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Space-Time Discontinuous Galerkin Finite Element Methods

Motivation:

Many problems are defined on time-dependent domains, e.g.

e Fluid-structure interaction

e Free surface problems, such as water waves and multiphase flows with free surfaces

These problems can be efficiently computed using a space-time approach, in which time and
space are simultaneously discretized.
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Objectives

To develop a numerical scheme for hyperbolic and parabolic conservation laws with the following
properties:

e Conservative numerical discretization on moving and deforming meshes (satisfy geometric
conservation law)

Improve accuracy using hp-adaptation

e Maintain accuracy on irregular meshes

Efficient capturing of discontinuities, interfaces and vortices

Easy to parallelize

These requirements have been the primary motivation to develop space-time discontinuous
Galerkin finite element methods.
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Overview

e One-dimensional example: hyperbolic scalar conservation laws

» space-time formulation

» discontinuous Galerkin discretization
e Multi-dimensional parabolic scalar conservation laws:

» space-time discontinous Galerkin discretization

» ALE formulation
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Time-Dependent Flow Domain

t
«H—» Q1)

Q)
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Example of a time dependent flow domain Q(t).
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Scalar Conservation Laws

e Consider the scalar conservation law in the time dependent flow domain Q C R:
ou  Of(u
L o) _

ot aX1

07 X1 € Q(t)v te (t07 T)’

with boundary conditions:
u(xq, t) = B(u, uw), Xy € 0Q(t), te (b, T),
and initial condition:

u(x1,0) = up(x1), x1 € Qo).
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Space-Time Domain

A

Xo

\e Q(T)

Q)

Q(to) Xy
Example of a space-time domain &.
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Definition of Space-Time Domain

o Let £ C R? be an open domain.

A point x € R? has coordinates (xg, X{), where X, represents time and x; the spatial
coordinate.

Define the flow domain 2 at time t as:

Q(t) == {x; €R|(t,x1) € E}.

Define the boundary Q as:

Q:={x€d|th<x < T}

e Note: The space-time domain boundary 9€ is equal to:

9E = Q(th) U QU Q(T).
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Space-Time Formulation of Scalar Conservation Laws

o Define the space-time flux vector: F(u) := (u, f(u))7, then scalar conservation laws can be
written as:
div F(u(x)) =0, xeé&
with boundary conditions:
u(x) = B(u,uw), x€9,
and initial condition:
u(x) = up(x), x € Q(lo)-

OF;
ox; *

e The div operator is defined as: div F =
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Space-Time Slab

X A o)
T '« -
E K“+1
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K;

X1

Space-time slab in space-time domain £.
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Definition of Space-Time Slab

Consider a partitioning of the time interval (ty, T): {t» ﬁzo, and set I = (i, the1)-

e Define a space-time slab as: Z, := {x € €| xp € In}

Split the space-time slab into non-overlapping elements: IC]F’.

e We will also use the notation: Kj” = IC;’ N {tx} and Kj”+1 = IC;’ N {1}
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Geometry of Space-Time Element

Geometry of 2D space-time element in both computational and physical space.
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Element Mappings

Definition of the mapping G§- which the connects the space-time element X" to the reference
element K = (—1,1)2:
o Define a smooth, orientation preserving and invertible mapping ¢ in the interval I, as:

O Q(ty) — Q1) : X — ON(x1), tE In.

Note, for many problems, e.g. free surface problems, the mapping ®7 is not given and is part
of the equations that need to be solved.

e Split Q(ts) into the tessellation Th" with non-overlapping elements K;.
o Define x;(¢1),&1 € (—1,1) as the standard linear finite element shape functions:

(1-&),
(1+&).

x1(é1) =
x2(61) =

LSIEI e
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|
Element Mappings

e The mapping F} is defined as:

2
FRi(=1,1) = K™ & — > xi(KMxi(é),

i=1

with x;(K™) the spatial coordinates of the space-time element at time t = tn.
e Similarly we define the mapping F,’(’“:

2
FRrt o (=1,1) = KM a6 e > 0f  06(KM)xi()-
i=
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|
Element Mappings

e The space-time element is defined by linear interpolation in time:

GR 1 (—1,1)2 = K" : (&0, &1) — (X0, %1),
with:

(x0,x1) = (%(fn + top1) — 3(th — tri1)éo,

(1= &) FR(&) + 5 (1 + &) PR (1))

e The space-time tessellation is now defined as:

Ty = {K = Gg(K)|K € T7'}.
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Basis Functions

o Define the basis functions ¢m, (m=1,--- , (p + 1)2), in the master element K as:

dm(€o,&1) = €0en.

Remark: In practice the best option is to use orthogonal basis functions, e.g. Legendre
polynomials or (generalized) Jacobi polynomials.

e Define the basis functions ¢m, in an element K as:

ém(x) = dmo G (x).
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Finite Element Space

o Define the finite element space V£ (7;") as:

VE(T) i= {vn| volxc € @2(0), VK € T},
with QP(K) = span{¢m, m=1,---,(p+ 1)?} a tensor product basis.

o The trial functions up : 7,7 — R? are defined in each element K € T as:
(p+1)?

un(x) = D> Un(K)ym(x), x €K,
m=1

with Un, the DG expansion coefficients.
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N
Weak Formulation for STDG Method

The scalar conservation laws can be transformed into a weak formulation:

e Find a u, € VP, such that for all w,, € VP, we have:

Nt Np
Z Z (/ wp, divF (up)diC + / (grad wp,) T D(up) grad uhdIC) =0.
0= 'K} K7

o The second integral with ®(ujp,) € R? is the stabilization operator necessary to obtain
monotone solutions near discontinuities.

o Alternatively, one can use a limiter, but one has to be careful to ensure that the limiter does
not cause problems in solving the algebraic equations resulting from the DG discretization.

See, F. Yan, J.J.W. van der Vegt, Y. Xia, Y. Xu, to appear in Commun. Comput. Phys. 2023.
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Weak Formulation

After integration by parts we obtain the following weak formulation:

e Find a uy, € VP, such that for all w, € VP, we have:

N7 Np

>3 / erad wh - F(up)dK + / n - F(u7)d(OK)

n=0 j=1

+/ (grad wy) " D(up) grad uhdlC) =0
Kn
i
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Numerical Fluxes

e We can transform the element boundary integrals into:

ZA}C Wh_n_ .f_d(aK):;[S<(W;n_+W;rn+),%(]_-—+]_—+)+

K
Jwy A wWEFT T+ FToat))ds, (1)

with F+ = ]-‘(u,jf), and n—, n™ the normal vectors at each side of the face S, which satisfy
nt=-n".
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Numerical Fluxes

e The formulation must be conservative, which imposes the condition:
/ Wpn~ - FTdS = —/ wpnt - FTdS, vwy € VE(TD),
s s
hence the second contribution in (1) must be zero.

e The boundary integrals therefore are equal to:

Z/ Wi~ - Fod(0K) = Z/ ~—whn - (F + F)ds,
K oK

using the relation n* = —n—.
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Numerical Fluxes

e Replace the multi-valued trace of the flux at S with a numerical flux function:

H(uy ,uf,ny=tn (F~ +F"),
then we obtain the relation:
Z/ won~ -f—d(ax):Z/(w,,— —W)H(U Ut 07 )ds
o~ Jox 5 Js

=> /8)C w, H(u, , uf,n™)d(9K),
K<

using the relation H(u, , uf,n™) = —H(u}", up , n*).
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Numerical Fluxes

e The numerical flux at the boundary faces K(t,) and K(t,11), which have as normal vectors
n~ = (F1,0)7, respectively, is defined as:

H(uy  uf,n™) =uf at K(tn)
=u, at K(thy1)-

o The numerical flux at the boundary faces Q" is a monotone Lipschitz H(uj , u}", n), which is
consistent:

H(u,u,n) =n-F(u)

and conservative:

H(u, ,uf,n™) = —H(ul, uy , nt).
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Riemann Problem

e The monotone Lipschitz flux H(u, , u;r, n) is obtained by (approximately) solving the
Riemann problem with initial states v, and u,:r at the element faces Q.

e This procedure introduces upwinding into the discontinuous Galerkin finite element method.
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Upwind Fluxes

Consistent, monotone Lipschitz fluxes are:

e Godunov flux

min  f(u), ifu; <uf
ueluy ,ul]
HO(u, ,ut,n) = .
max  f(u), otherwise,
uelu),up]

with F(u) = F(u) - n.
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Upwind Fluxes

e Local Lax-Friedrichs flux

HHF (U, uf ) = %(?(u;) +Hu) - C(uf — up)),
with
Cc= max (),
inf(up, U )<s<sup(u, ,u})
o Roe flux with entropy fix

e HLLC flux

e The choice which numerical flux should be used depends on many aspects, e.g. accuracy,
robustness, computational complexity, and personal preference.
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Arbitrary Lagrangian Eulerian Formulation

e The space-time normal vector at Q can be expressed as:

n=(—ug-n,n,

with ug the mesh velocity.

o If we introduce this relation into the numerical fluxes then

f(u) = F(u) - n= f(u) - A — ug - AU,

which is exactly the flux in an ALE formulation.
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Weak Formulation for DG Discretization

After introducing the numerical fluxes we can transform the weak formulation into:

e Find a up € VE(T,"), such that for all w, € VF(7;7), the following variational equation is
satisfied:

Na
3 (—/n(grad wh) ~]-'(uh)dIC+/ w; Uy dK—
=1 Kj Ki(tn1)
/ wh_u;dK-s-/ wy H(uy Ul ug, n™)d O+
Ki(ta) or

/ (grad wi) "D (up) grad up dlC) =0.
Kn
i

e Note: Due to the causality of the time-flux the solution in a space-time slab only depends
explicitly on the data from the previous space-time slab.
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Parabolic Scalar Conservation Laws

o Parabolic scalar conservation laws on a time-dependent domain Q; C R?:

d d
ou 0 0 ou
— —f(u(t,x) - > —(Dj(t,x)=——) =0, inQ
ot 2 o ML) ,-2,-::1 5 (Dit%) 30 ) =0, in @,

o with:

» U a scalar quantity
» fi,i=1,--- dreal-valued flux functions

» D e R9*9 a symmetric positive definite matrix of diffusion coefficients
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Space-Time Formulation

e Introduce the convective flux F € R*+! and the symmetric matrix A € R(@+1)x(d+1) zg:
F(u) = (u,fi(u), - fg(u)),
A= ( o2 ) :
e The parabolic scalar conservation law can be transformed into a space-time formulation as:

-V - (=F(u)+AvVu)=0 in &,

where V = (870, %, o Bixd) denotes the gradient operator in R9+1.
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Boundary Conditions

e The boundary 9€ is divided into disjoint boundary subsets I's, ' _, and I' ., where each
subset is defined as follows:

s :={x € 8 : i’ DA > 0},
M- :={x €9\ Tg:A() <0},
My i={x €98\ Ts: A(u) >0},
with:
» nthe space-time normal vector at 9&

» 1 the spatial part of the space-time normal vector n

> Au) = Z(F(u)-n)
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Boundary Conditions

e The boundary conditions on different parts of 9€ are written as

u=uy onSy,
u=gp onflp,

au+n-(AVU) =gy on Ty,

e o > 0and ug, gp, gm given functions defined on the boundary.

e There is no boundary condition imposed on I'.
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Space-Time Slab

IHI

t
K
Qn+l ‘
Ul ¥
th N A
| ‘ ‘ Qnp
on | : 1 :
X

Space-time slab £” with space-time element K.
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Finite Element Spaces

e To each element KC we assign a pair of nonnegative integers px = (pt,x, Ps,x) as local
polynomial degrees

o Define Qp; «,ps x (K) as the set of tensor-product polynomials on K of degree p « in the
time direction and degree ps x in each spatial coordinate direction

o Define the finite element spaces of discontinuous piecewise polynomial functions as:

VPEPS) = (v € 2(€) : vk 0 Gk € Q )(K),VK € Th}

Pt, K Ps, IC

TPPs) = (1 e 2(€)IH i 7]k 0 Gk € [Q J(R)I9H VK € Th}

Pt 1cPs, K
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Trace Operators

e The so called traces of v € V,Sp"pS) on 8K are defined as:
£ _
Ve = limv(x +en,

o The traces of r € ={P) are defined similarly.

« Note that functions v € V**) and 7 € £P"P*) are in general multivalued on a face
S € Fin-
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Average and Jump Operators

e Introduce the functions v; := v|k;, 7 := Tlx;, N = Nlaxk;
e The average operator on S € F;, is defined as:
1, _ _ 1, _ _
{vi = 5(‘/,‘ +V ), %= E(T,' + 7 ), onS € Fin,

e The jump operator on S € Fj, is defined as:

Vi=vinm+vinm [rfl=7 -n+7 -n, onSe F,

with i and j the indices of the elements K; and K; which connect to the face S € Fiy.
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Average and Jump Operators

e On aface S € Fyn4, the average and jump operators on S € Fy,q are defined as:

h=v.  frh=r

[vi= v~ n, [fI=7""-n

o Note that the jump [v] is a vector parallel to the normal vector n and the jump [r] is a scalar
quantity.

e We also need the spatial jump operator {-)) for functions v € V,S”"”S), which is defined as:

(vy=vim+v h, onSeFn, (vh=v n onSEe Fou.
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Space-Time DG Discretization

e Introduce an auxiliary variable o = AV u to obtain the following system of first order
equations:

o= AVu,
-V (=F(u) + ) =0.
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Weak Formulation for Auxiliary Variable

e Multiply the auxiliary equation with an arbitrary test function = € Z;””’JS) and integrate over
an element K € 7,

/U.Td;c:/ AVU-Tdi, Vre PP
K K

e Substitute o and u with their numerical approximation and integrate by parts twice and sum
over all elements:

/O’h~Td€:/AVhUhATd5+Z/ A([’,\Ih—U;)n”I'idaK:
£ € K7, Jox

e The variable Uy is the numerical flux that must be introduced to account for the multivalued
trace on oK.
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Weak Formulation for Auxiliary Variable

e The following relation holds for vectors = and scalars ¢, piecewise smooth on 7j:

3 AK(T-n)¢daK: Z/S{T}}-u¢>11d8+ 3 /sﬂﬂ]mw

KeT SeF S€Fint

e Using the symmetry of the matrix A, the last contribution in the auxiliary equation then
results in

> A(lp — uy)n- 7~ dOK
KeTh oK

=> /SEAT}~ﬂﬂh—uh]] ds+ > /s{ah—uh}}nAr]] ds

SeF SeFin
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Numerical Fluxes for Auxiliary Equation

e The following numerical fluxes result in a consistent and conservative scheme with a sparse
matrix:

Up = {uh}} on S € Fin,

Up=gp onSe UnSB,

Op = uy elsewhere.

o Note that on faces S € S7, which are the element boundaries K” and K"*1, the normal

vector n has values n = (£1,0,...,0) and thus An = (0, ..., 0). Hence there is no coupling
N — N —
d x (d+1) x

between the space-time slabs.
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Numerical Fluxes for Auxiliary Equation

e Substitute the numerical flux into the auxiliary equation and use that A contains continuous
functions, we obtain for each space-time slab £":

A(lp — uy )n-77 dOK

)CEThn oK

. /SIIU,,]]-A{{T}}dS—i- 3 [SgDn-ATdS.

sesp, sesp

e Summing over all space-time slabs and using the symmetry of matrix A we can introduce the
lifting operator to obtain

5 /aKA(ah—u;)nf daic:/gAR,D(ﬂuf,ll)-fds

KeTh
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-
Lifting Operators

o Define the global lifting operator Rp : (L2(UnS))+! — EPPs) g

Rip(¢) = R(¢) — R(Pgpn)

o Define the global lifting operator R : (L2(UnSih))*" — Zgjp”pS) as:

/ R(¢)-qdE = — Z/ 6-{q} dS, vge TP VS e UnSh.
£ 5 /s
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-
Lifting Operators

e Using the symmetry of the matrix A, the lifting operator R/p satisfies the relation:

[ ARo(tun) -+ de
- 3 /SA[[uh]]‘{{‘r}dSJr 3 /sAgDn~7-d8

SeunSy, SeunSp
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Numerical Fluxes for Auxiliary Equation

o Combine all terms, then we obtain for all + € ):gp"pS):
/O’h -rd€ = / AV hup ng-i-/ ARID('IUh]I) -7 dé€,
£ £ £
(pt,ps)

e This implies that we can express o, € &}/ as:

on = AVpup + ARp([up]) ae. Vx e&.
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Weak Formulation for Parabolic Scalar Conservation Laws

o The weak formulation for parabolic scalar conservation laws can be expressed as:

Finda up, € V,(f”’pS), such that Vv € V,(,p”pS) the following relation is satisfied:

/(—F(Uh)+ffh)~Van€— > / (=Fn+6p) - nv™ doK = 0.
£ KeT,” oK

e Here we replaced F(up), o, on 9K with the numerical fluxes Fh, &n, to account for the
multivalued traces on oK.
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Numerical Fluxes

o Separate the numerical fluxes into an convective flux £, and a diffusive flux 6.

o For the convective flux, the obvious choice is an upwind flux. Here we use the Local
Lax-Friedrichs flux for convenience:

Faluy  uy) = £F (un)} + Csllunl

e The parameter Cg is chosen as:

Cs= max |Au)| onS e Fiy

— T
u€lu, ,up]

with A(u) = Z(F(u) - n).
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Convective Numerical Fluxes

e After summation over all elements we obtain:

Z/ ({F(un)} + Cslup]) - nv— doK

KeTh

= > [ WF@y+ CsluD) - 1 ds+ 3= [ Fwn)-nvas

S€Fint S S€ Find
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Numerical Fluxes for Auxiliary Variable

o Introduce, the diffusive flux 6, = {on}, then after summation over all elements we obtain:

S /Em{{&h}}-nv* dox = 3° /Sﬁah}} [vlds

KeTh SeF

e Recall also the relation

op = AVhup + AH/D([[Uh]]) ae Vxe€&.
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DG Discretization for Primal Variable

e Combining all terms and eliminating o, we obtain the DG formulation for up:
/g (= F(un) + AVhun + ARp([unl)) - Vav dE

+ 3 / {F(Wn)} + Cslunl) - [M19S+ 3 /5 (up) - v dS

SEFin S€Fond

= 3= [ (ATt} + AR (D)D) - 1S =0

SeF
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-
Simplifying the DG Discretization

e The DG discretization can be simplified using the following steps.

e Recall the lifting operator R)p satisfies the relation

/8 ARp([unl) - Vav o€

=_ Z /SA|Iuh]].{{th}}dS+ Z /SAQD”'VthS

Seunsy, SeunsSp

o The liting operator Rjp has nonzero values only on faces S € S|j,.
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-
Simplifying the DG Discretization

e Using the lifting operators R and Rp we obtain:

- 3 [ Ao} 111 63

SeF

/ AR([us]) - R(IV]) d€ — / AR(Pgon) - R([V]) d€
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-
Lifting Operators

« Define the local lifting operator rg : (L2(S))+! — £(PPs) ag:

/r3(¢)~qd5: —/¢~{{q}} ds, vge PP vs e upShh.
& S

e The support of the operator rg is limited to the element(s) that share the face S.
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-
Simplifying the DG Discretization

e Following the approach of Brezzi we replace each global lifting operator with the local lifting
operators rg, and make the following simplifications:

/ AR(uD) - RVD dE = S0 3 e / Ars([us) - rs(Iv]) 0K,
€ SeupSjh KeTh

[ Ar(Pgon) - AID e = Y0 3 ux / Ars(Pgpn) - rs([v]) dK
£ Seup S” KeTh

e A sufficient condition for the constant nx to guarantee a stable and unique solution is
nx > Ny, with ny the number of faces of an element.

e The advantage of this replacement is that the discretization matrix is considerably sparser
than when the global lifting operators are used.
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DG Discretization for Parabolic Scalar Conservation Laws

o Define the form a, : V,Sp”pS) X V,Sp”pS) —Ray: V,Sp"pS) X V,Sp”pS) - R:

aa(unv) == [ Fun)-Vavoe+ 3 [ AF@}+ Colund) - 1M1 85

S€ Fint

+ > S}'(uh) -nvdS,

Se(UnShpgpUl+)
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DG Discretization for Parabolic Scalar Conservation Laws

o Define the bilinear form ay : V,(f’”pS) X V,Sp”pS) - R:

ad(uh, V) :/g Dﬁhuh . ?hv d&

-3 /5 (D(un) - {9V} + DEThtn} - (v)) dS

Seunsp,

+ Y S me /K Drs(Lunl) - Fs(IV]) 0K

Seupsi KeTh

+ > /Sauhvds,

Seunsp,
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DG Discretization for Parabolic Scalar Conservation Laws

o Define ¢ : Vf(,p"pS) —~ Ras:

w=- 3 /SgDszﬁ,,vds

Seunsy
+ O3S e [ DFs(Pgon) Tk + S [ guvds
seunspKeT, UK SeUnsy, S

- > /]-‘(gD)~nvdS+ cov dQ.
s Q%

n
seLJ"SDBSm
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DG Discretization for Parabolic Scalar Conservation Laws

e Note, we introduced the following boundary and initial conditions in the DG discretization:

Dvhuh -Nn=gy—au, onSe UnS{\;,,
Up = gp onSe UnSBBSm,
up = U on o,

e The space-time DG discretization for the parabolic scalar conservation law can now be
formulated as:

Finda up, € V,(f”’pS), such that Vv € V,(,p”pS) the following relation is satisfied:

a(up, v) = £(v)
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N
ALE DG Formulation

e Onfaces S € Sg, the space-time normal vector is equal to:

n=(£1,0,...,0)
N——
d x

and is not affected by the mesh velocity.

e On the faces S € S} the space-time normal vector depends on the mesh velocity ug:

n=(—ug-n,n),

which also holds on the boundary faces S € Fina \ (0 U Q7).
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N
ALE DG Formulation

e On S € UpSY, the flux can be written in the ALE formulation as:

{7 (un)} - [Vl = £1(un) — ugun} - (v,

o All other contributions are not affected by the mesh velocity.
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N
ALE DG Formulation

e The form aa(+, ) in the ALE formulation is now equal to:

aa(un,v) =~ [ F(up)- Vv de
£

+ > /S({{f(uh)* Ugtn}-(v) + Cslun] - [v) dS

Se UnSI"

+ 3 /S ({F(un)} + Csllunl) - [V] dS

S€UnS]

+ > /S(f(uh) — ugup) - v dS,

Se(u,,s;}mspuu)
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N
ALE DG Formulation

e The linear form ¢(-) in the ALE formulation is now equal to:

w=- 3 /SgDthhvds

SeunSp
+ Z ZHK/DTS(PQDH)~TS([[V]|)dIC+ Z /ngdS
SeunsnKeT, UK seupsy,’S
- Z /(f(QD)—QDUg)~77vdS+/ Cov dQ,

SEUNShgsm S Q

e The bilinear form ay(-, -) is not influenced by the mesh velocity.
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Conclusions

The main properties of space-time discontinuous Galerkin finite elements methods can be
summarized as:

e The space-time discontinuous Galerkin finite element method results in a very local, element
wise discretization, which has as benefits:

» the space-time discretization automatically satisfies the geometric conservation law for
deforming elements

» efficient grid adaptation using local grid refinement, no complications caused by
hanging nodes and gradient reconstruction

» combines very well with unstructured grids

» boundary conditions can be easily implemented
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Conclusions

» no special numerical treatment is required to achieve higher order accuracy

» no interpolation is necessary after remeshing or local mesh refinement, only time fluxes
need to be transferred

» maintains accuracy on irregular grids

» efficient parallelization
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