ vin-me [(8-5v0

= /(ﬂ -Vv)¢  (since ¢ € C§°(Q)
Q

<NB - VY2 ol 2

< Cvllllz(q) (With Cy = [|B - VV]|2(q) < oo since B - Vv € L3(Q))
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-
Graph space

e (Graph space) The graph space is defined as

Vi={vel?Q)|B-Vvel}Q)}

and is equipped with the scalar product: Forall v,w € V,

(v, W)y == (v, W) 2(q) + (B-VV, 8- VW) 2q

1
and graph norm [|v||y := (v, v)7.
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Graph space

e Lemma. (Hilbertian structure of graph space). The graph space V together with the scalar
product (v, w)y is a Hilbert space.

Proof. Let (va)nen be a Cauchy sequence in V, then (vn)nen and (8 - Vva)nen are Cauchy
sequences in L?(9Q).

Let v and w be the limits of (vVn)peny and (8 - Vva)nen in L2(R) as n — co.

Let ¢ € C3°(R), thenVn € N,

[ 80) == [ (8- Tun)o

/vv ﬁ¢+/vw (89) = /(/3 V)b - — /w¢

This means that v € V with - Vv = w.

so that
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Traces in graph space V

e Define the space
L2(|8 - n|; 8Q) := {v is measurable on 69 | /an 18- n|v? < oo},
and the outflow boundary
90" == {x € 9Q | B(x) - n(x) > 0}.
Assume that the inflow and outflow boundaries are well separated

dist(0Q~,0Q7") := min [x—y|>0
(x,y)e00Q— xo00t

Note, this means that 9Q~ and Q™ must be separated by a part of Q with |3 - n| = 0.
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Traces in graph space V

e Lemma. (Traces and integration by parts rule). The trace operator
7: C%Q) 3 v (V) == Vlsa € L3(|8 - n|; Q)
extends continuously to V, meaning that thereis a C, s.t. Vv € V,
IV)lli2qig.n00) < CrlIVIv-

Moreover, the following integration by parts formula holds. For all v,w € V,

/(([3’~Vv)w+(ﬁ~Vw)v+(V-,8)vw):/ (B n)vw.
Q 89
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Traces in graph space V

Proof. Assume that the inflow and outflow boundaries are separated.

Then we can define then the functions —, ¢+ € C>(Q) such that
YTyt =1 inQ,

and

¢ log+r =0 and ¢*|yq- =0.
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Traces in graph space V

Let v € C>(Q), then

215 . 0 — 2+ = 2=18 - 28 -
[ #enl= [ et euoiaeni= [ Esiaenis [ vutisen
(since at 9Q\ (02~ U IQ™) we have |5 - n| = 0)
:/ v2(w+7w*)(,84n)=/V-(v2(1/)+71/1*)ﬁ) (use Gauss’ theorem)
o9 Q
= [V = 2 —u)(8- VY)Y
SV (@ =)l @ IVIIE2 gy + 1197 = %™ oo @) (IVIIE2 gy + 118 - VVIIZ )

< CyvIy,  with Cy = IV - (" =¥ 7)B) o) + 197 = ¢ [loe o)-
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|
Traces in graph space V

Hence for all v € C>°(Q) we have

2
IVlli2(5.nj:00) < CIIVIIY-

Next, consider v € V. Since C>°(Q) is dense in V there is a sequence (Vn)necr in C2 ()
convergingtov € V.

The inequality
Iv(va)ll 21 5. n1;00) < Cyllvally

implies that v(vn) is a Cauchy sequence in L2(|3 - n|; 9Q), with limit v(v) as n — oco.

The integration by parts formula can also be proven using a density argument.
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Traces in graph space V

e Counter example for inflow-outflow separation.

The separation of inflow and outflow boundaries is necessary if one wants traces in
L2(]6 - nl; 6).

Consider the triangular domain
Q:={(x,%) eR?|0< X <1st |x] < X},

and set 8 = (1,0)".

Then the function u(xy, X2) = x§* is in V provided o > —1, but y(u) is only in L2(|8 - n|; 8Q)
ifa> -3
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Traces in graph space V

Proof.
1 Xo 1
/uzdx1 dx2:/ xzzo‘(/ dx1)dx2=/ 202 dxy,
Q 0 —Xp 0

which is finite is « > —1, then u € L?(Q).

Since 4 - Vu = (1,0)! - (0,ax5""") = 0 we have u € V.
Ao~ = {(x1,x2) € R? | x = —x1, % € (—1,0)} we have n = (—3v2,—}v/2), hence
0 1
/ |8 - nju?ds =/ —V212%V/2dt,
89— —12

which integral is finite if 2a > —1, which implies o > f%.

For —1 < a < —J we thus have u = x§* € V, but y(u) & L2(|8 - nl; 09).
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Weak formulation and well-posedness

e For areal number x define its positive and negative parts as

1 1
o ._ o ._
x® = (x| +x x© = —(|x| = x).
2(| |+ x), 2(| | —x)
Note, x® and x© are both non-negative.

o Define the bilinear form a(v,w) : V x V — R,

a(v, w) ::/quw—s—/ﬂ(,&Vv)w—&—/aQ(ﬂn)evw.
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Weak formulation and well-posedness

e The bilinear form a(v, w) is bounded on V x V,
1
la(v, w)| < (1 + [l @) 2 IVIVIWI 20y + CEIIVIIVIWIlY.

Proof.

la(v, w)| < llullise @) IVIl 2y Wl 2@y + 18- VVII2(0) Wl 2(0)

+ C'?/”VHLZ(Q)”W”Lz(Q)

/ww-n)@vw=/BQ\/(ﬁ-n)@v\/wn)@w
< ([ me) ([ o o)’

S I lizqg-npso) V(W 2( 5.01:00)

since

2
< CGilviiviiwlly-
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Weak formulation and well-posedness

e The steady advection-reaction equation can be represented in the weak form
Findue V,st.  a(u,w) :/ fw  vVweV. (1)
Q
with bilinear form a(v,w) : V x V — R,

a(v, w) ::/quw—k/n(ﬂVv)w—k/m(ﬂn)evw.

e (Characterization of the solution of (1).) Assume that u € V solves (1). Then

B-Vu+puu=f a.e. inQ, (2)

u=20 a.e. inoQ".
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Weak formulation and well-posedness

e Proof. Taking w = ¢ € C§°(£2) in the weak formulation (1) gives

/Q(MU-FB'VU—'%:O,

hence (2) follows since ¢ is dense in L2(Q). Using (2) into (1) then implies for all w € V that
(8- n)uw =0.
oQ

Choosing w = u then gives
(B-n°u?=0.
oQ

This implies u = 0 at 9Q~ since (8- N)© > 0 at 9Q .
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Weak formulation and well-posedness
o Lemma. (L2-coercivity of a(u, v)). The bilinear form a(u, v) is L?(Q2)-coercive on V, namely,

1
Vv eV, a(v,v) > pollv|? +/ 18- |v?
( ) OH ||L2(Q) 50 2| |

Proof.

av) = [wi+ [(@wovs [ (5oneve

Using the integration by parts rule with w = v gives

[@- v+ vvv+ o= [ (m
Q N

f@- == [ a5 [ @nv

thus
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Weak formulation and well-posedness

Hence

a(v,v) = /Q (uv2 - %(V-ﬁ)v2> +/{m %(6 -n)v? —&—/89(,6’~n)9v2

1
:/Av2+/ —|8 - n|v?
Q 0 2

1
> ol + [ 5180l

e A consequence of the coercivity of the bilinear form a(u, v) is that the weak formulation (1)
has at most one solution.
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Well-posedness

e The steady advection-reaction equation stated in the weak form

Findue V,st. a(u,w)= / fw VwelV. (3)
Q

is well-posed.

e Proof. First, consider (3) with boundary condition u = 0 at 9Q~ strongly enforced.

Define Vg := {v € V| v|5q- = 0} and consider

Find u € Vo st. ao(u, w) = / o vwe L2(Q),
Q
with

ag(v, w) ::/quer/Q(,B-Vv)w.
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Well-posedness

For well-posedness we need to use the BNB-theorem

e Theorem (BNB theorem). Let X be a Banach space and let Y be a reflexive space.
Letae £L(X x Y,R)andlet f € Y’. Then the problem:

Findu e Xsit. a(u,w) = (f,w)y, y Ywe Y

is well posed if and only if

i) Thereisa Cgy > 0s.t.

a(v,w)

Vv e X, Csallvlx < sup .
wev\ioy IIwlly

iy Forallwe Y, a(v,w) =0 implies that w = 0, Vv € X.

Use the spaces X = V and Y = L2(Q). Since V; is a closed subspace of the Hilbert space
V, V, is also a Hilbert space.

We also have that L2(Q) is reflexive (actually (L?(Q))" = L2()).
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Well-posedness

Check the conditions of the BNB-theorem

Letve Vpandset S= a(v,w)
werz@)\ {0} IWlliz(o)

Using the coercivity of a(u, w), we have

1 1
a(v.v)= [(i=5V-mv+ [ S(5-nve
1 ) _
z ”0”‘/‘@2(9) + /am PIGA nv?  (since v=0atoQ")

> ollVIIZ g (since 8- n > 0atoQ™).
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Well-posedness

Hence, for v # 0, we have

1 1 a(v,v)
V2o < —ao(v,v) £ — 2|V
Mz < 5200 = g, M@
1 ag(v, w)

vl L3)v)
> p 2 = — 12(Q)-
1o werz@n (o3 Wlhiz@y' =@ po @

Thus [|v[|;2(q) < uioé forall v e V.

Moreover
-Vv)w ap(v,w) — vw
sup fQ(B ) _ sup 0( ) fQ/J
wer@ {0y Wiz werz@ngoy Wiz

18- VVll2q)

IN

S+ llelle@lIVIi2e

< (1+ pg ullis ().
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Well-posedness

Collecting all terms gives

_ _ =2
”V”%/ = HV”fZ(Q) +118- VV”%Z(Q) < <N0 2 +(1+ Ho ! ”NHLOO(Q))Z)S s
hence

1

_ _ 3 ag(v, w)

Wl < (g2 + (1 + 15 lllioe (o)) ° 2L
wer2@)\{0} [1Wlli2(0)

which is condition i) in the BNB-theorem.
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Well-posedness

e Proof of condition ii) in the BNB-theorem.

Let w € L?(Q) be such that ag(v, w) = 0 forall v € V.

Since Cg°(2) C Vo (and dense) we obtain for v € C5°(Q2) that ap(v, w) = 0 implies there is
a distribution

0:ao(V,W):/vaw—i—/Q(B~VV)W:L(uw—v-(ﬂw))v (since v € C3°(Q)),

which implies

uw —V - (Bw) =0 in Q,

hence B-Vw = (u— V- B)w € [2(Q), thus w € V.
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Well-posedness
Use now the integration by parts formula

/(?Q(ﬁ-n)vw:/ﬂ((ﬁ-Vv)w+(B-Vw)v+(V~B)vw)

—ao(v.w)~ [(u= V- B+ [ (3w

=a(v,w) (sincef-Vw=(u—V- B)wel3Q)
=0.

Taking v = ¢t w, with ¢ *|5— = 0, then v € ; yields

/E)Q(B'”)VW:/m(ﬁ'”)w+ 2=/BQ+(/6’-H)W2:/m(,ﬁ-n)@wzzo,

hence w|gq+ = 0.
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Well-posedness

Since pw — V - (Bw) = 0in Q, we have from ay(w, w) = 0 and the coercivity of a that

1 1
0= 2_y. :/ _ly. 2_/,, 2 2
Jmw = @wpw = [ =30 ppwE = [ (5 mwe > ol g,
where we used [, %(,8 -mw? < 0 since w|sn+ = 0.
Hence ||w|| 2(q) < O, which implies that w = 0.

Condition ii) in the BNB-theorem is thus satisfied.

The existence of the solution results from the fact that u solves

findu e Vst a(u,w) :/ fw VYweV
Q
since for u € Vy C V we have for all w € V that a(u, w) = ap(u, w).

Finally, uniqueness of the solution follows from the L?(2) coercivity of ag.
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Nonhomogeneous boundary condition

e Consider the nonhomogeneous boundary condition
u=g onoQ .
Extend the data g to Q2 by setting g = 0 at 9Q\90Q~ and assume that
g € L3(|8 - n|; 09).
The steady advection-reaction equation weak form is

Findu € Vst a(u, w):/fw+/ (3-mCgw  Vwe V.
Q o0
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Surjectivity of traces

We first need to consider the surjectivity of the trace operator ~.

Consider the trace operator v : V — L2(|3 - n|; 99) with v(v) := v|aq.

o (Surjectivity of traces). For all g € L?(|3 - n|; 8Q), there isa ug € V s.t. ug = g a.e. in
o0~ NoQt.

Moreover, there is a C, only depending on Q and 3 s.t.

lugllv < Cliglli2(ig.n1:00)-

Proof. Let g € L2(|8 - n|; 8Q) and ¢g : V — R be the linear map s.t. Yw € V,

(W) = /8 (3 mgw.
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Surjectivity of traces

From the trace theorem we have

IWlli2(i5.n1:00) < Cyllwllv
hence using the Cauchy-Schwarz inequality

[Pg(W)l < NIgll2(1-ny.00) 1WIl 2( 8. ny:00)

< CylI9llizqig-ny00) Wl

thus g € V' and [[gllvr = supwe s g0y 22852 < Cyllgll 2 (5.npom)

From the Riesz representation theorem we obtain that there existsaz € V s.t. Vw € V,

(2 W)vf/ZW-&-/ B-V2)(8- VW) = tig(w / (8- n)g (4)

32/98



Surjectivity of traces

Set ug := B - Vz € [2(Q). Next, we check if ug € V. Takingw = ¢ € C5° () in (4) gives

/ ug(B- Vo) = —/ z¢ (since ¢ = 0 at 09).
Q Q

Use the relation

[ 05 99) = [ 167+ (50) — us(¥ - 5)o,
Q Q

then we obtain
[ 067 (30) = [ u(8- V) + us(¥ - 5)e
Q Q

== [ 2o+ [V Bupe.
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Surjectivity of traces

We also have the relation

/ugv~(6¢):/V~(ugﬁ¢)—Vug~B¢
Q Q

- / (B-Vug)d (using integration by parts and ¢ = C5°(Q)).
Q

/Q UgV - (66) = / 26+ / (V- B)ugs

Hence from

we obtain

_/Q(ﬁ-vug)¢+/ﬂz¢—/ﬂ(v~6)Ug¢:0 Vo € Gy°,

which implies 8- Vug = z — (V - B)ug € L2(Q). Thus ug € V.
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Surjectivity of traces

The relations ug = 8- Vzand 8- Vug = z — (V - B)ug can be used to obtain the estimate

gl = 1622 0y + 118 - Vgl
— 18-Vl + ll2— (V- gl
<|B- VZHEZ(Q) + QHZ”fz(Q) +2|v- B‘ZHUg”fz(Q)
<118+ V2l + 2122 ) + 21V - BIEIB - V2IEeyg

= (1 42|V - 8RB V2l g + 2112 g,

Hence
lugllv < Cllzllv-
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Surjectivity of traces

Next, since
IzI3 = /B (8- Mgz = vg(2) < Clgli o0 121V
we have
Izlv < C'llgllv: < Cligllizqip.np00):
hence

lugllv < C'lizllv < Cligll2( .00

where C, C’ only depend on Q and 3.
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Surjectivity of traces

Using the integration by parts formula we obtain for all w € V,

/m(ﬁ~n)ugw:/Q(ﬂ~Vw)ug—s-/ﬂ(ﬁ~Vug)w+/Q(V~B)ugw
= [V e-v2)+ [ 2w
(usingug = -Vzand 8- Vug =z — (V- B)ug)

= /aﬂ(ﬁ -n)gw,

where in the last step we used the Riesz representation theorem, namely that there exists a z € V
s.t.Vw e Vst

(2, w)v:/gzw+/ﬂ(ﬁ~w)(ﬁ~w):wg(w):AQ<ﬁ-n)gw.
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Surjectivity of traces

Since

[ Gmu-gw=0 wwev,
oN

and using the density of C$°(Q) in V we have

ug=g aeinQ nNQ .
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Well-posedness

e Theorem. (Well-posedness) The weak formulation
Find u € V st. a(u,w):/flm+/ (B-mEgw YweV
Q o9

is well-posed. Moreover, its unique solution u € V satisfies

B-Vu+puu=f a.e.in Q

u=g a.e.inodQ~.
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Well-posedness

Proof. Let ug € V with ug = g a.e. in Q~ N 9Q™* be given. Consider

Findv e Vst a(v,w) = /Q fw — ag(ug, w) Yw eV,
with

ap(v,w) = /quw +(B-Vv)w.
The map V 3 w — ay(ug, w) € R is bounded in L2(Q) since Yw € L?(R),

|ao(ug, w)| = |/QMU9W+ (B Vug)w|

1
< (1 Dl ey ) * gl v Wl 2y

< Cligllizqp.1:00) Wl i2()-
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Well-posedness

Using Riesz’ representation theorem we have

/ fw — ap(ug, w) = /7w for some f € 12(Q),
Q Q

hence the weak formulation is well-posed with the modified righthand side 7,

As before we can prove that u = v + uy satisfies
pu+B-Vu=f in Q,
and with v = 0 and ug = g on 02~ we obtain,

u=g onoQ~.
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Central fluxes

e Discrete problem:

Assume p € L>(Q), B € [Lip(Q2)]?. Seek a solution of the advection-reaction equation in
the broken polynomial space P";(ﬁ,).

Set V) := ]P’g(ﬁ) and consider the discrete problem
Find up € Vi s.t. ap(up, vi) = / fvp (ap yet to be defined).
Q

In order to prove consistency of the DG discretization by plugging in the exact solution into
ap we need slightly more regularity.
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Central fluxes

o (Regularity of exact solution) Assume that there is a partition Po = {Q;}1<j<n, Of Q into
disjoint polyhedra such that the exact solution u satisfies

ue Vi:=VnH(Py),
and set V,p := Vi + V.
This assumption implies that VT € 7, u|t has traces on each face F € Fr and
trace(u) € L2(F).

e Lemma. (Jumps of u across interfaces). The exact solution u € Vi is s.t. VF € ]-',"7

(B-ne)[ul(x) =0 ae.forxeF.
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Central fluxes

Proof. Let F € F} with F = 8Ty N 9 T>.

This interface can be partitioned into a finite number of subsets {F;}1<j<n, s.t. each F; is shared
by at most two elements in Pq.

Assume F; is shared by Q4,Q, € Pq. Let ¢ € C5°(£2) with support only intersecting F; and
Qq, Q.

Since ¢ € C§°(R2), u € V, the integration by parts formula gives
[ (7 pyus+ (5 Voo +u(s-va) =o.
Using that the support of ¢ is only non-zero over Q4,Q,, we have
o= [tor=[ toyr [ god= [@ e
Q TiNQ T,NQ F
Since ¢ € C§°(Q) is arbitrary we thus have (5 - ng)[u](x) =0 fora.e. x € F.
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Central fluxes

e Remark. The condition (3 - ng)[[u]](x) = 0 does not say anything on the jumps of the exact
solution when 8- ng = 0.

o Remark. (Weaker regularity assumption). The assumption u € V. n H%+€(PQ), e > 0is also
sufficient since this ensures that trace(u) at F is in L2(F).
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Heuristic derivation DG discretization

e Starting point for the DG discretization is a discrete bilinear form 3510) obtained from a by

replacing 3 - V with 8 - V,.
Define 3570) Viphx Vp > Ras
(o) = [ (v + (3 oywn) + [ (3 ) v,

The bilinear form aﬁlo) is consistent since the exact solution satisfies

B-Vu+puu=f a.e.inQ

u=20 a.e.on o0 .
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Heuristic derivation DG discretization

e Coercivity of the bilinear form a is not transferred to the discrete bilinear form aﬁ,o).

Consider v, € Vp,

35,0)(th Vh) :/QuVﬁ-F > /T(ﬁ-VVh)Vh-F/aQ(ﬁ'”)evﬁ-

TeTh

Use V- (3V2B) = (B VVh)Vh + 5 VBV - B, then

1 1
) = [k =570+ 3 [ Sk m+ [ 8onev

TE€Th

1
SRR S W R Y CROR;

T€Th

With A = p— 1V - B.
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Heuristic derivation DG discretization

Use the fact that nr, = —nr, if the elements Ty and T» are connected at a face F = TiNT,.

This gives the relation

S [ e mi=% [l i T [ 56y

T€Th FeF] Ferp
with [va]l = val — Valg-

Forall F € }';', with F =0Ty NoTo, v,-\T,,, i€ {1,2} we have

TIRL= 204~ B) = 2w — ) +v2) = LIvlwb,

hence

) = [ ME+ 32 [ (5 mollvnd + Py /—(5 mi+ [ (8en

FeF]
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Heuristic derivation DG discretization

Next, we use the relation

2E MGG = L3R+ L8 nE - L8
1
= 5|5'”|VE-

The bilinear form aﬁo) is thus equal to

)= [ M+ S [ molvlnd + [ 5100k

FeF]

The second term on the righthand side has no sign a priori and must be removed to obtain
coercivity.
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Heuristic derivation DG discretization

e Define the bilinear form aﬁf :Venx Vp - Ras

agf(v, wp) 1 = /Q (uvw—s— (,B~th)wh) +/60(ﬁ -n)Cvwy,

- % [ nonimD.

FeF]
Note, since (8 - ng)[[u]] =0 forall F € ]-',"7 the bilinear form is still consistent.
The coercivity of ag’ can be expressed in the following norm on V4,
2 —1)|112 1 2
VI o= 7 Ve + [ 518+,

with 7¢ = {max(|pll Lo (@), Lg)}~" and Lg the Lipschitz constant for 3.

Note, ||| - |||cf is @ norm since || - ||L2(Q) is a norm.
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Heuristic derivation DG discretization

e Lemma. (Consistency and discrete coercivity). The discrete bilinear form aﬁf satisfies the
following properties

i) Consistency, namely for the exact solution u € Vi,

aﬁf(u, Vh) = /Q fvp Yvp € V.
ii) Coercivity on V}, wrp. to the ||| - |||o norm,

Yvh € Vi, &% (Vi Vi) > Csta |l| valllZ,

with Cstg := min(1, Tcp)-
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Heuristic derivation DG discretization

Proof. Consistency was already verified.

Coercivity follows directly from the construction of a,cf since

)
() = [ ME+ [ Z1nivg
Q o0
2
2 CSta I” Vthc{v

with Cstg := min(1, Tcpg)-
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Heuristic derivation DG discretization

e Lemma. (Equivalent expression for aﬁf). For all (v, wp) € V. x Vj there holds

v = [ (= -pyvwn—v(3- Vo) + [ (3 m)®wm,

+ 3 /F (8- ne){VBIWi].

i
FeF)

This expression is useful to identify the numerical fluxes in the DG discretization and to
analyze an upwind-type DG discretization.
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Heuristic derivation DG discretization

Proof. We start with the original expression for aff

all(v,wy) : = /Q (uvw+ (8- th)wh> +~/BQ(B - n)Svwy,

S KCRLOTU A

FeF]

Use

V- (Bvwh) = (8- Vpv)Wh + (8 - Vawn)v + vwiV - B,
then we obtain

afl(v.um) = [ (= -Byvwn—v(3-Vown) + 3= [ (5 nrym,

T€Th

S RCHONCED D ARSI U T S

FeF}
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Heuristic derivation DG discretization

Use the relation

> [ =3 [t 3 [ mw,

TeTh FeF] Ferp
h h

since B has a continuous normal component at F € }‘,",. Next, use, with v; = v|1,, w; = w|7,,
i€{1,2},

[vwn] = viwy — vowp
1 1
= 5 —ve)(wr + w2) + S(vi + v2)(wr — we)

= [vI{wn} + {v3Iwal.

55/98



Heuristic derivation DG discretization

The integrals at the element faces and domain boundary then can be evaluated as

> [ Gmnwn+ [ (5mPvn— 32 [ (5 nn) 1w}

TeTh FeF)

= 5 [ (3 m011mn} + (5 ne) [ wn)

FeF]
+ > M+ | S (18-l = (5 n)vw, — > -ne)[VI{wn}
Fe -Fb/ / Fe]—"/
=% [@mwrml+ X [ 5081+ (3 v,
FeF} FeFp
SN ACRLOI UG U R Sl HCRURS
FeF] Ferp

Combining all terms gives the alternative formulation for agf.
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Boundedness bilinear form a¢

e Consider the discrete problem
Find up, € Vi, s.t. & (up, viy) = / fvn Vv € Vi
Q

The problem is well-posed due to the coercivity of agf on V.

Define on V. the norm

VI = WV I3+ D 7ellB- VVIZ gy + D 7eBahy IVIE o7,

TETh TETH
with time scale ¢ and reference velocity 3.

e Lemma. (Boundedness) There holds

V(v, W) € Vap x Vi, &8 (v, Wh) < Cong [I| V [llof .« [l whlllor,

where Cp,q is independent of h and the data p, 5.
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Boundedness bilinear form a¢f

Proof. Let (v, wy) € V., x V, and use the Cauchy-Schwarz inequality, then

[ G+ (3 Fwym) + [ (3 m)= vy

< llpllos @ IVl 2oy IWall 2y + D 18- VVilzeryIWall 2y
TeTh

+ IVIl2(g.n);00) | Wall 2180100

< max(ll e o0, ) (IVIaggy + 32 18- VVIBo(ry + V122 5.0 009)
TETh

(2||Wh||,2_z(9) + ||W/27||L2(\E-n\;89))

<201 v Mt Nwn ller -
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Boundedness bilinear form

To bound the integral over the interior faces, we use the Cauchy-Schwarz inequality

[SE

> [ nlamd < (X 5t n IV,

FeF) FeF}

< (3 2 Y gy )

FeF]

where for all F € Fi, with F = 9Ty N 8T,, we have {h} = %(hT1 + hr,).

Set v; = v|r,, w; = wy|7,, I € {1,2}, then we have the relations

IN

2, 2
Vi + Vs,

S

2fwn}? < wf + ws.
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Boundedness bilinear form

The computational mesh satisfies the relation
C;‘ max(hr,, hr,) < {h} < C, min(hr,, hr,),

where C, only depends on the mesh regularity. Hence,

[SE

> / (8- ne) I} < Colll v ller, (D2 & hrliwalZ o))

FeF] T€Th
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Boundedness bilinear form

Finally, use the trace inequality

1 1
h%HWhHLZ(aT) < CrN3 lwall 27y,
then

ol

Z:Aw-wMﬂ{%}SQWWMM*(2:1”%Mﬂ%ﬁmﬂ

FeF] TETh
-1 1
=76 2CpCurNZ I V lllor, lIWhll 20
Combining all terms then gives the boundedness of the bilinear form aﬁf(v, W),

V(v, Wh) € Vip x Vi, @8 (v, Wh) < Cong lll V lller,« lWhlllcr,
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Error estimate

From the discrete stability, consistency and boundedness we immediately obtain the error
estimate.

e Theorem 1. (Error estimate). Let u and up, respectively, solve
Findu e V,s.t. a(u,w) =/ fw, Yw e V,
Q
Find up € Vp, s.t. a,c,’(uh, wy) = / fwp, Ywy € Vp,
Q
with

afl(vown) = [ (wwn+ 5 Vuvywn) + [ (8-n)Pwwn— 37 [ (8- ne) 1wl

FeF]

and Vy, = IP”(;(’I}), with kK > 1 and 7, belonging to an admissible mesh sequence. Then,
there holds

llu = unlller < C inf llu— yalller,«
Yn€Vh

with C independent of h and only depending on the data through {min(1, 7cug)} 1.
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Error estimate

To obtain the convergence rate, assume u is smooth enough.

Take yj, = whu, with 7, the [2-orthogonal projection of u onto V;, and use the interpolation error
estimates.

e Corollary. (Convergence rate for smooth solution). Besides the assumptions of Theorem 1,
assume u € H*1(Q). Then there holds

Kk
llu— unlller < CH ||uHHk+1(Q)7

where C is independent of h and only depending on the data through {min(1, 7cu0)} .

Note, this convergence rate is suboptimal.

An optimal convergence rate for the error in the L2(2) norm should be order k + 1 and for
the boundary contribution order k + 15 if the solution is smooth enough.

A better convergence rate can be obtained using an upwind DG discretization.
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Numerical fluxes

Since the DG discretization uses broken polynomial spaces the DG discretization can also be
considered on an individual element T € Tp,.

Consider an arbitrary polynomial £ € ]P”(‘I(T). For a set S C Q denote the characteristic function
Xs as
1 ifxesS,
xs(x) = _
0 otherwise.

Insert the test function v, = £x 7 into the DG discretization and use
[Ex7ll = er,e§ wither F:=n7-ng
since

ey, HT=T,

[l = {§T2 if T =T,

and nr - ng=1if T = Ty, ny - np=-11if T = Ty, assuming nr, = nr and using nr, = —nr,.
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Numerical fluxes

Recall the alternative expression for ag'

afl(vom) = [ (= -Byvwn—v(3-Vown) + [ (30,

+ Z/ - nE) VIR

FeF;

The bilinear form aﬁf(uh, &xT) on an individual element T € T, then becomes

[ (=5 sune — w3 vO) + 3 ene [ortune= [ e

FeFr

with the numerical fluxes

(B-ne){un}  HFeF,

P (tn) = {(,B -n®uy it Fe Fb.
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Numerical fluxes

The numerical fluxes ¢g(up)

(B-ne){un}  HFeF,

P (th) = {(6 -n®uy it Fe Fp,

are called centered fluxes, because the average value of uy, is used on each face F € }';',.

Since the numerical fluxes are single valued at each face F € f,’7 the DG discretization is
element-wise conservative. Taking, £ = 1 gives

/T(M—V-B)Un-F > €T,F/F¢F(Uh):/7_f7

FeFr

which is the balance equation used in finite volume discretizations.
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-
Upwinding

e In order to improve the stability of the DG discretization and it's convergence rate upwinding
is introduced.

Consider the upwind bilinear form

aP" (v, wh) = a5 (Vn, Wh) + Sn(Vh, Wh),

with stabilization bilinear form

sn(vnwn) = 32 [ 218 nel[valwnl.

FeF|

with n > 0 a user-dependent stability parameter.
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-
Upwinding

upw

The bilinear form a,”" then is equal to

a™ (vn, wp) : = /ﬂ (MVhWh + (8- Vth)Wh> + /an(ﬂ - n)® VW,

= 3 [@-ntalwnd + 3 [ 218 el

FeF) FeF)

or equivalently

" o) = [ (=7 By — a5 - Zw) + [ (5 ) vy

+ 3 / e vibwal + S / 18- ne| VD Iws].

FeF) FeF]

Note, a,”" and af’ use the same stencil.
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-
Upwinding

e Define on V., the norm

n
VI1ae s = IV 112+ 3= [ 216 nellv]?®
FeF} F
- 1 n
= Wy + [ 5180+ 3 [ 18- nev®

FeF}
e Lemma. (Consistency and discrete coercivity). The upwind DG bilinear form azpw satisfies

i) Consistency, namely for the exact solution u € V.,

azpw(u, Vh) :/ fvp Yvp € V.
Q

ii) Coercivity on Vj w.r.p to the ||| - ||| ypp-norm,

upw

Yk € Vi, @ (Vh, Vi) > Csta lll ValllZpns

with Cgtg = min(1, cpg)-
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-
Upwinding

Proof.
i) Consistency follows from the consistency of agf(u, vp) and the fact that (8 - ng)[[u] = 0 at
faces F € Fj for the exact solution u € V.

i) Coercivity of a;”" follows from the coercivity of a¢" and the fact that

o) = 3 [ 216 nellwnl? > 0.

FeF]

The coercivity of 4" on V}, implies well-posedness of the upwind DG-discretization.

For accuracy it is important not to use large values of the penalty parameter n. Optimal
values of i can be derived.
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Error estimates based on coercivity

e The norm ||| - ||[ypp is not strong enough to establish boundedness of the upwind DG bilinear

form a”".

This requires either a stronger norm or we can restrict the functions in the first argument of
aP" to those functions in V., that are L2-orthogonal to Vj,.

Thus to functions of the form v — wpv for v € Vi, with 7, the L2-projection, which are called
orthogonal subscales.

e Definition. (Boundedness on orthogonal subscales). Boundedness on orthogonal subscales
holds true for a”" (uniformly in h, p, B) if there exists Cpng > 0, independent of h, p, B, s.t.
Y(v,wp) € Vi >< Vi,

|ay™" (v — 7V, Wh)| < Cona [ll v — 7hV lllums,« [l Whllluws,

foranorm ||| - ||| ywb,« defined on V. s.t. Vv € Vip, [[[VIlluwb < VIl uwb, -
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Error estimates based on coercivity

e Lemma. (Boundedness on orthogonal subscales). Boundedness on orthogonal subscales
holds true for the upwind DG bilinear form aZpW when defining on V., the norm

2 2 2 : 2
|||VH|uwb,* = Hlv |Huwb + 5C”V||L2 aT)"
(a7)
T€Th

Proof. Let (v, wp) € Vi X Vyandsety = v — mpv.

We also have

_ 1 Ui
Hlv|||121wb,* =Te 1|IVHf2(Q) +/m §I,6’~f7lv2 + Z /Fglﬁ - ne|[vI® + Z ﬁcHVHfz(aT)-

FeF} TeTh
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Error estimates based on coercivity
From the alternative formulation of agf
a”" (yn, wp) = / ((u — V- B)YaWn — yn(B - VhWh)> +/ (B M@ ypwy
Q a9

+ 3 [E bl + Y [ 218 nelbalwl.

FeF] FeF]

we have
[ = s+ [ (5 m®ym,
Q a0

1 1
< 75 ¥ iz 1wl 2y + ( /8 1gni®y?)E( /a 15 niwp)®

< Collly llups M llfuws -

with Cy independent of h, © and 3.
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Error estimates based on coercivity

Denote with () 7 the mean value of g on each T € 7. Then we have

1

1B = {B)1llLec(y < Lghr < —hr (since B is Lipschitz continuous).

Tc

Note, from the mean value theorem for integrals there exists a x € T s.t. (8)7 = B(X). Then
18 = (B) 7o () = ess sup |B(x) — B(X)]
xeT
< Lﬁ|X—7‘ < LBhT~

We also have Ywy, € Vj that (B)1 - Vw), € ]P’ff‘ (T) c lP”[‘,(T), hence

VT € Th, /T}’(mT'VWh=/T(V*ﬂ'hV)<5>T'VWh

=0
since my, is the L2-orthogonal projection.
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Error estimates based on coercivity

Use now the inverse inequality
IV Vallzaye < Cinhr 1Valli2(ry,

to obtain

/QY/3'VhWh: Z/T}’B-th: Z/TY(5—<5>T)'VWn

TeTh T€Th

A

< D Wlleryre ATV Wall 2y (use (18 = (B) Tl (@) < 76 'hr)
TeTh

A

< > Wllieeryme " CinlIWall 27y
TETh

IN

Cinv 1Y [llupt W lllupb -
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Error estimates based on coercivity

In addition, the Cauchy-Schwarz inequality yields

1

> [ty < (X Lo 18- neliy?)* (X [ 216 nellwl?)®

FeF] FeF} FeFj

< (073 Bellyl aT) Il Whlllup

TeTh

<GClly H|upb,* [llwh |Hupb-
Collecting all terms gives

f
ay (v, wn) < Ca Il ¥ llupb,« l1walllubs

upw

with C, independent of h, 1 and 3. Finally, the bound on |&,™" (v, wp)| is obtained using

2/2\5 ne|LyITwal < 1Y Mlluob 1Wn [llups -

FeF
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Error estimates based on coercivity

e Theorem 2. (Error estimate). Let u and uy, respectively, solve

Findu e V,st. a(u,w) = / fw, vw eV,
Q

Find uy € Vi, s.t. &P (un, wy) :/ fwy,  Ywp € Vi,
Q

and Vy, = IP”C‘,(T,,), with kK > 0 and T belonging to an admissible mesh sequence.

Then there holds
lu = tplllupp < Clll u = mulll uop,»
with C independent of h and only depending on the data through the factor

{min(1, 7cpo)} 1.
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Error estimates based on coercivity

Proof. First assume myu # up. Then due to the discrete coercivity and consistency of azpw we

have

(using coercivity)

upw

a Up — mpU, Up — mHU

lllun — Tl uypp < Cop 1 (Un = 7, Uy = mrtt)
th — mrUlllpb

upw
a U — mpU, Uy — mhU . .
< Ci ( hth Un = mht) (using consistency),
llup — mhulll ypb

with Csta = min(1, 7cpo). Hence

1
l un — 7hulllupp < Cgpa Cona Il U — ThUlllypb, «

(using boundedness on orthogonal scales of a;"").
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Error estimates based on coercivity

Finally, using the triangle inequality we obtain

v — tnlllupp < Ml — 7at [llupp + Il Un — whUlllups
< |llu—mpu |Hupb ""C;J Cona |l u — 7rhu|||upb,*

< lu = 7pu || ypb, « (since |[|u — maulllyop < |l|U — TAUI|| b, )-

e Corollary. (Convergence rate for smooth solutions). In addition to the assumptions of
Theorem 2, assume u € Ht1(Q).

Then there holds

K+l
lllu— unllluop < Ch**2 lull 1 (@)

with C independent of h and only depending on the data through the factor
{min(1, 7ouo)}~".
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Error estimated based on inf-sup stability

Introduce the stronger norm

IVIZws = IV I3 + > B hrll8 - V%2 7y
TETh

Note, this norm also gives control over Vv.

To simplify arguments we assume that

h < Bere.

Using ¢ = {max(|pllLo(q), Lg)}~"and Bc = [181lj200 ()0 We obtain that this assumption is
equal to

max(ll | oo (@) | Bll [ % (g0 PLallBl e gype) < 1-

The quantity Al|p|| o n)IIBII[Lm
scale to transport time scale).

Q) is the local Damkohler number (ratio chemical reaction time

If hL,3||B||[‘Llo(Q)]d < 1 then the mesh resolves the spatial variations of the advective velocity.
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Error estimated based on inf-sup stability

e Lemma. (Discrete inf-sup condition). There is a C[,,

> 0, independent of h, u, 8 s.t.

upw
a,”" (Va, Wn)

Yvh € Vi CoaCsta lll Vallluws < sup LT,

whe Vi {0}  lWallluws

where Cstg = min(1, cpp).
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Error estimated based on inf-sup stability

Proof.

gupw

1) Let vy € V4\{0} and set 8 = supy, c v, (o) )

Wallluwg

From the coercivity of 4" we obtain

upw

upw
a," (Vh, V)
Csta lll Valllaws < " (v, vi) = 22—

Il vallluws < S Va lluws -
M1 llluwg

2.) Bound the advective derivative in the norm ||| va|||ywy-

i.) Choose wy, € V},s.t. VT € Tp, wp|T = Bg1h7(,3)7 - Vvp, with (8) 1 the average of 5 over T.

Bound the DG-norm |||wp ||| uwg in terms of |||V ||| uws-

We abbreviate a < Cb as a < b, with C independent of h, i and .
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Error estimated based on inf-sup stability

ii.) Consider
§ 50’77_—1 ”Wh”iZ(T) = § 50_1 hT”(ﬁ)T . Vvh”iZ(T)
TETh TETh

(using wh|7 = Bz ' hr(B)T - Vi)

<23 85 (hrllB - VvalZopy + hrli(8 = (B)7) - Vil )
TeTh

S > BB VWallZ gy + D o 2Bs hrlallZ
TeTh TeTh

(using [|8 = (8)7llzoe (s < 76 'hr and

inverse inequality ||V v/l 2 rye < Cinvhy" Ivalli2(ry)

IN

Z ﬁg1hTIIﬁ : Vvh”i2('r) + Z 7_071 IIVhHLZ(T) (USing h< 607_0)
TETh TeTh

IN

2
MI1va 1w -

83/98



Error estimated based on inf-sup stability

ii.) Using the discrete trace inequality,

1
h2{[Vall2(ey < Cerllvall 2y

and the previous result obtained in 2.ii) we obtain the estimate

1 n _
/{99§|ﬁn|wﬁ+ Z /’__E‘B'nf:l[[wh]]z 5 Z BchT1“Wh|‘EZ(T)

FeF] TeTh

2
S v NlGwy -
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Error estimated based on inf-sup stability

iv.) Using the inverse inequality
IV Vallizaye < Cinth1||Vh||L2(T),

we obtain

1
walliziy = (2 B2 1B VvilZory) * S Iallizey

TeT,
and

S 8 el Il £ 32 Behr Wl < 1Vl
TETh TETh
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Error estimated based on inf-sup stability

v.) Collecting all terms gives

Wl By = 1w s+ > B I8 - T4l
TETh

= lwn i+ 35 [ 216 nellml? + 3 65" hrla- Twl,

FeF] TeTh

= Wl + [l niwE+ S0 [ 216 nel[w?

FeF,

+ > B hrllB - Vw5

TeTy

2
S v I Gws -
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Error estimated based on inf-sup stability

3.) Using the relation

/(ﬁ Vave)Wh = > /301hT/(/3‘thh)</B>T‘VVh

TETh

=3 s hT/ B-Vavi)(B = (B)7) - V)

TeTh
S ALY KCRAAER

TEThH

for the advective term in &, we obtain

87/98



Error estimated based on inf-sup stability

> B hrllB- Vv,,||f2m = a,”" (vh, wp) — / HVnWh
TeTh Q

DI ALY KR ICE <ﬁ>r)-Vvh—/m<ﬁ-n)@vhwh

TE€Th
£ 3 [ttty - 3 [ 218 nellviln]
FeF} FeF]

=R+ + %.

Note, the term ZTET,, B hrllB - Vvl is the missing term in the ||| v|| uwz-norm, with

2
L3(T)

—1
2w = v W + > 85" 718 - FaliZ 1,
TeTh

in the lower bound of the stability estimate in the BNB-theorem. The coercivity already gives a
lower bound in the ||| v||| yws-norm.
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Error estimated based on inf-sup stability

4.) Estimate now each term
i)
|a,”" (Vh, wh)|

|71 = |a”" (i, wn)| =
h ’ (1l Whllluws

Il whllluws < S lIl Wallluwg < Sl v llws -

ii.) For|%|, |74, | 75|, we obtain using the Cauchy-Schwarz inequality and the definition of
H : Huwb,

| 72| + 174l + | T6] < 1Vh llluws [Wallluws < 1l Ve llluws (1l Vh llluwss -
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Error estimated based on inf-sup stability

ii.) Using the Cauchy-Schwarz inequality together with the discrete race inequality gives

%= 3 [(5- nolliwn)

FeF}

1

(X [ 25 ndwnl) (X [ 20 nelgm?)?

FeF] FeF)

1
S Ve lawo (D2 By IwliZo(ry) *

(using discrete trace inequality)
TETH

S va llluw [11Va lluws -
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Error estimated based on inf-sup stability
iv.) Finally,

% = Zﬁc1hr/(ﬁ V)8 — (B)7) - Vvi

TE€Th

=

< (2 8 hrlB- Vil )2 (X2 8s (B = (B)7) - Vvl )

TETh TETh

(use [18 = (B) 7o (rye < 76 'hr and [V Vallyzerye < Cinhy 1 Valli2(r)

1 1
< (32 B rlIB- Vil ) F (S B 7 2 IvilZa ) P

TETh TeTh

1
S (2 8B Tl ) * 1 Vi llaws -

TeTh
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Error estimated based on inf-sup stability
v.) Use Young’s inequality in the form ab < va&? + (4~)~'b? with v > 0,

1 _
1781 = 5 (32 8" hrllB - Vvnlir)) < 11vh l1Ews -
TeTh

vi.) Collecting all terms gives

> Be hrllB - valiZe gy S S Vi lluws + 1V llows Ve llows + 1l Ve 1505 - (5)
TETh

6.) Combining (5) with the coercivity bound Cgtg ||| VhH'lleb < S| Vallluwg gives

Csta lll vn |||5wb +Csta Z ,80_1’7T||B . VVh”iz(T) <(1+ Csta)§ Il VhH|uwﬂ
TeTh

+ Csta lll Vi llluwp 11Va llows +S Il Va llows -

92/98



Error estimated based on inf-sup stability

which is, using Young’s inequality, the definition of ||| - [||.wy and the coercivity bound again,
equivalent to

Csta |H thuwn N S ||| Vh |||uwj:1 +Csta ||| thuwb ~ S |H thuwﬁ

which gives the discrete inf-sup condition

a," (vh, wh)

Cétacsta H| Vh|||uwu < up —_—.
wheV\{0}  [lIWallluws
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Error estimated based on inf-sup stability

To prove boundedness of a;”" we need the norm

—1
WVllwg,e = NV 1wg + D Be(hz IV + IVIZo7)
TeTy

e Lemma. (Boundedness) There holds

V(v wh) € Vien x Vi, 187 (v, Wh)| < Cong [l V luws = 11V [luws -

with Cppq independent of h, u, and 3.

Proof. Same as proof for boundedness on orthogonal scales, except for the term

/Q V(B - Wh) < IV [luwe e [1W [l -
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Error estimated based on inf-sup stability

From the discrete stability (discrete inf-sup condition), consistency and boundedness we
immediately obtain an error estimate.

95/98



Error estimated based on inf-sup stability

e Theorem 3. (Error estimate). Let u and uy, respectively, solve
Findu e V,st. a(u,w) = / fw, Yw eV,
Q
Find up, € Vi, s.t. @™ (up, wh) :/ fwp,  VYwp € Vi,
Q
with

a™ (vn, wp) = /Q (MVnWh + (8- Vth)Wh) + /89(/3 - n)®vpwhy

- 3 [@ mlltmd + 3 213 nellvillwn]

FeF} FeF]

and V, = IP”‘;(T,,), with k > 0 and 75, belonging to an admissible mesh sequence. Then,
there holds

llu = tnlllaws < C inf, 1t = Yh lluws.« ©
Yn€Vh

with C independent of h and only depending on the data through {min(1, 7cuo)} 1.
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Error estimated based on inf-sup stability

e Corollary. (Convergence rate for smooth solutions). Besides the assumptions of Theorem 3,
assume that u € H*1(Q).

Then there holds

joy 1
lllu — unllluws < CH*2 llull e 1 ()

with C independent of h and only depending on the data through {min(1, 7c0)} .

Note, this error estimate is better than the estimate based on coercivity using boundedness
on orthogonal scales since it also provides a bound on the scaled advective derivative.
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Numerical fluxes

e By locallizing the test functions to an individual element the local upwind DG discretization is
obtained.

Forall T € T, and all £ € PX(T),

ﬁ(pfv-ﬁ)uhifuh(ﬁ'vg)) + > enp/;_qu(Uh)i:/Tff,

FeFr

with the numerical fluxes

(8- ne)fun} + 1nlB - nellunl i F € F,
oF(un) =
(8- n)®up it Ferp.
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