Markov Chain Monte Carlo:
Innovations and applications In

statistical physics
Youjin Deng

With Alan D. Sokal (NYU)
Henk W.J. Bloete (Leiden)
Timothy G Garoni (NYU)
Wenan Guo (BNU)

09/14/2008 Hefei



Content

 Models: Potts and RC

e Introduction: Markov Chain Monte Carlo (MCMC)
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Model

e Potts model

Hamiltonian:

H=-K> 5(c,0)) (6=1,2,--0)
(i)

Partition sum:

7 — Ze—H/kT

Random-cluster model
7 _ va(G)qk(G)
G
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Markov Chain Monte Carlo
(MCMC)

« desired probability distribution P(I') ;

transition probability matrix T(C.,.I,)
 detailed balancing: T(r,r)p(@)=T(",T)P()
 irreducibility (ergodicity)

Efficiency: Critical Slowing-down

Toc &’
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Local algorithms

e Metropolis for Ising
1), pick up a spin (randomly or sequentially)
2), calculate the energy cost AE Iif the spin is flipped
3), flip the spin with probability Min(,e /)
Dynamic exp: z~2.2

o Sweeny (two-time scaling): critical speeding-up!

 Worm (three-time scaling)
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LaIJ

Swendsen-Wang (SW) Method

Swendsen-Wang Simulation:
1), for each edge @i, If o = o place a bond with
p=1-e" : otherwise, do nothing.

2), for each connected component (FK cluster),
randomly pick up one of the g states.

09/14/2008



Three Pictures for SW Method

Edward-Sokal Picture

1), Exact mapping between the Potts model and the
random-cluster (RC) model:

7 — Z qk(A) (1_ p)IEI—IAI pIAI

AcE
2), Bond-Spin-joint probability measure:

P(A,0)oc| [[L-p)d, o+ P, 16 (0)]

eckE

I SW method passes back and forward between the bond and the
spin representation of the Potts model.
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« Domany’s Picture
1), Hamiltonian: H =) H, ; H;(6)=E, orE,isa
two-energy-level system.
2), Probability measure

exp(—H;) = e (1+ Vi5Hi,El)
with (v, =™+ 1)
3), for unit i in energy E, , place bond with p, =V, /(1+V,).

4), Perform operations that conserve energies of units i
with bonds. (do-nothing is surely one valid operation)
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* |Induced subgraph Picture

1, RC model
k(A) K(A) m
Z=2 [1vlla=21]v]]2a.
AcE ecE =1 AcE ecE =1l a=1

2, Coloring: Independently for each component, assign
it a “color” o with probability 0, /0. Vertex set V is

partitoned as vV =UV. . Conditioning on the color
assignment, indepeﬁdently on each induced subgraph

GlV,] isa {, -state RC model.

3, Choose any MC method to update the induced RC
model. Particularly, it is a bond percolation for g=1. Do
nothing Is also a valid update.
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Application

 Chayes-Machta Method for g>1 RC Model
1, RC Model

2=3 Vi@ =3Vl 1Y (6=10,=0-)

AcE AcE

2, Independently for each component, color it to be “1”
with p =1/, and color it be “2” with P=(q-1)/q

3, Update subgraph G|v,] as the bond percolation, and do
nothing forg|v,] .
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 Potts Model In a field

1, Partition sum

K(A)
z=> [Texp(Ks, ) [hs, .= > V4] [La-D+V;["]
o ecE jev AcE =1

2, Independently for each component, color it to be “1”
with p, =V " /[(q -1+ |V "] ; otherwise, color it be “2”.

3, Update subgraph GIVi] as the bond percolation, and do
nothing for G|[v,].
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 Loop Model (Honeycomb)

1, Partition sum Z Al c(A)|
7 = Xn’

AcE:
Eulerian

c(A): Loop (cyclomatic) number
2, Physical relevance:

(@), it is the high-T graph of Nienhuis’s O(n) spin model.
For g=1, it is a graph representation of Ising model.

(b), for q— 0, it reduces to the self-avoiding random
walk (SAW).

(c), it plays an important role in the stochastic Loewner
evolution(SLE)
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Honevoomb-Trangular Lattice

Honevoomb-Triangular Iattice
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« Simulation for n=1 (Honeycomb)

1, Plaque update:
2, Worm algorithm
3, Cluster simulation of the Ising-spin model on

triangular lattice with coupling g2K — y .
(Duality relation between high-T and Low-T graphs)
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e Cluster Simulation for n>1 (Honeycomb)
Start from bond config. on H and spin config. on T .

1, Color each loop (cycle) to be “1" with p =1/n and to be
“2” with p=1-1/n. Color isolated sites to be “1".

2, Place bonds on each edge e on triangular lattice T . If
the dual € does not entirely lie in V,, place a bond;
otherwise, place a bond with p=1-x.

3, Form clusters onT . Independently for each component,
flip the Ising spins with n=1/2 .

4, New bond config. on H is the low-T graph of spinsonT

I Analogous idea applies to face-/corner-cubic model
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« Antiferromagnetic Potts model (Domany picture):
1, Edge weight:
exp(K3,, ) =e“[l+(e ™ -1)1-3, , )]

2, Choose two of the q states—say ¢, and g, . Place bond
with p=1-¢e“ on edges connecting states g, and g,

3, Form clusters. Independently for each cluster,
interchange Potts states g, «>q, with p=1/2.
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« Antiferromagnetic triangular Ising model.

1, Hamiltonian:

H=-> Kss,=— > H,

H =K (two satisfied and one unsatisfied bond).
H, =—-3K (three unsatisfied bonds).
2, A weight: exp(—H, ) = e*[1+ (€ * 15, ,]

3, Foreach A, place a bond with p=1-e*" on one of
the two satisfied bonds.

4, For clusters, and update Ising spins.
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e Fixed-bond-number RC model

1, Definition:
7 Z VAGK®

AcE;| Al=const.

2, For each cluster, color it to be “1” with p=1/q , and
color it be “2” with p=1-1/q.

3, On subgraph g|v,], do Kawasaki dynamic for bond
percolation, and do nothing for G[v,]-
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o Geometric Cluster algorithm (Ising Model)

Let vertices j, j,k map onto 1', )K" under certain
transformation—i.e., the spatial inversion. Under
interchanging-spin operation S; <> S., the energy
associated with edges ¢, and e.;, has two levels:

H, =-K(s;s; +5;5;) =E, or
H, =—-K(s;s; +5;5;) =E,
Say E, <E, , weight:

exp[-H, .. 1= e [1+(e™ ™ -1)d, ¢ ]
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o Geometric Cluster algorithm (Ising Model)
(Single-Cluster version)
1, randomly chose a site I . Let |1 and its mapping i’
be in the cluster, and do operation §; <> S;. .

2, for all neighbor sites k of 1 (not yet in cluster):
If 5, ¢ =1, place a bond with p =1-e%"% dos, © S,
and include k k' in the cluster (stack). Otherwise, do
nothing.

3, read a site j from stack, do Step 2. Erase J from stack.

4, Repeat Steps 2 and 3 until stack is empty.
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« Embedding methods for a variety of systems.

1), O(n) spin model
2), Ashkin-Teller model
3), Baxter-Wu model

e Replica and simulated tempering MC for spin
glass

o SW-like MC algorithm for quantum Potts model
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