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Content

• Models: Potts and RC

• Introduction: Markov Chain Monte Carlo (MCMC)

• Local algorithms: Metropolis, Sweeny, and Worm

• Collective–mode algorithms: Swendsen-Wang (SW)

• Three pictures for SW method
• Applications: real q>1 RC model, RC model in field, 

Loop, Anti-Potts, AT, fixed-bond RC, fixed-magnetization 
Potts, spin-glass

• Some references (incomplete and biased)
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Model

• Potts model
Hamiltonian:

Partition sum:

• Random-cluster model
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Markov Chain Monte Carlo
(MCMC)

• desired probability distribution          ;
transition probability matrix 

• detailed balancing:
• irreducibility (ergodicity)    
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Efficiency: Critical Slowing-down
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Local algorithms

• Metropolis for Ising

1), pick up a spin (randomly or sequentially)
2), calculate the energy cost       if the spin is flipped
3), flip the spin with probability
Dynamic exp:

• Sweeny (two-time scaling): critical speeding-up!

• Worm (three-time scaling)

EΔ
/Min(1, )E kTe−Δ

2.2z ≈



09/14/2008

Swendsen-Wang (SW) Method

Swendsen-Wang Simulation:
1), for each edge    , if                 , place a bond with  

; otherwise, do nothing. 

2), for each connected component (FK cluster), 
randomly pick up one of the q states.
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Three Pictures for SW Method 

• Edward-Sokal Picture
1), Exact mapping between the Potts model and the 
random-cluster (RC) model: 

2), Bond-Spin-joint probability measure:

! SW method passes back and forward between the bond and the
spin representation of the Potts model.
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• Domany’s Picture
1), Hamiltonian:                  ;                             is a 

two-energy-level system.
2), Probability measure

with  

3), for unit i in energy     , place bond with                  .

4), Perform operations that conserve energies of units i 
with bonds. (do-nothing is surely one valid operation)
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• Induced subgraph Picture
1, RC model

2, Coloring: Independently for each component, assign
it a “color” with probability          . Vertex set       is
partitioned as            .  Conditioning on the color 
assignment, independently on each induced subgraph

is a       -state RC model.
3, Choose any MC method to update the induced RC 
model. Particularly, it is a bond percolation for q=1. Do 
nothing is also a valid update.
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Application
• Chayes-Machta Method for q>1 RC Model

1, RC Model

2, Independently for each component, color it to be “1”
with              , and color it be “2” with                         .

3, Update subgraph as the bond percolation, and do 
nothing for         .
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• Potts Model in a field

1, Partition sum

2, Independently for each component, color it to be “1”
with                                       ; otherwise, color it be “2”.

3, Update subgraph as the bond percolation, and do 
nothing for         .
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• Loop Model (Honeycomb)
1, Partition sum

c(A): Loop (cyclomatic) number
2, Physical relevance:

(a), it is the high-T graph of Nienhuis’s O(n) spin model.
For q=1, it is a graph representation of Ising model.

(b), for           , it reduces to the self-avoiding random
walk (SAW).

(c), it plays an important role in the stochastic Loewner
evolution(SLE)
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• Simulation for n=1 (Honeycomb)

1, Plaque update: 

2, Worm algorithm 

3, Cluster simulation of the Ising-spin model on 
triangular lattice with coupling                  . 
(Duality relation between high-T and Low-T graphs)

*2Ke x− =
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• Cluster Simulation for n>1 (Honeycomb)
Start from bond config. on      and  spin config. on     .   
1, Color each loop (cycle) to be “1” with               and to be 
“2” with                 . Color isolated sites to be “1”.   

2, Place bonds on each edge     on triangular lattice     . If 
the dual     does not entirely lie in     , place a bond; 
otherwise, place a bond with              .    

3, Form clusters on    . Independently for each component, 
flip the Ising spins with             . 

4, New bond config. on       is the low-T graph of  spins on

! Analogous idea applies to face-/corner-cubic model
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• Antiferromagnetic Potts model (Domany picture):

1, Edge weight:

2, Choose two of the q states—say              . Place bond 
with                on  edges  connecting states                . 

3,  Form clusters. Independently for each cluster, 
interchange Potts states                 with                 

,exp( ) [1 ( 1)(1 )]
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• Antiferromagnetic triangular Ising model:
1, Hamiltonian:

(two satisfied and one unsatisfied bond).

(three unsatisfied bonds).

2,      weight:  

3,  For each    ,  place a bond with                   on  one of 
the two satisfied bonds. 
4, For clusters, and update Ising spins.
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• Fixed-bond-number RC model
1, Definition:

2, For each cluster, color it to be “1” with               , and 
color it be “2” with                   .

3, On subgraph , do Kawasaki dynamic for bond 
percolation, and do nothing for         .
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• Geometric Cluster algorithm (Ising Model)

Let vertices map onto               under  certain 
transformation—i.e., the spatial inversion. Under 
interchanging-spin operation            , the energy 
associated with edges                    has two levels:       

Say              , weight: 
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• Geometric Cluster algorithm (Ising Model)
(Single-Cluster version)
1, randomly chose a site     .  Let    and its mapping     

be in the cluster, and do operation              .

2, for all neighbor sites    of     (not yet in cluster):
If                , place a bond with                  , do
and include         in the cluster (stack).  Otherwise, do 
nothing. 

3, read a site    from stack, do Step 2. Erase    from stack.     

4, Repeat Steps 2 and 3 until stack is empty.

i i 'i
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• Embedding methods for a variety of systems.
1), O(n) spin model
2), Ashkin-Teller model
3), Baxter-Wu model
….

• Replica and simulated tempering MC for spin 
glass

• SW-like MC algorithm for quantum Potts model
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