Markov Chain Monte Carlo: innovations and applications in statistical physics

Youjin Deng

With Alan D. Sokal (NYU)
Henk W.J. Bloete (Leiden)
Timothy G Garoni (NYU)
Wenan Guo (BNU)

Content

- Models: Potts and RC
- Introduction: Markov Chain Monte Carlo (MCMC)
- Local algorithms: Metropolis, Sweeny, and Worm
- Collective-mode algorithms: Swendsen-Wang (SW)
- Three pictures for SW method
- Applications: real q>1 RC model, RC model in field, Loop, Anti-Potts, AT, fixed-bond RC, fixed-magnetization Potts, spin-glass
- Some references (incomplete and biased)

Model

- Potts model

Hamiltonian:

$$
H=-K \sum_{\langle i j\rangle} \delta\left(\sigma_{i}, \sigma_{j}\right) \quad(\sigma=1,2, \cdots q)
$$

Partition sum:

$$
Z=\sum e^{-H / k T}
$$

- Random-cluster model

$$
Z=\sum_{G} v^{b(G)} q^{k(G)}
$$

Markov Chain Monte Carlo (MCMC)

- desired probability distribution $P(\Gamma)$; transition probability matrix $T\left(\Gamma_{t+1}, \Gamma_{t}\right)$
- detailed balancing: $T\left(\Gamma, \Gamma^{\prime}\right) P\left(\Gamma^{\prime}\right)=T\left(\Gamma^{\prime}, \Gamma\right) P(\Gamma)$
- irreducibility (ergodicity)

Efficiency: Critical Slowing-down

$$
\tau \propto \xi^{z}
$$

Local algorithms

- Metropolis for Ising
1), pick up a spin (randomly or sequentially)
2), calculate the energy cost ΔE if the spin is flipped
3), flip the spin with probability $\operatorname{Min}\left(1, e^{-\Delta E / k T}\right)$

Dynamic exp: $z \approx 2.2$

- Sweeny (two-time scaling): critical speeding-up!
- Worm (three-time scaling)

Swendsen-Wang (SW) Method

Swendsen-Wang Simulation:

1), for each edge $e_{i j}$, if $\sigma_{i}=\sigma_{j}$, place a bond with $p=1-e^{-K}$; otherwise, do nothing.
2), for each connected component (FK cluster), randomly pick up one of the q states.

Three Pictures for SW Method

- Edward-Sokal Picture
1), Exact mapping between the Potts model and the random-cluster (RC) model:

$$
Z=\sum_{A \subset E} q^{k(A)}(1-p)^{|E|-|A|} p^{|A|}
$$

2), Bond-Spin-joint probability measure:

$$
P(\vec{n}, \sigma) \propto \prod_{e \in E}\left[(1-p) \delta_{n_{e}, 0}+p \delta_{n_{e}, 1} \delta_{e}(\sigma)\right]
$$

! SW method passes back and forward between the bond and the spin representation of the Potts model.

- Domany's Picture
1), Hamiltonian: $H=\sum H_{i} ; H_{i}(\vec{\sigma})=E_{1}$ or E_{2} is a two-energy-level system.
2), Probability measure

$$
\exp \left(-H_{i}\right)=e^{-E_{2}}\left(1+v_{i} \delta_{H_{i}, E_{1}}\right)
$$

with $\quad\left(v_{i}=e^{E_{2}-E_{1}}-1\right)$
3), for unit i in energy E_{1}, place bond with $p_{i}=v_{i} /\left(1+v_{i}\right)$.
4), Perform operations that conserve energies of units i with bonds. (do-nothing is surely one valid operation)

- Induced subgraph Picture

1, RC model

$$
Z=\sum_{A \subseteq E} \prod_{e \in E} v_{e} \prod_{i=1}^{k(A)} q=\sum_{A \subseteq E} \prod_{e \in E} v_{e} \prod_{i=1}^{k(A)} \sum_{\alpha=1}^{m} q_{m}
$$

2, Coloring: Independently for each component, assign it a "color" α with probability q_{α} / q. Vertex set V is partitioned as $V=\bigcup^{m} V_{\alpha}$. Conditioning on the color assignment, indepeñdently on each induced subgraph $G\left[V_{\alpha}\right]$ is a q_{α}-state RC model.
3, Choose any MC method to update the induced RC model. Particularly, it is a bond percolation for $\mathrm{q}=1$. Do nothing is also a valid update.

Application

- Chayes-Machta Method for $q>1$ RC Model 1, RC Model

$$
Z=\sum_{A \subseteq E} v^{|A|} q^{k(A)}=\sum_{A \subseteq E} v^{|A|}\left[q_{1}+q_{2}\right]^{k(A)} \quad\left(q_{1}=1, q_{2}=q-1\right)
$$

2, Independently for each component, color it to be " 1 " with $p=1 / q$, and color it be " 2 " with $p=(q-1) / q$.

3, Update subgraph ${ }_{G\left[V_{1}\right]}$ as the bond percolation, and do nothing for $G\left[V_{2}\right]$.

- Potts Model in a field

1, Partition sum

$$
Z=\sum_{\sigma} \prod_{e \in E} \exp \left(K \delta_{\sigma_{e}}\right) \prod_{j \in V} h \delta_{\sigma_{j}, 1}=\sum_{A \subseteq E} v^{|A|} \prod_{i=1}^{k(A)}\left[(q-1)+\left|V_{i}\right|^{h}\right]
$$

2, Independently for each component, color it to be "1" with $p_{1}=\left|V_{i}\right|^{h} /\left[(q-1)+\left|V_{i}\right|^{h}\right]$; otherwise, color it be " 2 ".

3, Update subgraph $G\left[V_{1}\right]$ as the bond percolation, and do nothing for $G\left[V_{2}\right]$.

- Loop Model (Honeycomb)

1, Partition sum

$$
Z=\sum_{\substack{A \subset E: \\ \text { Eulerian }}} x^{|A|} n^{|c(A)|}
$$

$\mathrm{c}(\mathrm{A})$: Loop (cyclomatic) number
2, Physical relevance:
(a), it is the high-T graph of Nienhuis's $O(n)$ spin model. For $q=1$, it is a graph representation of Ising model.
(b), for $q \rightarrow 0$, it reduces to the self-avoiding random walk (SAW).
(c), it plays an important role in the stochastic Loewner evolution(SLE)

Honeycomb-Triangular Lattice

- Simulation for $\mathrm{n}=1$ (Honeycomb)

1, Plaque update:

2, Worm algorithm

3, Cluster simulation of the Ising-spin model on triangular lattice with coupling $e^{-2 K^{*}}=x$.
(Duality relation between high-T and Low-T graphs)

- Cluster Simulation for $\mathrm{n}>1$ (Honeycomb)

Start from bond config. on H and spin config. on T. 1, Color each loop (cycle) to be " 1 " with $p=1 / n$ and to be " 2 " with $p=1-1 / n$. Color isolated sites to be " 1 ".

2, Place bonds on each edge e^{*} on triangular lattice T. If the dual e does not entirely lie in V_{1}, place a bond; otherwise, place a bond with $p=1-x$.

3, Form clusters on T. Independently for each component, flip the Ising spins with $p=1 / 2$.

4, New bond config. on H is the low-T graph of spins on T
! Analogous idea applies to face-/corner-cubic model

- Antiferromagnetic Potts model (Domany picture):

1, Edge weight:

$$
\exp \left(K \delta_{\sigma_{i} \sigma_{j}}\right)=e^{K}\left[1+\left(e^{-K}-1\right)\left(1-\delta_{\sigma_{i}, \sigma_{j}}\right)\right]
$$

2, Choose two of the q states-say q_{1} and q_{2}. Place bond with $p=1-e^{K}$ on edges connecting states q_{1} and q_{2}.

3, Form clusters. Independently for each cluster, interchange Potts states $q_{1} \leftrightarrow q_{2}$ with $p=1 / 2$.

- Antiferromagnetic triangular Ising model:

1, Hamiltonian:

$$
H=-\sum_{e_{j} \in E} K s_{i} s_{j}=-\sum_{\Delta_{i}} H_{\Delta_{i}}
$$

$$
\begin{aligned}
& H_{\Delta}=K \quad \text { (two satisfied and one unsatisfied bond). } \\
& H_{\Delta}=-3 K \quad \text { (three unsatisfied bonds). }
\end{aligned}
$$

2, Δ weight:

$$
\exp \left(-H_{\Delta}\right)=e^{3 K}\left[1+\left(e^{-4 K}-1\right) \delta_{H_{\Delta}, K}\right]
$$

3 , For each Δ, place a bond with $p=1-e^{4 K}$ on one of the two satisfied bonds.
4, For clusters, and update Ising spins.

- Fixed-bond-number RC model

1, Definition:

$$
Z=\sum_{A \subseteq E ; A A=\text { const. }} v^{|A|} q^{k(A)}
$$

2, For each cluster, color it to be " 1 " with $p=1 / q$, and color it be " 2 " with $p=1-1 / q$.

3, On subgraph $G\left[V_{1}\right]$, do Kawasaki dynamic for bond percolation, and do nothing for $G\left[V_{2}\right]$.

- Geometric Cluster algorithm (Ising Model)

Let vertices i, j, k map onto $i ', j$ ',k' under certain transformation-i.e., the spatial inversion. Under interchanging-spin operation $s_{i} \leftrightarrow s_{i}$, the energy associated with edges $e_{i j}$ and $e_{i j^{\prime}}$ has two levels:

$$
\begin{aligned}
& H_{e}=-K\left(s_{i} s_{j}+s_{i} s_{j^{\prime}}\right): \equiv E_{1} \text { or } \\
& H_{e}=-K\left(s_{i} s_{j^{\prime}}+s_{i} s_{j}\right): \equiv E_{2}
\end{aligned}
$$

Say $E_{1}<E_{2}$, weight:

$$
\exp \left[-H_{e_{i j}, e_{i} j^{\prime}}\right]=e^{-E_{2}}\left[1+\left(e^{E_{2}-E_{1}}-1\right) \delta_{H_{e}, E_{1}}\right]
$$

- Geometric Cluster algorithm (Ising Model) (Single-Cluster version)
1, randomly chose a site i. Let i and its mapping i^{\prime} be in the cluster, and do operation $s_{i} \leftrightarrow s_{i^{\prime}}$.

2, for all neighbor sites k of i (not yet in cluster): If $\delta_{H_{e}, E_{1}}=1$, place a bond with $p=1-e^{E_{1}-E_{2}}$, do $s_{k} \leftrightarrow s_{k^{\prime}}$ and include k, k^{\prime} in the cluster (stack). Otherwise, do nothing.

3, read a site j from stack, do Step 2. Erase j from stack.

4, Repeat Steps 2 and 3 until stack is empty.

- Embedding methods for a variety of systems.
1), O(n) spin model
2), Ashkin-Teller model
3), Baxter-Wu model
- Replica and simulated tempering MC for spin glass
- SW-like MC algorithm for quantum Potts model

Some references

- M.E.J. Newman and G.T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, 1999).
- K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, 4th ed. (Springer-Verlag, 2002).
- N. Metropolis et.al, JCP 21, 1087 (1953).
- R.H. Swendsen and J.-S. Wang, PRL 58, 86 (1987); 57, 2067 (1986)
- J.-S. Wang, R.H. Swendsen and R. Koteck' y, PRB 42, 2465 (1990).
- R.G. Edwards and A.D. Sokal, PRD 38, 2009 (1988).
- D. Kandel, R. Ben-Av, and E. Domany, PRB 454700 (1992).
- Y.J. Deng et.al, PRL 88, 190602 (2002), 98, 030602 (2007), 98120601 (2007), 98230602 (2007), 99, 110601 (2007), 99, 055701 (2007)
- E. Marinari and G. Parisi, EPL 19, 451 (1992)
- N. Prokof'ev and B. Svistunov, PRL 87, 160601 (2001).
- J. R. Heringa and H. W. J. Blöte, PRE 57, 4976 (1998).
- J.W. Liu and E. Luijten, PRL 92, 035504 (2004); 93, 0247802 (2004);

中秋快乐

