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High-Efficiency Cooper-Pair Splitter 
in Quantum Anomalous Hall 
Insulator Proximity-Coupled with 
Superconductor
Ying-Tao Zhang1, Xinzhou Deng2,3, Qing-Feng Sun4,5 & Zhenhua Qiao2,3

The quantum entanglement between two qubits is crucial for applications in the quantum 
communication. After the entanglement of photons was experimentally realized, much effort has 
been taken to exploit the entangled electrons in solid-state systems. Here, we propose a Cooper-pair 
splitter, which can generate spatially-separated but entangled electrons, in a quantum anomalous 
Hall insulator proximity-coupled with a superconductor. After coupling with a superconductor, 
the chiral edge states of the quantum anomalous Hall insulator can still survive, making the 
backscattering impossible. Thus, the local Andreev reflection becomes vanishing, while the crossed 
Andreev reflection becomes dominant in the scattering process. This indicates that our device 
can serve as an extremely high-efficiency Cooper-pair splitter. Furthermore, because of the chiral 
characteristic, our Cooper-pair splitter is robust against disorders and can work in a wide range 
of system parameters. Particularly, it can still function even if the system length exceeds the 
superconducting coherence length.

The crossed Andreev reflection1–4, also known as non-local Andreev reflection, describes the process of 
converting an electron incoming at one terminal into an outgoing hole at another spatially-separated 
terminal. By making use of the crossed Andreev reflection, a Cooper-pair in the superconductor can be 
split into two electrons, which propagate at two spatially-separated terminals while keeping their spin 
and momentum entangled. These spatially-separated entangled electrons are the key building blocks for 
solid-state Bell-inequality experiments, quantum teleportation and quantum computation5–10. Therefore, 
the crossed Andreev reflection has received intensive attention in the past decade, and some crossed 
Andreev reflection-based Cooper-pair splitters have been proposed, e.g., a superconductor junction cou-
pled with a quantum dot4,11–13, Luttinger liquid wires14, carbon nanotubes15,16, and graphene17,18. Recently, 
due to the quick emergence of the 2D Z2 topological insulators (TIs) accompanying with odd pairs of 
spin-helical counter-propagating edge modes along each boundary19–24, some Cooper-pair splitters based 
on the TIs have been proposed. For example, a TI-based Cooper-pair splitter was used to test the Bell 
inequality on solid state spins25 and an all-electric TI-based Cooper-pair splitter was proposed with 
crossed Andreev reflected hole being spatially separated from the tunneled electron26. On the 
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experimental side, the crossed Andreev reflection and the Cooper-pair splitting have been confirmed in 
quantum dot systems12,13, carbon nanotubes16, etc.

However, so far all the reported Cooper-pair splitters inherently exhibit various disadvantages. First, 
since the incoming electrons and outgoing holes in the crossed Andreev reflection reside in spatially 
separated terminals, the coefficient of the crossed Andreev reflection is usually rather limited and 
decays exponentially with the increase of distance between the two terminals. Second, some proposed 
Cooper-pair splitters can only work under certain special system parameters and are usually not robust 
against the disorders. Thus the crossed Andreev reflection is strongly decreased in the presence of dis-
orders and impurities. Third, the local Andreev reflection often occurs inevitably and dominates the 
scattering process, e.g., for the representing TI-based splitters, the helical edge states give rise to a sizeable 
Andreev reflection in such hybrid systems26–28, which leads to the weak crossed Andreev reflection and 
the very low-efficiency Cooper-pair splitting.

Inspired by the exotic chirally propagating transport properties of the quantum anomalous Hall insu-
lator (QAHI), we propose a Cooper-pair splitter in the hybrid system by coupling the QAHI with a 
superconductor. Particularly, the proposed Cooper-pair splitter can overcome all the above mentioned 
weaknesses. QAHI is a special realization of the quantum Hall effect29,30 that occurs in the absence of 
an external magnetic field, in which the chiral edge states protected by the spatial-separation allow the 
dissipationless current transport in 2D electronic systems. This effect has been theoretically proposed in 
various systems31–43, but was first realized in TI thin films by introducing the intrinsic ferromagnetism to 
break the time-reversal symmetry33,35,44–49. Therefore, given the absence of backscattering of the quantum 
anomalous Hall edge modes, it is reasonable to expect that the local Andreev reflection is forbidden and 
the crossed Andreev reflection could be considerably improved in the hybrid structure composed of the 
QAHI and superconductor.

Results
System Model.  In this article, we study the quantum tunnelling, Andreev reflection and crossed 
Andreev reflection in a two-terminal finite-sized QAHI system, with the central region being cov-
ered by a superconductor (See Fig.  1). The total Hamiltonian of the hybrid system can be written as 
HT =  HQAHI +  HSC +  HC, where HQAHI, HSC, and HC correspond respectively to the Hamiltonians of the 
QAHI, superconductor, and their coupling. As a concrete example, the QAHI is modelled by using a 
monolayer graphene including the Rashba spin-orbit coupling and an exchange field, and its tight-bind-
ing Hamiltonian can be written as36:
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where t measures the nearest-neighbor hopping amplitude that is set as the unit of energy, and α
†ci  (ciα) 

is the electron creation (annihilation) operator at site i with spin α (i.e., ↑  or ↓ ). The second term corre-
sponds to the exchange field with a strength of λ , and σ are the spin-Pauli matrices. The third term 
describes the external Rashba spin-orbit coupling with a coupling strength of tR, arising from the mirror 
symmetry breaking, e.g., by applying a vertical electric field19. Here, dij is a unit vector pointing from site 
j to site i. In the last term, the static Anderson-type disorder is added to εi with a uniform distribution 

Figure 1.  Schematic of the proposed Cooper-pair splitter. (a) Schematic of a QAHI covered with a 
superconductor (labelled as “SC”) in the central region. When an electron with up-spin [marked as “e(I)”] 
incoming from the left terminal enters the central hybrid region, there correspond four different scattering 
processes: (1) Direct reflection as a spin-up electron to the left terminal [marked as “e(R)”]; (2) Local 
Andreev reflection as a spin-down hole to the left terminal [marked as “h(AR)”]; (3) Quantum tunnelling 
as a spin-up electron to the right terminal [marked as “e(QT)”]; and (4) Crossed Andreev reflection as a 
spin-down hole to the right terminal [marked as “h(CAR)”]. (b) Side-view of the schematic displayed in 
(a). It illustrates that the incoming electron propagates through the central region in two ways: (1) directly 
tunnelling through the QAHI as an electron, and (2) proximity-flowing into the SC to form a spatially 
separated Cooper-pair and ejecting a hole to the right terminal. Red solid and empty circles are used to 
denote the electrons and holes, respectively.
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in the interval of [− W/2, W/2], where W characterizes the strength of the disorder. In addition, the 
Hamiltonians of the superconductor and its coupling with the QAHI can be respectively expressed as:

 ( )∑ ∑= + ∆ + ,
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α α
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where k corresponds to the on-site energy in the momentum space, k =  (kx, ky) is the wave vector, Δ S 
is the superconducting pair-potential measuring the superconductor gap, tC is the hopping amplitude 
between the superconductor and the QAHI, and ( ) = ∑α α

⋅rb e bk
k r

k
i  is the annihilation operator at the 

position r in the real space. The size of the central region is denoted by N ×  L, where L and N count the 
atom numbers along x and y directions, respectively.

Physical picture of the absence of the normal and Andreev reflections.  In the absence of the 
superconductor, gapless edge modes of the QAHI appear inside the bulk band gap Δ QAHI of the graphene 
nanoribbon (See Fig. 2a). For a given Fermi-level lying inside the bulk band gap, e.g., the crossing points 
by the dashed line displayed in Fig. 2a, there correspond four different electron states labelled as “A”, “B”, 
“C”, and “D”. In Fig. 2b, we plot the wavefunction distributions of these states across the width. It can be 
clearly seen that the wavefunction of each state is mainly localized at the ribbon boundary, i.e., states “A” 

Figure 2.  The band structures of the QAHI un-covered and covered by the superconductor. (a) Band 
structure of a zigzag graphene nanoribbon with Rashba spin-orbit coupling tR =  0.20t and Zeeman field 
λ  =  0.18t. There are four different states labelled as “A”- “D” for any fixed Fermi level inside the bulk gap.  
(b) Wave-function distributions ψ 2 across the width for the four states labelled in (a). Only part of the 
ribbons are shown. States “A” and “C” are localized at the top boundary, while states “B” and “D” are 
localized at the low boundary. (c) The spectral function A(E, kx) for the hybrid system of QAHI coupled 
with a grounded superconductor. The parameters of the superconductor are set to be ΔS  =  0.05t and 
gs =  2ΔS . There are eight different edge states “A”-“H” for the Fermi level inside the superconductor gap. (d) 
Wave-function distributions ψ 2 across the width for the eight states labelled in (c). States “A”, “C”, “E”, and 
“G” are localized at the top boundary, while states “B”, “D”, “F”, and “H” are localized at the low boundary.
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and “C” are localized at the top boundary, while states “B” and “D” are localized at the bottom boundary, 
which confirms that they are indeed the edge states. From the dispersion relation shown in Fig. 2a, one 
can also find that states “A” and “C” propagate along the same direction, which is opposite from that of 
states “B” and “D”. These together indicate the unidirectionally or chirally propagating property of the 
edge states, which is distinct from the helical edge states of the Z2 topological insulators. For clarity, the 
chiral edge states are visually displayed in Fig.  1a with the blue arrows signifying the propagating 
directions.

We now study how the chiral edge states are affected when the QAHI is covered by a superconductor. 
Usually, when a conductor or the helical edge states of TIs are covered by a superconductor, a gap can 
open at the Fermi surface due to the proximity effect from the coupling with the superconductor. The 
reason behind is that, for the normal conductors and the Z2 TIs, the dispersion relation of opposite spin 
states is usually an even function of momentum k due to the time-reversal symmetry, e.g.  =↑ − ↓k k . In 
such cases, a superconducting pair-potential Δ S can open a band gap and the energy spectra become 

ε= ± + ∆ −↑E Ek k
2

S F. However, it is rather different for the situation of the chiral edge states of the 
QAHI. Fig. 2c shows the spectral function A(E, kx) of the hybrid system of QAHI covered by a supercon-
ductor, where π( , ) = − / ( , )A E k E kG1 Im{Tr[ ]}x

r
x  with Gr(E, kx) being the retarded Green’s function 

[See METHODS for the calculation details]. One can see that at any fixed energy E, the spectral function 
has a finite value (denoted in red), which reflects that no band gap opens at the Fermi surface in the 
hybrid system. The underlying reason can be attributed to that the dispersion relation  σk
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the energy bands become = − ± ∆↑E Ek k F Sx x
. This new energy dispersion indicates that the chiral 

edge states still keep gapless, and thus no band gap opens. By analyzing the wavefunction distributions 
ψ 2 across the width of the QAHI ribbon covered with a superconductor as displayed in Fig. 2d, one can 
find that all electron states inside the superconductor gap are localized at the system boundaries. For 
example, the states “A”, “C”, “E”, and “G” propagating from right to left are localized at the top boundary 
whereas the states “B”, “D”, “F”, and “H” propagating from left to right are localized at the low boundary, 
which means that the edge states exhibit the chiral propagating characteristic. Therefore, the backscatter-
ing is completely forbidden, because that the chiral edge modes are topologically protected by the spatial 
separation.

We now turn to analyze the scattering processes when an electron with fixed spin (e.g., up spin) 
incoming from the left terminal flows into the central region of the hybrid system. In general, there are 
four scattering processes as displayed in Fig. 1a: 1) the direct reflection to the left terminal as a spin-up 
electron; 2) the quantum tunnelling to the right terminal as a spin-up electron; 3) the Andreev reflection 
to the left terminal as a spin-down hole; and 4) the crossed Andreev reflection to the right terminal as 
a spin-down hole. To be specific, in Fig.  1b, we present a schematic illustration of how the Andreev 
reflection and the crossed Andreev reflection occur in the central hybrid region. Note that the incoming 
electron from the left terminal propagates along the bottom boundary, while for the direct reflection and 
the Andreev reflection, the outgoing electron and hole propagate along the top boundary (see Fig. 1a). 
Furthermore, there exists a bulk band gap no matter whether the QAHI is covered or not by a super-
conductor, thus the scattering between the top and bottom boundaries are almost impossible for a wide 
enough ribbon. Therefore it is reasonable to expect that the direct reflection and Andreev reflection will 
be completely suppressed, while the quantum tunneling and the crossed Andreev reflection will domi-
nate the whole scattering processes. In other words, the two electrons of a Cooper-pair go respectively 
to the left terminal and right terminal as described in Fig.  1b, which leads to a high efficiency of the 
Cooper-pair splitting.

Numerical results and discussions.  In this Section, we provide a detailed numerical calculation to 
support our above expectation. Hereinbelow, the parameters for the QAHI are chosen to be λ  =  0.18 t 
and tR =  0.20 t, and the pair potential of the superconductor is set to be Δ S =  0.05 t. It is noteworthy that 
the size of the QAHI bulk band gap Δ QAHI ≈  0.26 t is much larger than the superconducting gap 2Δ S. 
Figure  3 plots the transmission coefficients of the quantum tunneling TQT, Andreev reflection TAR and 
crossed Andreev reflection TCAR as functions of the Fermi level EF, where the width of the ribbon is fixed 
at N =  80 that is wide enough to avoid the finite-size effect and the lengths are respectively chosen to be 
L =  11, 21, and 31 (see METHODS for the calculation details). One can find that, as expected, in all the 
three different cases the Andreev reflection is completely suppressed to be TAR ≈  0 regardless of the length 
L, as long as the Fermi-level lies inside the superconducting gap < ∆EF S. Because of the absence of 
both the direct reflection and the Andreev reflection, the electrons incoming from the left terminal 
propagate into the right terminal in forms of the quantum tunneling and the crossed Andreev reflection, 
leading to TQT +  TCAR ≈  2 as long as < ∆EF S. Most importantly, the vanishing of the Andreev reflection 
also results in an extremely high Cooper-pair splitting efficiency η →  100% independent of the system 
length L as displayed in Fig. 3, which is defined as η =  TCAR/(TAR +  TCAR). This strongly suggests that our 
proposed system can function as a high-efficiency Cooper-pair splitter. In addition, for the electrons 
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incoming from two opposite spin edge states, they have the same crossed Andreev reflection. This means 
that the spin-up (spin-down) electron has the same probability to go to left or right terminal. And if the 
spin-up electron goes to the left terminal, then the spin-down one has to go to the right terminal. So the 
two spatially-separated electrons from a Cooper-pair still keep the spin and momentum entangled. 
Another observation in Fig. 3 is that the transmission coefficient of the quantum tunnelling TQT is always 
comparable with that of the crossed Andreev reflection TCAR, exhibiting a universal characteristic for 
different system sizes whenever the Fermi energy satisfies < ∆EF S . To eliminate the influence of the 
quantum tunnelling for practical applications, one can simply apply the same potential in both the left 
and right terminals. Then, the crossed Andreev reflection can be utilized to design high-efficiency 
Cooper-pair splitters by mediating the potential of the central region.

Next, we move to the size dependence of these transmission coefficients at fixed Fermi-levels. 
Figure  4a,c display the transmission coefficients of the quantum tunnelling, Andreev reflection, and 
crossed Andreev reflection as functions of the system length L at a fixed system width N. One can find 
that the Andreev reflection is also vanishing with TAR =  0 for all values of L, while the transmission 
coefficients TQT and TCAR oscillate as functions of the system length L with the oscillation period being 
dependent on the Fermi-level EF. The reason behind this observation is that the covered superconductor 
functions as an applied external potential, and the resulting quantum tunnelling and crossed Andreev 
reflection can reach a resonance at certain system lengths.

It is noteworthy that the difficulty in realizing Cooper-pair splitter is that the crossed Andreev reflec-
tion is intimately affected by the distance between the two normal terminals. For all previous proposed 
Cooper-pair splitter, the crossed Andreev reflection quickly decreases in parallel to increasing the system 
length and finally vanishes when it exceeds the superconducting coherence length. Counterintuitively, in 
our considered system the crossed Andreev reflection can still survive and keep a large value even for 
relatively long system lengths. And the obtained coefficient of the crossed Andreev reflection is larger 
than 0.1 for any system lengths L (the distance between the two normal terminals). This is perfectly 
logical and reasonable, because the chiral edge states exist in the QAHI no matter whether it is covered 
or not by the superconductor, making the scattering from one boundary to other one almost impossible 
(except for very narrow ribbons). Therefore, our proposed high-efficiency Cooper-pair splitter is able to 
function in a long-range junction, even if it farther exceeds the superconducting coherence length. In 
addition, by choosing proper system lengths or externally adjusting Fermi-levels, our proposed setup 
can not only reach a high Cooper-pair splitting efficiency ~100%, but also provide a strong signal of the 
crossed Andreev reflection with TCAR ≈  2, which is much larger than those reported in previous works.

Figure  4b,d show the transmission coefficients of the quantum tunneling, Andreev reflection and 
crossed Andreev reflection as functions of the sample width N at fixed system length L =  21. One can 
see that only for small width N there exists very weak Andreev reflection, because, in this case, both 

Figure 3.  Transmission coefficients as functions of the Fermi level. Transmission coefficients of the 
quantum tunneling TQT, Andreev reflection TAR, and crossed Andreev reflection TCAR as functions of the 
Fermi level EF for different system lengths L =  11 (a), 21 (b) and 31 (c) at a fixed system width of N =  80. 
Other parameters are the same as those in Fig. 2c.
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electrons and holes can be scattered between the top and bottom boundaries of the device. In cases with 
larger N, the edge states at the two boundaries are well separated, leading to the disappearance of the 
Andreev reflection TAR =  0 and the saturation of TQT +  TCAR ≈  2.

At this point, we have proposed a scheme for realizing a high-efficiency Cooper-pair splitter in a 
hybrid system of the QAHI proximity-coupled with a superconductor. It is clear that external disorders 
are inevitable in practical devices. Therefore, the question naturally arises as to whether the quantum 
tunnelling and the crossed Andreev reflection are still robust in real systems? To address this issue, 
in Fig.  5 we plot the averaged transmission coefficients by collecting over 200 samples in the pres-
ence of on-site Anderson disorders in the central scattering region. One can see that these transmis-
sion coefficients are nearly unaffected when the relatively strong disorders of W/Δ S =  1, 2 and 5 are 
introduced. Even for a much stronger disorder strength of W/Δ S =  10, the Andreev reflection is only 
slightly enhanced. This is because the electrons can be weakly scattered to the opposite edges in the pres-
ence of rather strong disorders. Therefore, even in such a case, the quantum tunneling and the crossed 
Andreev reflection still dominate the whole scattering process. All these observations demonstrate that 
our proposed high-efficiency Cooper-pair splitter is much robust against external disorders, indicating 
its experimental feasibility. It should also be noted that although we have used a graphene-based QAHI 
as a specific example in this article, our findings can be applied to any other systems that can realize the 
quantum anomalous Hall effect.

Methods
In our numerical calculation, we have mainly employed the non-equilibrium Green’s function tech-
nique50 and the recursive transfer matrices method to compute various transmission coefficients in a 
two-terminal mesoscopic system. For example, the transmission coefficients for the quantum tunneling, 
the Andreev reflection, and crossed Andreev reflection are expressed as51,52:

Γ Γ= , ( )T G GTr[ ] 4ee ee
r

ee ee
a

QT
L R

Figure 4.  The relations of transmission coefficients with the device size. (a,c) Transmission coefficients 
of the quantum tunneling TQT, Andreev reflection TAR, and crossed Andreev reflection TCAR as functions of 
system length L for different Fermi levels EF =  0.01t (a) and 0.02t (c) at the fixed width of N =  80. (b,d) The 
transmission coefficients as functions of the system width N for different Fermi levels EF =  0.01t (b) and 
0.02t (d) at the fixed system length of L =  21. Other parameters are the same as those in Fig. 2c.
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where “e/h” is an abbreviated expression of “electron/hole”, and “L/R” indicates “left/right”. 
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L L  is the line-width function coupling the left/right semi-infinite terminal with the 

central scattering region. And the line-width constant of the superconductor terminal is set to be gs =  2Δ S 
for simplicity.

In the calculation of the spectral function in Fig. 2c, we consider an infinite long QAHI ribbon cov-
ered by the superconductor. Then the momentum kx is a good quantum number, and 

( )( , ) = − − Σ
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x
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