Discontinuous Galerkin Methods

Jaap van der Vegt
Numerical Analysis and Computational Science Group
Department of Applied Mathematics
Universiteit Twente
Enschede, The Netherlands

Part 1.

USTC Summer School, September 4 - September 8, 2023

Introduction

- Discontinuous Galerkin (DG) methods are nowadays one of the main finite element methods to solve partial differential equations.
- The key feature of DG methods is the use of discontinuous test and trial spaces. This results in a local element wise discretization and a discontinuous approximation at element faces or edges.

Introduction

Benefits of discontinuous Galerkin methods:

- DG methods provide higher order accurate, element-wise conservative finite element discretizations of partial differential equations with excellent stability and convergence properties.
- The local, element based discretization in DG methods provides great flexibility to design:
- solution adaptive numerical discretizations using local mesh refinement (h-adaptation) and/or local adjustment of the polynomial order (p-refinement).
- efficient parallel finite element discretizations due to the minimal element connectivity. In general, only nearest neighboring elements are connected at element faces or edges.
- DG discretizations of time-dependent problems generally result in a block-diagonal mass matrix, which is very beneficial when using an explicit time integration method.
- DG methods have a well established mathematical theory to analyse the convergence, stability and accuracy of the finite element discretization.

Introduction

Benefits of discontinuous Galerkin methods:

- Discontinuous Galerkin discretizations generally are more complicated than standard conforming finite element discretizations and also their mathematical analysis is more involved.

Introduction

To main goals of these lectures are:

- To discuss the basic mathematical techniques necessary to understand the mathematical properties of DG discretizations.
- To use these tools to study convergence, stability and accuracy of discontinuous Galerkin discretizations of hyperbolic and elliptic model problems.

Main references

These lectures are mainly based on:

- D.A. Di Pietro, A. Ern, Mathematical aspects of discontinuous Galerkin methods, Springer, 2012, ISBN 978-3-642-22979-4.
- A. Ern, J.-L. Guermond, Theory and practice of finite elements, Springer, 2004, ISBN 0-387-20574-8.
- S.C. Brenner, L.R. Scott, The mathematical theory of finite element methods, 3rd edition, Springer, 2008, ISBN 978-0-387-75933-3.

Discrete setting

- The domain Ω is a bounded, connected subset of $\mathbb{R}^{d}, d \geq 1$, with Lipschitz continuous boundary $\partial \Omega$ that has a unit outward normal vector n.
- For simplicity we will also assume that Ω is a polyhedron.
- Polyhedron:
- P is a polyhedron in \mathbb{R}^{d} if P is an open connected, bounded subset of \mathbb{R}^{d} s.t. its boundary ∂P is a finite union of parts of hyperplanes.
- Moreover, each point in the interior of P is assumed to lie only on one side of the hyperplane boundary.
- Each polyhedron can be subdivided into a finite number of simplicial elements.

Discrete setting

- A simplex is defined as:
- Given a family $\left\{a_{0}, \cdots, a_{d}\right\}$ of $d+1$ points in \mathbb{R}^{d} s.t. the vectors $\left\{a_{1}-a_{0}, \cdots, a_{d}-a_{0}\right\}$ are linearly independent.
- The interior of the convex hull of $\left\{a_{0}, \cdots, a_{d}\right\}$ is called a non-degenerate simplex in \mathbb{R}^{d}.
- The points $\left\{a_{0}, \cdots, a_{d}\right\}$ are the vertices of the simplex.
- In \mathbb{R}^{d}, for $d=1,2,3$ simplices are, respectively, a line segment, a triangle, and a tetrahedron.
- Unit or reference simplex

$$
S_{d}:=\left\{\left(x_{1}, \cdots, x_{d}\right) \in \mathbb{R}^{d} \mid x_{i}>0 \forall i \in\{1, \cdots, d\} \text { and } x_{1}+\cdots+x_{d}<1\right\}
$$

Discrete setting

Simplex faces and mesh:

- Let S be a non-degenerate simplex with vertices $\left\{a_{0}, \cdots, a_{d}\right\}$.

For each $i \in\{0, \cdots, d\}$ the convex hull of $\left\{a_{0}, \cdots, a_{d}\right\} \backslash\left\{a_{i}\right\}$ is a face of simplex S .

- A simplicial mesh \mathcal{T} of the (polyhedral) domain Ω is a finite collection of disjoint non-degenerate simplices $\mathcal{T}=\{T\}$ forming a partition of Ω,

$$
\bar{\Omega}=\cup_{T \in \mathcal{T}} \bar{T},
$$

with each $T \in \mathcal{T}$ a mesh element.

The outward unit normal vector at ∂T is denoted n_{T}.

Discrete setting

General mesh:

- A general mesh \mathcal{T} of a domain Ω is a finite collection of disjoint polyhedra $\mathcal{T}=\{T\}$ forming a partition of Ω.
- Note, a general mesh allows hanging nodes.
- Let \mathcal{T} be a (general) mesh of Ω. For all $T \in \mathcal{T}, h_{T}$ denotes the diameter of T and the mesh size is defined as

$$
h:=\max _{T \in \mathcal{T}} h_{T}
$$

- \mathcal{T}_{h} is a mesh \mathcal{T} with mesh size h.

Discrete setting

Mesh faces:

- Let \mathcal{T}_{h} be a mesh of Ω. A (closed) subset F of $\bar{\Omega}$ is a mesh face if F has a positive ($d-1$)-dimensional Hausdorff measure and if either one of the two conditions is satisfied:
- there are distinct mesh elements T_{1} and T_{2} s.t. $F=\partial T_{1} \cap \partial T_{2}$, then F is called an interface;
- there is a $T \in \mathcal{T}_{h}$ s.t. $F=\partial T \cap \partial \Omega$, then F is called a boundary face.
- Interfaces are collected in the set \mathcal{F}_{h}^{i}, boundary faces in the set \mathcal{F}_{h}^{b}, hence

$$
\mathcal{F}_{h}:=\mathcal{F}_{h}^{i} \cup \mathcal{F}_{h}^{b} .
$$

Discrete setting

- The set $\mathcal{F}_{T}:=\left\{F \in \mathcal{F}_{h} \mid F \subset \partial T\right\}$ collects the mesh faces composing the boundary of element T.
- The maximum number of mesh faces composing the boundary of mesh elements is

$$
N_{\partial}:=\max _{T \in \mathcal{T}_{h}} \operatorname{card}\left(\mathcal{F}_{T}\right) .
$$

- For any mesh face $F \in \mathcal{F}_{h}$ define the set

$$
\mathcal{T}_{F}:=\left\{T \in \mathcal{T}_{h} \mid F \subset \partial T\right\} .
$$

- Note \mathcal{T}_{F} consists of two mesh elements if $F \in \mathcal{F}_{h}^{i}$ and one mesh element if $F \in \mathcal{F}_{h}^{b}$.

Jumps and Averages

- Let v be a scalar valued function on Ω, sufficiently smooth to admit $\forall F \in \mathcal{F}_{h}^{i}$ a possibly two-valued trace.
- Denote with $\left.v\right|_{T}$ for all $T \in \mathcal{T}_{h}$ the restriction of v to T with trace at ∂T.
- For all $F \in \mathcal{F}_{h}^{i}$ and a.e. $x \in F$ the average of v is defined as

$$
\{\{v\}\}_{F}(x):=\frac{1}{2}\left(\left.v\right|_{T_{1}}(x)+\left.v\right|_{T_{2}}(x)\right),
$$

and the jump of v as

$$
[[v]]_{F}(x):=\left.v\right|_{T_{1}}(x)-\left.v\right|_{T_{2}}(x) .
$$

- If v is a vector then the average and jump operators act component wise on v.

Normal vectors

- For all $F \in \mathcal{F}_{h}$ and a.e. $x \in F$ the unit normal n_{F} to F at x is defined as
- $n_{F}=n_{T_{1}}$, the normal vector to F at x pointing from element T_{1} to element T_{2} if $F \in \mathcal{F}_{h}^{i}$ with $F=\partial T_{1} \cap \partial T_{2}$.

At $F \in \mathcal{F}_{h}^{i}$ we have $n_{T_{2}}=-n_{T_{1}}$.
The orientation of $n_{F}=n_{T_{1}}$ is arbitrary, depending on the choice of T_{1} and T_{2}, but this orientation must be kept fixed.

- n, the outward normal to Ω at x if $F \in \mathcal{F}_{h}^{b}$.

Lebesgue spaces

- Consider functions $v: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}, d \geq 1$, that are Lebesgue measurable.

Let $1 \leq p \leq \infty$ be a real number and define the norms

$$
\begin{aligned}
\|v\|_{L^{p}(\Omega)} & :=\left(\int_{\Omega}|v|^{p}\right)^{\frac{1}{p}} \quad 1 \leq p<\infty \\
\|v\|_{L^{\infty}(\Omega)} & :=\sup \operatorname{ess}\{|v(x)| \mid \text { for almost every } x \in \Omega\} \\
& =\inf \{M>0| | v(x) \mid \leq M \text { for almost every } x \in \Omega\} .
\end{aligned}
$$

Lebesgue spaces

- The Lebesgue space is defined as

$$
L^{p}(\Omega):=\left\{v \text { is Lebesgue measurable } \mid\|v\|_{L^{p}(\Omega)}<\infty\right\}
$$

- The Lebesgue space with norm $\|v\|_{L^{p}(\Omega)}<\infty$ is a Banach space for all $1 \leq p \leq \infty$.
- For all $1 \leq p<\infty$ the space $C_{0}^{\infty}(\Omega)$ of infinitely differentiable functions with compact support is dense in $L^{p}(\Omega)$.
- For $p=2$, the space $L^{2}(\Omega)$ is a Hilbert space, equipped with the scalar product

$$
(v, w)_{L^{2}(\Omega)}:=\int_{\Omega} v w .
$$

Lebesgue spaces

- Holder's inequality.

For all $1 \leq p, q \leq \infty$ with $\frac{1}{p}+\frac{1}{q}=1$ all $v \in L^{p}(\Omega)$ and all $w \in L^{q}(\Omega)$ there holds $v w \in L^{1}(\Omega)$ and

$$
\int_{\Omega} v w \leq\|v\|_{L^{p}(\Omega)}\|w\|_{L q(\Omega)}
$$

- For $p=q=2$ Holder's inequality becomes the Cauchy-Schwarz inequality.

For all $v, w \in L^{2}(\Omega), v w \in L^{1}(\Omega)$ and

$$
(v, w)_{L^{2}(\Omega)} \leq\|v\|_{L^{2}(\Omega)}\|w\|_{L^{2}(\Omega)} .
$$

Sobolev spaces

- Given a Cartesian basis in \mathbb{R}^{d} with coordinates $\left(x_{1}, \cdots, x_{d}\right)$, then ∂_{i} with $i \in\{1, \cdots, d\}$ denotes the distributional partial derivative with respect to x_{i}.
- For $\alpha \in \mathbb{N}^{d}$, then $\partial^{\alpha} v$ denotes the distributional or weak derivative $\partial_{1}^{\alpha_{1}} \ldots \partial_{d}^{\alpha_{d}} v$ of v with $\partial^{(0, \cdots, 0)} v=v$.

A function $f \in L_{l o c}^{1}(\Omega)$ has a distributional or weak derivative $\partial^{\alpha} f$ provided there exists a function $g \in L_{l o c}^{1}(\Omega)$ such that

$$
\int_{\Omega} g(x) \phi(x) d x=(-1)^{|\alpha|} \int_{\Omega} f(x) \phi^{(\alpha)} d x \quad \forall \phi \in C_{0}^{\infty}(\Omega)
$$

If such a g exists, then we define $\partial^{\alpha} f=g$.

Sobolev spaces

Example. Take $d=1, \Omega=[-1,1]$ and $f(x)=1-|x|$.
Then for $\phi \in C_{0}^{\infty}(\Omega)$, arbitrary, we have,

$$
\begin{aligned}
& \int_{-1}^{1} f(x) \partial_{1}^{1} \phi(x) d x=\int_{-1}^{0} f(x) \partial_{1}^{1} \phi(x) d x+\int_{0}^{1} f(x) \partial_{1}^{1} \phi(x) d x \\
&=-\int_{-1}^{0}(+1) \phi(x) d x+\left.f \phi\right|_{-1} ^{0}-\int_{0}^{1}(-1) \phi(x) d x+\left.f \phi\right|_{0} ^{1} \quad \text { (integration by parts) } \\
&=-\left(\int_{-1}^{0}(+1) \phi(x) d x+\int_{0}^{1}(-1) \phi(x) d x\right)+(f \phi)(0-)-(f \phi)(0+) \\
&\quad \text { (since } \phi(-1)=\phi(1)=0) \\
&=-\int_{-1}^{1} g(x) \phi(x) d x \quad \\
&\quad \text { (since } f \text { is continuous at } x=0),
\end{aligned}
$$

with

$$
g(x)= \begin{cases}1 & x<0 \\ -1 & x>0\end{cases}
$$

The weak derivative $\partial_{1}^{1} f(x)$ is then given by $\partial_{1}^{1} f(x)=g(x)$.

Sobolev spaces

- For $1 \leq p \leq \infty, p \in \mathbb{R}$, define for all $\xi \in \mathbb{R}^{d}$, with $\xi=\left(\xi_{1}, \cdots, \xi_{d}\right)$ in the Cartesian basis of \mathbb{R}^{d}, the norm

$$
\begin{aligned}
& |\xi|_{\ell p}:=\left(\sum_{i=1}^{d}\left|\xi_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty, \\
& |\xi|_{\ell} \infty:=\max _{1 \leq i \leq d}\left|\xi_{i}\right| .
\end{aligned}
$$

- Sobolev spaces

Let $m \geq 0,1 \leq p \leq \infty$. The Sobolev space $W^{m, p}(\Omega)$ is defined as

$$
W^{m, p}(\Omega):=\left\{v \in L^{p}(\Omega) \mid \forall \alpha \in A_{d}^{m}, \partial^{\alpha} v \in L^{p}(\Omega)\right\}
$$

where $A_{p}^{m}:=\left\{\left.\alpha \in \mathbb{N}^{d}| | \alpha\right|_{\ell^{1}} \leq m\right\}$.

Note, $W^{0, p}(\Omega)=L^{p}(\Omega)$.

Sobolev spaces

- The Sobolev spaces $W^{m, p}(\Omega)$ are a Banach space when equipped with the norm

$$
\begin{aligned}
& \|v\|_{W^{m, p}(\Omega)}:=\left(\sum_{\alpha \in A_{d}^{m}}\left\|\partial^{\alpha} v\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty \\
& \|v\|_{W^{m, \infty}(\Omega)}:=\max _{\alpha \in A_{d}^{m}}\left\|\partial^{\alpha} v\right\|_{L^{\infty}(\Omega)} .
\end{aligned}
$$

- The semi-norm $|\cdot|_{W^{m, p}(\Omega)}$ is obtained by keeping only the derivatives of global order m, hence $\bar{A}_{d}^{m}:=\left\{\left.\alpha \in \mathbb{N}^{d}| | \alpha\right|_{\ell^{1}}=m\right\}$.

Hilbert spaces

- For $p=2$ we use the notation $H^{m}(\Omega):=W^{m, 2}(\Omega)$, hence

$$
H^{m}(\Omega)=\left\{v \in L^{2}(\Omega) \mid \forall \alpha \in A_{d}^{m}, \partial^{\alpha} v \in L^{2}(\Omega)\right\}
$$

- $H^{m}(\Omega)$ is a Hilbert space when equipped with the scalar product

$$
(v, w)_{H^{m}(\Omega)}:=\sum_{\alpha \in A_{d}^{m}}\left(\partial^{\alpha} v, \partial^{\alpha} w\right)_{L^{2}(\Omega)}
$$

resulting in the norm and semi-norm

$$
\|v\|_{H^{m}(\Omega)}:=\left(\sum_{\alpha \in A_{d}^{m}}\left\|\partial^{\alpha} v\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}, \quad|v|_{H^{m}(\Omega)}:=\left(\sum_{\alpha \in \bar{A}_{d}^{m}}\left\|\partial^{\alpha} v\right\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}
$$

Hilbert spaces

- For $m=1$ we can consider the gradient $\nabla v=\left(\partial_{1} v, \cdots, \partial_{d} v\right)^{T} \in \mathbb{R}^{d}$. The norm on $W^{1, p}(\Omega)$ then is equal to

$$
\|v\|_{W^{1, p}(\Omega)}=\left(\|v\|_{L^{p}(\Omega)}^{p}+\|\nabla v\|_{\left[L^{p}(\Omega)\right]^{d}}^{p}\right)^{\frac{1}{p}}, \quad 1 \leq p<\infty
$$

with

$$
\|\nabla v\|_{\left[L^{p}(\Omega)\right]^{d}}^{p}:=\left(\int_{\Omega}|\nabla v|_{\ell{ }^{p}}^{p}\right)^{\frac{1}{p}}=\left(\int_{\Omega} \sum_{i=1}^{d}\left|\partial_{i} v\right|^{p}\right)^{\frac{1}{p}} .
$$

- For $p=2$ we have

$$
(v, w)_{H^{1}(\Omega)}=(v, w)_{L^{2}(\Omega)}+(\nabla v, \nabla w)_{\left[L^{2}(\Omega]^{d}\right.} .
$$

Traces

- Boundary values of functions in the Sobolev space $W^{1, p}(\Omega)$ have a meaning as traces in $L^{p}(\partial \Omega)$.
- Trace inequalities:

For all $1 \leq p \leq \infty$ there is a constant C s.t.

$$
\|v\|_{L^{p}(\partial \Omega)} \leq C\|v\|_{L^{p}(\Omega)}^{1-\frac{1}{p}}\|v\|_{W^{1, p}(\Omega)}^{\frac{1}{p}}, \quad \forall v \in W^{1, p}(\Omega) .
$$

For $p=2$ this gives

$$
\|v\|_{L^{2}(\partial \Omega)} \leq C\|v\|_{L^{2}(\Omega)}^{\frac{1}{2}}\|v\|_{H^{1}(\Omega)}^{\frac{1}{2}}, \quad \forall v \in H^{1}(\Omega) .
$$

- We will also consider Hilbert-Sobolev spaces $H^{s}(\Omega), s \in \mathbb{R}, s>0$, e.g. functions in $H^{\frac{1}{2}+\epsilon}(\Omega)$, $\epsilon>0$ have a trace in $L^{2}(\Omega)$.

Polynomial spaces

- The space of polynomials \mathcal{P}_{d}^{k} of total degree at most k, with $k \geq 0$, integer, is defined as

$$
\mathcal{P}_{d}^{k}:=\left\{p: \mathbb{R}^{d} \ni x \mapsto p(x) \in \mathbb{R} \mid \exists\left(\gamma_{\alpha}\right)_{\alpha \in A_{d}^{k}} \in \mathbb{R}^{\operatorname{card}\left(A_{d}^{k}\right)} \text { s.t. } p(x)=\sum_{\alpha \in A_{d}^{k}} \gamma_{\alpha} x^{\alpha}\right\},
$$

with for $x=\left(x_{1}, \cdots, x_{d}\right) \in \mathbb{R}^{d}, x^{\alpha}:=\Pi_{i=1}^{d} x_{i}^{\alpha_{i}}$ and

$$
A_{d}^{k}=\left\{\left.\alpha \in \mathbb{N}^{d}| | \alpha\right|_{\ell^{1}} \leq k\right\}
$$

- The dimension of \mathbb{P}_{d}^{k} is

$$
\operatorname{dim}\left(\mathbb{P}_{d}^{k}\right)=\operatorname{card}\left(A_{d}^{k}\right)=\binom{k+d}{k}=\frac{(k+d)!}{k!d!} .
$$

Broken polynomial spaces

- The broken polynomial space $\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ is defined as

$$
\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right):=\left\{v \in L^{2}(\Omega)\left|\forall T \in \mathcal{T}_{h}, v\right|_{T} \in \mathbb{P}_{d}^{k}(T)\right\},
$$

with $\mathbb{P}_{d}^{k}(T)$ spanned by the restriction to T of polynomials in \mathbb{P}_{d}^{k}.

- The dimension of $\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ is

$$
\operatorname{dim}\left(\mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)\right)=\operatorname{card}\left(\mathcal{T}_{h}\right) \times \operatorname{dim}\left(\mathbb{P}_{d}^{k}\right) .
$$

Broken Sobolev spaces

- Let \mathcal{T}_{h} be a mesh in Ω. The broken Sobolev spaces are defined as

$$
\begin{aligned}
H^{m}\left(\mathcal{T}_{h}\right) & :=\left\{v \in L^{2}(\Omega)\left|\forall T \in \mathcal{T}_{h}, \quad v\right|_{T} \in H^{m}(T)\right\}, \\
W^{m, p}\left(\mathcal{T}_{h}\right) & :=\left\{v \in L^{p}(\Omega)\left|\forall T \in \mathcal{T}_{h}, \quad v\right|_{T} \in W^{m, p}(T)\right\},
\end{aligned}
$$

with $m \geq 0$, integer, $1 \leq p \leq \infty$ a real number.

Broken Sobolev spaces

- The continuous trace inequality gives $\forall v \in W^{1, p}\left(\mathcal{T}_{h}\right)$ and $\forall T \in \mathcal{T}_{h}$,

$$
\|v\|_{L^{p}(\partial T)} \leq C\|v\|_{L^{p}(T)}^{1-\frac{1}{p}}\|v\|_{W^{1, p}(T)}^{\frac{1}{p}}
$$

with for $p=2, \forall v \in H^{m}\left(\mathcal{T}_{h}\right)$ and $\forall T \in \mathcal{T}_{h}$,

$$
\|v\|_{L^{2}(\partial T)} \leq C\|v\|_{L^{p}(\Omega)}^{\frac{1}{2}}\|v\|_{H^{1}(T)}^{\frac{1}{2}} .
$$

- The broken gradient $\nabla_{h}: W^{1, p}\left(\mathcal{T}_{h}\right) \rightarrow\left[L^{p}(\Omega)\right]^{d}$ is defined as

$$
\forall T \in \mathcal{T}_{h},\left.\quad\left(\nabla_{h} v\right)\right|_{T}:=\nabla\left(\left.v\right|_{T}\right), \quad \forall v \in W^{1, p}\left(\mathcal{T}_{h}\right)
$$

Note, the subscript h will not be used if ∇_{h} is used inside an integral over a fixed mesh element $T \in \mathcal{T}_{h}$.

Broken Sobolev spaces

- Lemma 1. (Broken gradient on usual Sobolev spaces). Let $m \geq 0,1 \leq p \leq \infty$. There holds $W^{m, p}(\Omega) \subset W^{m, p}\left(\mathcal{T}_{h}\right)$.

Moreover, $\forall v \in W^{1, p}(\Omega), \nabla_{h} v=\nabla v$ in $\left[L^{p}(\Omega)\right]^{d}$.

Proof. Take $m=1$. Let $v \in W^{1, p}(\Omega)$. For all $\Phi \in\left[C_{0}^{\infty}(T)\right]^{d}$ we can since $\Phi=0$ at ∂T define the extension of Φ by zero as $E \Phi \in\left[C_{0}^{\infty}(\Omega)\right]^{d}$. Then

$$
\begin{aligned}
\int_{T} \nabla\left(\left.v\right|_{T}\right) \cdot \Phi & =-\int_{T} v(\nabla \cdot \Phi)=-\int_{\Omega} v(\nabla \cdot(E \Phi)) \\
& =\int_{\Omega} \nabla v \cdot E \Phi=\left.\int_{T}(\nabla v)\right|_{T} \cdot \Phi .
\end{aligned}
$$

Since Φ is arbitrary, this implies $\nabla\left(\left.v\right|_{T}\right)=\left.(\nabla v)\right|_{T}$.
Since $T \in \mathcal{T}_{h}$ is arbitrary, using $\left.\left(\nabla_{h} v\right)\right|_{T}:=\nabla\left(\left.v\right|_{T}\right)$, we obtain that $\nabla_{h} v=\nabla v$. Hence $v \in W^{1, p}\left(\mathcal{T}_{h}\right)$.

Broken Sobolev spaces

- The reverse inclusion, namely $W^{m, p}\left(\mathcal{T}_{h}\right) \subset W^{m, p}(\Omega)$, is in general not true (except for $m=0$) since functions in $W^{m, p}\left(\mathcal{T}_{h}\right)$ can have non-zero jumps at interfaces.

Broken Sobolev spaces

- Lemma. (Characterization of $\left.W^{1, p}(\Omega)\right)$. Let $1 \leq p \leq \infty$. A function $v \in W^{1, p}\left(\mathcal{T}_{h}\right)$ belongs to $W^{1, p}(\Omega)$ if and only if

$$
[[v]]=0 \quad \forall F \in \mathcal{F}_{h}^{i} .
$$

Proof.
We will use for all $\Phi \in\left[C_{0}^{\infty}(\Omega)\right]^{d}$ the relation

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} v_{T}\left(\Phi \cdot n_{T}\right)=\sum_{F \in \mathcal{F}_{h}} \int_{F}\left[\left[\Phi \cdot n_{F}\right]\right]\{\{v\}\}+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left\{\left\{\Phi \cdot n_{T}\right\}\right\}[[v]],
$$

Using the fact that Φ is continuous across interfaces,

$$
\left[\left[\Phi \cdot n_{F}\right]\right]=0 \quad \text { and } \quad\left\{\left\{\Phi \cdot n_{F}\right\}\right\}=\Phi \cdot n_{F} \quad \text { for } \forall F \in \mathcal{F}_{h}^{i},
$$

we obtain

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} v_{T}\left(\Phi \cdot n_{T}\right)=\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\Phi \cdot n_{T}\right)[[v]] .
$$

Broken Sobolev spaces

Let $v \in W^{1, p}\left(\mathcal{T}_{h}\right)$. Then $\forall \Phi \in\left[C_{0}^{\infty}(\Omega)\right]^{d}$, we obtain by integrating by parts element-wise that

$$
\begin{align*}
\int_{\Omega} \nabla_{h} v \cdot \Phi & =\sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla\left(\left.v\right|_{T}\right) \cdot \Phi=-\sum_{T \in \mathcal{T}_{h}} \int_{T} v(\nabla \cdot \Phi)+\left.\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} v\right|_{T}\left(\Phi \cdot n_{T}\right) \\
& =-\int_{\Omega} v(\nabla \cdot \Phi)+\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\Phi \cdot n_{F}\right)[[v]] \tag{1}
\end{align*}
$$

The condition $[[v]]=0, \forall F \in \mathcal{F}_{h}^{i}$ then implies

$$
\int_{\Omega} \nabla_{h} v \cdot \Phi=-\int_{\Omega} v \nabla \cdot \Phi=\int_{\Omega} \nabla v \cdot \Phi \quad \forall \Phi \in\left[C_{0}^{\infty}(\Omega)\right]^{d}
$$

hence $\nabla v=\nabla_{h} v$ in $\left[L^{p}(\Omega)\right]^{d}$, thus $v \in W^{1, p}(\Omega)$.

Broken Sobolev spaces

- Conversely, if $v \in W^{1, p}(\Omega)$, then $\nabla v=\nabla_{h} v$ in $\left[L^{p}(\Omega)\right]^{d}$ owing to Lemma 1. Hence (1) implies

$$
\begin{aligned}
\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F}\left(\Phi \cdot n_{F}\right)[[v]] & =\int_{\Omega} \nabla_{h} v \cdot \Phi+\int_{\Omega} v(\nabla \cdot \Phi) \\
& =\int_{\Omega} \nabla_{h} v \cdot \Phi-\int_{\Omega} \nabla v \cdot \Phi \quad\left(\text { since } \Phi \in\left[C_{0}^{\infty}(\Omega)\right]^{d}\right) \\
& =0 \quad\left(\text { since } \nabla v=\nabla_{h} v \text { for } v \in W^{1, p}(\Omega)\right) .
\end{aligned}
$$

This implies $[[v]]=0, \forall F \in \mathcal{F}_{h}^{i}$, by choosing the support of Φ only to contain the two elements $T_{1}, T_{2} \in \mathcal{T}_{h}$ connected to $F \in \mathcal{F}_{h}^{i}$, and Φ being arbitrary.

Well-posedness for linear variational equations

For the well-posedness we consider:

- Let X and Y be two Banach spaces equipped with the norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$.
- Let $\mathcal{L}(X, Y)$ be the vector space spanned by linear operators from X to Y, equipped with the norm

$$
\|A\|_{\mathcal{L}(X, Y)}:=\sup _{v \in X \backslash\{0\}} \frac{\|A v\|_{Y}}{\|v\|_{X}} \quad \forall A \in \mathcal{L}(X, Y)
$$

- Define the linear model model problem as

$$
\begin{equation*}
\text { Find } u \in X \text { s.t. } \quad a(u, v)=\langle f, w\rangle_{Y^{\prime}, Y} \quad \forall w \in Y, \tag{2}
\end{equation*}
$$

where $a \in \mathcal{L}(X \times Y, \mathbb{R})$ is a bounded bilinear form, $f \in Y^{\prime}:=\mathcal{L}(Y, \mathbb{R})$ is a bounded linear form, and $\langle\cdot, \cdot\rangle_{Y^{\prime}, Y}$ denotes the duality pairing between Y^{\prime} and Y.

Well-posedness of linear variational equations

- Alternatively, we can introduce the bounded linear operator $A \in \mathcal{L}(X, Y)$ s.t.

$$
\langle A v, w\rangle_{Y^{\prime}, Y}:=a(v, w) \quad \forall(v, w) \in X \times Y
$$

and consider

$$
\begin{equation*}
\text { Find } u \in X \text { s.t. } \quad A u=f \text { in } Y^{\prime} . \tag{3}
\end{equation*}
$$

- Problems (2) and 3) are equivalent; u solves (2) if and only if u solves (3).
- Problems (2) and 3) are well-posed if they admit one and only one solution $u \in X$.

Well-posedness of linear variational equations

- The well-posedness of (3) requires A to be an isomorphism (bijective mapping that preserves the structure).

In Banach spaces this implies that if $A \in \mathcal{L}\left(X, Y^{\prime}\right)$ is an isomorphism, then A^{-1} is bounded, that is

$$
\left\|A^{-1}\right\|_{\mathcal{L}\left(X, Y^{\prime}\right)} \leq C
$$

which implies that

$$
\|u\|_{X}=\left\|A^{-1} f\right\|_{X} \leq C\|f\|_{Y^{\prime}} .
$$

Banach-Nečas-Babuška theorem

- The Banach-Nečas-Babuška (BNB) theorem provides necessary and sufficient conditions for well-posedness for linear variational equations.
- Theorem (BNB theorem). Let X be a Banach space and let Y be a reflexive space.

Let $a \in \mathcal{L}(X \times Y, \mathbb{R})$ and let $f \in Y^{\prime}$. Then the problem:

Find $u \in X$ s.t. $a(u, w)=\langle f, w\rangle_{Y^{\prime}, Y} \quad \forall w \in Y$
is well posed if and only if
i) There is a $C_{s t a}>0$ s.t.

$$
\forall v \in X, \quad C_{s t a}\|v\|_{X} \leq \sup _{w \in Y \backslash\{0\}} \frac{a(v, w)}{\|w\|_{Y}} .
$$

ii) For all $w \in Y, a(v, w)=0$ implies that $w=0, \forall v \in X$.

Banach-Nečas-Babuška theorem

- Moreover, the following a priori estimate holds true

$$
\|u\|_{X} \leq \frac{1}{C_{\text {sta }}}\|f\|_{Y^{\prime}} .
$$

- Note, the condition

$$
\forall v \in X, \quad C_{s t a}\|v\|_{X} \leq \sup _{w \in Y \backslash\{0\}} \frac{a(v, w)}{\|w\| Y}
$$

is equivalent to the inf-sup condition

$$
C_{s t a} \leq \inf _{v \in X \backslash\{0\}} \sup _{w \in Y \backslash\{0\}} \frac{a(v, w)}{\|v\| x\|w\| Y} .
$$

- The BNB-theorem is a direct result of the Banach Closed Range theorem and the Banach Open Mapping Theorem.

Lax-Milgram lemma

- Let X be a Hilbert space, $Y=X$. Let $a \in \mathcal{L}(X \times X, \mathbb{R})$.

The bilinear form a is coercive on X if there is $C_{s t a}>0$ s.t.

$$
\forall v \in X, \quad C_{s t a}\|v\|_{X}^{2} \leq a(v, v)
$$

- Equivalently, a bounded linear operator $A \in \mathcal{L}\left(X, X^{\prime}\right)$ defined by

$$
\langle A v, w\rangle_{X^{\prime}, X}:=a(v, w) \quad \forall(v, w) \in X \times X
$$

is coercive if $\exists C_{s t a}>0$ s.t.

$$
\forall v \in X, \quad C_{s t a}\|v\|_{X}^{2} \leq\langle A v, v\rangle_{X^{\prime}, X}
$$

- The Lax-Milgram lemma provides sufficient conditions for well-posedness.

Lax-Milgram lemma

- Lemma (Lax-Milgram) Let X be a Hilbert space. Let $a \in \mathcal{L}(X \times X, \mathbb{R})$ and let $f \in X^{\prime}$. Then the problem

Find $u \in X$ s.t. $a(u, w)=\langle f, w\rangle_{X^{\prime}, X} \quad \forall w \in X$ is well posed if the bilinear form a is coercive on X.

Equivalently, the problem

$$
\text { Find } u \in X \text {, s.t. } A u=f \text { in } X^{\prime}
$$

is well-posed if the linear operator $A \in \mathcal{L}\left(X, X^{\prime}\right)$ is coercive.

Moreover, the following estimate holds true

$$
\|u\|_{X} \leq \frac{1}{C_{s t a}}\|f\|_{X^{\prime}} .
$$

Lax-Milgram lemma

Proof.

- Let a be coercive, then for all $v \in X \backslash\{0\}$,

$$
C_{\text {sta }}\|v\|_{X} \leq \frac{a(v, v)}{\|v\|_{X}} \leq \sup _{w \in X \backslash\{0\}} \frac{a(v, w)}{\|w\|_{X}}
$$

and this condition also holds for $v=0$.

- To prove the second statement in the BNB theorem, namely,

$$
\text { For all } w \in X, a(v, w)=0 \text { implies that } w=0, \forall v \in X
$$

Let $w \in X$ be such that $a(v, w)=0, \forall v \in X$. Then, choosing $v=w$ yields $\|w\|_{X}=0$ due to the coercivity of $a(v, w)$. Hence $w=0$.

Abstract nonconforming error analysis

- Let $V_{h} \subset L^{2}(\Omega)$ be a finite dimensional function space, e.g. V_{h} is a broken polynomial space. Consider the discrete problem

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } a_{h}\left(u_{h}, w_{h}\right)=I_{h}\left(w_{h}\right) \quad \forall w_{h} \in V_{h},
$$

with discrete bilinear form $a_{h}: V_{h} \times V_{h} \rightarrow \mathbb{R}$ and discrete linear form $I_{h}: V_{h} \rightarrow \mathbb{R}$.

Since functions in V_{h} can be discontinuous across mesh elements, we have $V_{h} \notin X$ and $V_{h} \notin Y$.

Hence we have a nonconforming finite element discretization.

Abstract nonconforming error analysis

- Alternatively, consider the discrete linear operator $A_{h}: V_{h} \rightarrow V_{h}$ s.t. $\forall v_{h}, w_{h} \in V_{h}$

$$
\left(A_{h} v_{h}, w_{h}\right)_{L^{2}(\Omega)}:=a_{h}\left(v_{h}, w_{h}\right)
$$

and the discrete function $L_{h} \in V_{h}$ s.t. $\forall w_{h} \in V_{h}$,

$$
\left(L_{h}, w_{h}\right)_{L^{2}(\Omega)}:=I_{h}\left(w_{h}\right),
$$

which gives the formulation

Find $u_{h} \in V_{h}$ s.t. $A_{h} u_{h}=L_{h}$ in V_{h}.

Abstract nonconforming error analysis

- Assume that the data $f \in L^{2}(\Omega)$, then $<f, w>_{Y^{\prime}, Y}=(f, w)_{L^{2}(\Omega)}$ and

$$
I_{h}\left(w_{h}\right)=\left(L_{h}, w_{h}\right)_{L^{2}(\Omega)}=\left(f, w_{h}\right)_{L^{2}(\Omega)}, \quad \text { and } \quad L_{h}=\pi_{h} f,
$$

with $\pi_{h}: L^{2}(\Omega) \rightarrow V_{h}$ the $L^{2}(\Omega)$-orthogonal projection onto V_{h} so that $\forall v \in L^{2}(\Omega), \pi_{h} v \in V_{h}$ with

$$
\left(\pi_{h} v, y_{h}\right)_{L^{2}(\Omega)}=\left(v, y_{h}\right)_{L^{2}(\Omega)} \quad \forall y_{h} \in V_{h} .
$$

- Note, $\pi_{h} v$ can be computed in an element T independently from other elements in \mathcal{T}_{h}, hence $\forall T \in \mathcal{T}_{h},\left.\pi_{h} v\right|_{T} \in \mathbb{P}_{d}^{k}(T)$, s.t.

$$
\left(\left.\pi_{h} v\right|_{T}, \xi\right)_{L^{2}(T)}=(v, \xi) L^{2}(T) \quad \forall \xi \in \mathbb{P}_{d}^{k}(T)
$$

Discrete stability

Define the norm ||| •|| on V_{h}.

- (Discrete stability) A discrete bilinear form a_{h} has discrete stability on V_{h} if there is a $C_{s t a}>0$ s.t.

$$
\begin{equation*}
\forall v_{h} \in V_{h}, \quad C_{s t a}\| \| v_{h}\| \| \leq \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\| \| w_{h} \|} . \tag{4}
\end{equation*}
$$

- Property (4) is called the discrete inf-sup condition and is equivalent to

$$
C_{s t a} \leq \inf _{v_{h} \in V_{h} \backslash\{0\}} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\| \| v_{h}\| \|\left\|w_{h}\right\| \|} .
$$

- The coefficient $C_{\text {sta }}$ can depend on the mesh size h, but for convergence analysis it is important to ensure $C_{\text {sta }}$ is independent of h.

Discrete stability

- Lemma. (Discrete well-posedness) The discrete problem

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } a_{h}\left(u_{h}, w_{h}\right)=I\left(w_{h}\right) \quad \forall w_{h} \in V_{h}
$$

is well-posed if and only if the discrete inf-sup condition (4) is satisfied.

Proof. The discrete inf-sup condition is the discrete counterpart of the inf-sup condition in the BNB theorem.

Since $V_{h} \notin V$ in a DG discretization the discrete inf-sup condition does not follow from the inf-sup condition in the space V, and must be separately proven.

Discrete stability

- A sufficient condition for discrete stability (and easier to verify) is coercivity:

$$
\begin{equation*}
\text { There is a } C_{s t a}>0 \text { s.t. } \forall v_{h} \in V_{h}, \quad C_{s t a}\| \| v_{h} \|^{2} \leq a_{h}\left(v_{h}, v_{h}\right) \text {. } \tag{5}
\end{equation*}
$$

- Discrete coercivity implies the discrete inf-sup condition since $\forall v_{h} \in V_{h} \backslash\{0\}$,

$$
C_{s t a}\| \| v_{h} \| \leq \frac{a_{h}\left(v_{h}, v_{h}\right)}{\left\|v_{h}\right\|} \leq \sup _{w_{h} \in v_{h} \backslash\{0\}} \frac{a_{h}\left(v_{h}, w_{h}\right)}{\| \| w_{h}\| \|} .
$$

- Property (5) is the discrete counterpart of the Lax-Milgram lemma.

Consistency

- A (rather strong) form of consistency requires that the exact solution u of the variational equation satisfies the discrete problem

$$
\begin{equation*}
\text { Find } u_{h} \in V_{h} \text { s.t. } a_{h}\left(u_{h}, w_{h}\right)=I\left(w_{h}\right) \quad \forall w_{h} \in V_{h} \tag{6}
\end{equation*}
$$

This requires that $a_{h}\left(u, w_{h}\right)$ has a meaning, which may not be possible since a_{h} is only defined on $V_{h} \times V_{h}$.

- Assume that there is a subspace $X_{\star} \subset X$ s.t. the exact solution belongs to X_{\star} and that the bilinear form can be extended to $X_{*} \times V_{h}$.
- (Consistency) The discrete problem (6) is consistent if for the exact solution $u \in X_{*}$,

$$
a_{h}\left(u, w_{h}\right)=I\left(w_{h}\right) \quad \forall w_{h} \in V_{h} .
$$

Consistency

- Consistency is equivalent to the Galerkin orthogonality property

$$
\begin{equation*}
a_{h}\left(u-u_{h}, w_{h}\right)=0 \quad \forall w_{h} \in V_{h} \tag{7}
\end{equation*}
$$

Proof. Substracting

$$
\begin{aligned}
a_{h}\left(u, w_{h}\right)=I_{h}\left(w_{h}\right) & w_{h} \in V_{h}, \\
a_{h}\left(u_{h}, w_{h}\right)=I_{h}\left(w_{h}\right) & w_{h} \in V_{h},
\end{aligned}
$$

and using the linearity of a_{h} gives (7).

Boundedness

- Define the vector space

$$
X_{* h}:=X_{*}+V_{h}
$$

with $X_{\star} \subset X$ the space for the exact solution and V_{h} the discrete space.
The approximation error then is $u-u_{h} \in X_{* h}$.

- Assume that the discrete norm ||| • \|| can be extended to $X_{\star h}$.

For many problems to prove boundedness in the space $X_{* h} \times V_{h}$ and we need to define also a norm $\mid\|\cdot\| \|_{*}$ on $X_{* h}$ s.t.

$$
\forall v \in X_{* h}, \quad\| \| v\|\leq\| v \|_{*}
$$

Boundedness

- (Boundedness) A discrete bilinear form a_{h} is bounded in $X_{* h} \times V_{h}$ if there is $C_{\text {brd }}>0$ s.t.

$$
\forall(v, w) \in X_{* h} \times V_{h}, \quad\left|a_{h}(v, w)\right| \leq C_{b n d}\| \| v\|* *\| w \| .
$$

We assume that $C_{\text {bnd }}$ is independent of h.

Error estimate

- Theorem (Abstract error estimate) Let u solve

$$
\text { Find } u \in X \text { s.t. } a(u, w)=(f, w)_{L^{2}(\Omega)} \quad \forall w \in Y
$$

with $f \in L^{2}(\Omega)$. Let u_{h} solve

$$
\text { Find } u_{h} \in V_{h} \text { s.t. } a_{h}\left(u_{h}, w_{h}\right)=\left(f, w_{h}\right)_{L^{2}(\Omega)} \quad \forall w_{h} \in V_{h} .
$$

Let $X_{*} \subset X$ and assume $u \in X_{*}$. Set $X_{* h}=X_{*}+V_{h}$ and assume that the bilinear form a_{h} can be extended to $X_{\star h} \times V_{h}$.

Let $|\|\cdot\|| \mid$ and $\|\|\cdot\|\|_{*}$ be two norms defined on $X_{* h}$ s.t. $\forall v \in X_{* h},\|v\|\|\leq\| \mid v\| \|_{*}$.

Assume discrete stability, consistency and boundedness. Then the following error estimate holds true

$$
\left\|u-u_{h}\right\|\left\|\leq \inf _{y_{h} \in V_{h}}\right\| u-y_{h} \|_{*},
$$

with $C=1+C_{s t a}^{-1} C_{b n d}$.

Error estimate

- Proof. Let $y_{h} \in V_{h}$. Use the discrete stability and consistence, then

$$
\begin{array}{rlr}
\left\|\left\|u_{h}-y_{h}\right\|\right\| & \leq C_{s t a}^{-1} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(u_{h}-y_{h}, w_{h}\right)}{\| \| w_{h}\| \|} & \\
& \leq C_{s t a}^{-1} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{a_{h}\left(u-y_{h}, w_{h}\right)}{\| \| w_{h} \|} & \text { (discrete stability) } \\
& \leq C_{s t a}^{-1} C_{b n d} \sup _{w_{h} \in V_{h} \backslash\{0\}} \frac{\left\|u-y_{h}\right\|\left\|_{*} \mid\right\| w_{h}\| \|}{\| \| w_{h}\| \|} & \text { (orthogonality) } \\
& =C_{s t a}^{-1} C_{b n d}\| \| u-y_{h}\| \|_{*} &
\end{array}
$$

Error estimate

- Next, use the triangle inequality and the fact that

$$
\left\|u-y_{h}\right\|\|\leq\| u-y_{h} \|_{*}
$$

Then

$$
\begin{aligned}
\left\|\left\|u-u_{h}\right\|\right\| & \leq\| \| u-y_{h}\| \|+\| \| u_{h}-y_{h}\| \| \\
& \leq\left\|u-y_{h}\right\|\left\|_{*}+C_{s t a}^{-1} C_{b n d}\right\|\left\|u-y_{h}\right\|_{*} \\
& \leq\left(1+C_{s t a}^{-1} C_{b n d}\right) \inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\|_{*},
\end{aligned}
$$

since $y_{h} \in V_{h}$ is arbitrary.

Admissible meshes

- Consider a mesh sequence $\mathcal{T}_{\mathcal{H}}:=\left(\mathcal{T}_{h}\right)_{h \in \mathcal{H}}$.
\mathcal{H} denotes a countable subset of $\mathbb{R}_{>0}:=\{x \in \mathbb{R} \mid x>0\}$ having 0 as only accumulation point.
- (Matching simplicial mesh) A mesh \mathcal{T}_{h} is a matching simplicial mesh if it is a simplicial mesh and if for any element $T \in \mathcal{T}_{h}$ with vertices $\left\{a_{0}, \cdots, a_{d}\right\}$, the set $\partial T \cap \partial T^{\prime}$ for any $T^{\prime} \in \mathcal{T}_{h}, T^{\prime} \neq T$ is the convex hull of a (possibly empty) subset of $\left\{a_{0}, \cdots, a_{d}\right\}$.

For instance in 2D, the set $\partial T \cap \partial T^{\prime}$ for two distinct elements of a matching simplicial mesh is either a common vertex or common edge.

Simplicial submesh

- (Matching simplicial submesh) Let \mathcal{T}_{h} be a general polyhedral mesh. Then \mathscr{C}_{h} is a matching simplicial submesh of \mathcal{T}_{h} if
i) \mathscr{C}_{h} is a matching simplicial mesh.
ii) For all $T^{\prime} \in \mathscr{C}_{h}$, there is only one $T \in \mathcal{T}_{h}$ s.t. $T^{\prime} \subset T$.
iii) For all $F^{\prime} \in \mathscr{F}_{h}$, which is the set collecting the mesh faces of \mathscr{C}_{h}, there is at most one $F \in \mathcal{F}_{h}$ s.t. $F^{\prime} \subset F$.

The simplices in \mathscr{C}_{h} are called subelements. The mesh faces in \mathscr{F}_{h} are called subfaces.

Define for all $T \in \mathcal{T}_{h}$ the sets

$$
\begin{aligned}
\mathscr{C}_{T} & :=\left\{T^{\prime} \in \mathscr{C}_{h} \mid T^{\prime} \subset T\right\}, \\
\mathscr{F}_{T} & :=\left\{F^{\prime} \in \mathscr{F}_{h} \mid F^{\prime} \subset \partial T\right\}, \\
\forall F \in \mathcal{F}_{h}: \mathscr{F}_{F} & :=\left\{F^{\prime} \in \mathscr{F}_{h} \mid F^{\prime} \subset F\right\} .
\end{aligned}
$$

Shape and contact regularity

- A mesh sequence $\mathcal{T}_{\mathcal{H}}$ is shape and contact regular if $\forall h \in \mathcal{H}, \mathcal{T}_{h}$ admits a matching simplicial submesh \mathscr{C}_{h} s.t.
i) The mesh sequence $\mathscr{C}_{\mathcal{H}}$ is shape regular, namely $\exists \rho_{1}>0$, independent of h, s.t. $\forall T^{\prime} \in \mathscr{C}_{h}$

$$
\rho_{1} h_{T^{\prime}} \leq r_{T^{\prime}},
$$

where $h_{T^{\prime}}$ is the diameter of T^{\prime} and $r_{T^{\prime}}$ the radius of the largest ball inscribed in T^{\prime}.
ii) $\exists \rho_{2}>0$, independent of h, s.t. $\forall T \in \mathcal{T}_{h}$ and $\forall T^{\prime} \in \mathscr{C}_{h}$

$$
\rho_{2} h_{T} \leq h_{T^{\prime}} .
$$

The parameters ρ_{1} and ρ_{2} are called mesh regularity parameters and are denoted as ρ.
If \mathcal{T}_{h} itself is matching and simplicial, then $\mathscr{C}_{h}=\mathcal{T}_{h}$ and the only requirement is shape regularity, $\rho_{1}>0$, independent of h.

Geometric properties of the mesh

- Lemma (Bound on $\operatorname{card}\left(\mathscr{C}_{T}\right)$). Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact -regular mesh sequence. Then, for all $h \in \mathcal{H}$ and all $T \in \mathcal{T}_{h}, \operatorname{card}\left(\mathscr{C}_{T}\right)$ is bounded uniformly in h.

Proof. Let $|\cdot|_{d}$ denote the d-dimensional Haussdorff measure and let B_{d} be the unit ball in \mathbb{R}^{d}. Then,

$$
\begin{aligned}
h_{T}^{d} \geq|T|_{d} & =\sum_{T^{\prime} \in \mathscr{C}_{T}}\left|T^{\prime}\right|_{d} \geq \sum_{T^{\prime} \in \mathscr{C}_{T}}\left|B_{d}\right|_{d} r_{T^{\prime}}^{d} \geq \sum_{T^{\prime} \in \mathscr{C}_{T}}\left|B_{d}\right|_{d} \rho_{1}^{d} h_{T^{\prime}}^{d} \\
& \geq \sum_{T^{\prime} \in \mathscr{C}_{T}}\left|B_{d}\right|_{d} \rho_{1}^{d} \rho_{2}^{d} h_{T}^{d} \\
& \geq\left|B_{d}\right|_{d} \rho_{1}^{d} \rho_{2}^{d} \operatorname{card}\left(\mathscr{C}_{T}\right) h_{T}^{d},
\end{aligned}
$$

hence

$$
\operatorname{card}\left(\mathscr{C}_{T}\right) \leq \frac{1}{\left|B_{d}\right|_{d} \rho_{1}^{d} \rho_{2}^{d}} .
$$

Geometric properties of the mesh

- Lemma. (Bound on $\operatorname{card}\left(\mathcal{F}_{T}\right), \operatorname{card}\left(\mathscr{F}_{T}\right), N_{\partial}$ and $\left.\operatorname{card}\left(\mathscr{F}_{F}\right)\right)$ Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact-regular mesh sequence with parameter ρ.

Then, for all $h \in \mathcal{H}$ and $\forall T \in \mathcal{T}_{h}, \operatorname{card}\left(\mathcal{F}_{T}\right), \operatorname{card}\left(\mathscr{F}_{T}\right)$, and N_{∂} are bounded uniformly in h.

In addition, for all $F \in \mathcal{F}_{h}, \operatorname{card}\left(\mathscr{F}_{F}\right)$ is bounded uniformly in h.

Proof. Observe that

$$
\operatorname{card}\left(\mathcal{F}_{T}\right) \leq \operatorname{card}\left(\mathscr{F}_{T}\right) \leq(d+1) \operatorname{card}\left(\mathscr{C}_{T}\right),
$$

where in the last inequality we used the fact that a simplicial element has $d+1$ faces.
Since $\operatorname{card}\left(\mathscr{C}_{T}\right)$ is uniformly bounded in h, then also $\operatorname{card}\left(\mathcal{F}_{T}\right)$ and $\operatorname{card}\left(\mathscr{F}_{T}\right)$ are uniformly bounded in h. Hence,

$$
N_{\partial}=\max _{T \in \mathcal{T}_{h}} \operatorname{card}\left(\mathcal{F}_{T}\right)
$$

is also bounded in h. Finally, take $T \in \mathcal{T}_{h}$ s.t. $F \in \mathcal{F}_{T}$, use $\operatorname{card}\left(\mathscr{F}_{F}\right) \leq \operatorname{card}\left(\mathscr{C}_{T}\right)$.

Geometric properties of the mesh

- Lemma. (Lower bound on face diameters). Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact-regular mesh sequence with parameter ρ.

Then for all $h \in \mathcal{H}$, all $T \in \mathcal{T}_{h}$ and all $F \in \mathcal{F}_{T}$,

$$
\delta_{F} \geq \rho_{1} \rho_{2} h_{T},
$$

where δ_{F} is the diameter of F.

Proof. Let $T \in \mathcal{T}_{h}, F \in \mathcal{F}_{T}$. Then, take an $F^{\prime} \in \mathscr{F}_{F}$ and denote by $T^{\prime} \in \mathscr{C}_{T}$ the simplex to which the subface F^{\prime} belongs. Then

$$
\delta_{F} \geq \delta_{F^{\prime}} \geq r_{T^{\prime}} \geq \rho_{1} h_{T^{\prime}} \geq \rho_{1} \rho_{2} h_{T} .
$$

Inverse and trace inequalities

- Lemma. (Inverse inequality) Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact regular mesh sequence with parameter ρ.

Then, for all $h \in \mathcal{H}$ and all $v_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ and all $T \in \mathcal{T}_{h}$,

$$
\left\|\nabla v_{h}\right\|_{\left[L^{2}(T)\right]^{d}} \leq C_{i n v} h_{T}^{-1}\left\|v_{h}\right\|_{\left.L^{2}(T)\right)},
$$

where $C_{\text {inv }}$ only depends on ρ, d and k.
Proof. Let $v_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right), T \in \mathcal{T}_{h}$. For all $T^{\prime} \in \mathscr{C}_{T}$, the restriction $\left.v_{h}\right|_{T^{\prime}} \in \mathbb{P}_{d}^{k}\left(T^{\prime}\right)$.
Use the inverse inequality on simplices, see e.g. Brenner \& Scott, Math. Theory. of FEM or Ern \& Guermond, Theory and Practice FEM,

$$
\left\|\nabla v_{h}\right\|_{\left[L^{2}\left(T^{\prime}\right)\right]^{d}} \leq C_{i n v, s} h_{T^{\prime}}^{-1}\left\|v_{h}\right\|_{L^{2}\left(T^{\prime}\right)}
$$

where $C_{\text {inv,s }}$ only depends on ρ_{1}, d and k.

Inverse and trace inequalities

Using the shape- and contact regularity of the mesh, namely

$$
\exists \rho_{2}>0 \text { s.t. } \rho_{2} h_{T} \leq h_{T^{\prime}}, \text { hence } \frac{1}{h_{T^{\prime}}} \leq \frac{1}{\rho_{2} h_{T}},
$$

gives

$$
\left\|\nabla v_{h}\right\|_{\left[L^{2}\left(T^{\prime}\right)\right]^{d}} \leq C_{i n v, s} \rho_{2}^{-1} h_{T}^{-1}\left\|v_{h}\right\|_{\left[L^{2}\left(T^{\prime}\right)\right]^{d}}
$$

Squaring the inequality and summing over all $T^{\prime} \in \mathscr{C}_{T}$ proves the result.

Inverse and trace inequalities

- Lemma. (Discrete trace inequality) Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact regular mesh sequence with parameter ρ.

Then, for all $h \in \mathcal{H}$, all $v_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$, all $T \in \mathcal{T}_{h}$ and all $F \in \mathcal{F}_{T}$,

$$
h_{T}^{\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(F)} \leq C_{t r}\left\|v_{h}\right\|_{L^{2}(T)}
$$

where $C_{t r}$ only depends on ρ, d, and k.

Inverse and trace inequalities

- Proof. Let $v_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$, let $T \in \mathcal{T}_{h}, F \in \mathcal{F}_{T}$. First assume that \mathcal{T}_{h} is a matching simplicial mesh.

Let \widehat{T} be the unit simplex in \mathbb{R}^{d}, and let F_{T} be the bijective map such that $F_{T}(\widehat{T})=T$.
Let \widehat{F} be any face of \widehat{T}. Since the unit sphere in $\mathbb{P}_{d}^{k}(\widehat{T})$ for the $L^{2}(\widehat{T})$-norm is a compact set (\mathbb{P}_{d}^{k} is finite dimensional), there is a $\widehat{C}_{d, k}(\widehat{F})$, only depending on d, k and \widehat{F} s.t. $\forall \widehat{v} \in \mathbb{P}_{d}^{k}(\widehat{T})$

$$
\begin{equation*}
\|\widehat{V}\|_{L^{2}(\widehat{F})} \leq \widehat{C}_{d, k}(\widehat{F})\|\widehat{V}\|_{L^{2}(\widehat{T})} . \tag{8}
\end{equation*}
$$

Applying inequality (8) now to the function $\widehat{v}=\left.v_{h}\right|_{T} \circ F_{T}^{-1}$, which is in $\mathbb{P}_{d}^{k}(\widehat{T})$, gives

$$
|F|_{d-1}^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(F)} \leq \widehat{C}_{d, k}|T|_{d}^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(T)}
$$

Inverse and trace inequalities

Note,

$$
\begin{equation*}
\frac{|T|_{d}}{|F|_{d-1}}=\frac{\operatorname{Vol}(T)}{\operatorname{Area}(F)}=\frac{h_{T, F}}{d} \geq \frac{1}{d} r_{T} \geq \frac{1}{d} \rho_{1} h_{T} \tag{9}
\end{equation*}
$$

where $h_{T, F}$ denotes the distance of the vertex opposite to F to that face, and r_{T} is the radius of the largest ball inscribed in T. Hence,

$$
|F|_{d-1}^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(F)} \leq \widehat{C}_{d, k}|T|_{d}^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(T)}
$$

is equal to

$$
\left(\frac{|T|_{d}}{|F|_{d-1}}\right)^{\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(F)} \leq \widehat{C}_{d, k}\left\|v_{h}\right\|_{L^{2}(T)}
$$

and finally using (9) we obtain

$$
h_{T}^{\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(F)} \leq C_{t r, s}\left\|v_{h}\right\|_{L^{2}(T)}
$$

with $C_{t r, s}=d^{\frac{1}{2}} \rho_{1}^{-\frac{1}{2}} \widehat{C}_{d, k}$ only depending on ρ, d and k.

Inverse and trace inequalities

- General mesh.

For each $F^{\prime} \in \mathscr{F}_{F}$, let T^{\prime} denote the simplex in \mathscr{C}_{T} of which F^{\prime} is a face.
Since the restriction $\left.v_{h}\right|_{T^{\prime}} \in \mathbb{P}_{d}^{k}\left(T^{\prime}\right)$, the discrete trace inequality yields

$$
h_{T^{\prime}}^{\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}\left(F^{\prime}\right)} \leq C_{t r, s}\left\|v_{h}\right\|_{L^{2}\left(T^{\prime}\right)} \leq C_{t r, s}\left\|v_{h}\right\|_{L^{2}(T)}
$$

This gives

$$
\left(\sum_{F^{\prime} \in \mathscr{F}_{F}} h_{T^{\prime}}\left\|v_{h}\right\|_{L^{2}\left(F^{\prime}\right)}^{2}\right)^{\frac{1}{2}} \leq C_{t r, s}\left(\operatorname{card}\left(\mathscr{F}_{F}\right)\right)^{\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(T)}
$$

since $h_{T^{\prime}} \geq \rho_{2} h_{T}$ and $\operatorname{card}\left(\mathscr{F}_{F}\right) \leq(d+1) \operatorname{card}\left(\mathscr{C}_{T}\right)$ is uniformly bounded.

L^{2}-norm transformation rules for tetrahedron

- A. Consider a tetrahedron $K \subset \mathbb{R}^{3}$ with vertices $\left\{x_{0}, \cdots, x_{3}\right\}$.

Define the mapping $F_{T}(\widehat{T})=T$, with \widehat{T} the reference tetrahedron with vertices $\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\}$, and for $x \in T, \widehat{x} \in \widehat{T}$, we have the relation

$$
x=B_{T} \widehat{x}+x_{0},
$$

with Jacobian matrix

$$
B_{T}=\frac{\partial x}{\partial \widehat{x}}=\left(\begin{array}{lll}
x_{1}-x_{0} & x_{2}-x_{0} & x_{3}-x_{0} \\
y_{1}-y_{0} & y_{2}-y_{0} & y_{3}-y_{0} \\
z_{1}-z_{0} & z_{2}-z_{0} & z_{3}-z_{0}
\end{array}\right)
$$

and

$$
\operatorname{det} B_{T}=\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}
$$

L^{2}-norm transformation rules for tetrahedron

- Consider the $L^{2}(T)$-norm:

$$
\begin{aligned}
\|v\|_{L^{2}(T)} & =\left(\int_{T}|v(x)|^{2} d^{3} x\right)^{\frac{1}{2}} \\
& \left.=\left(\int_{\widehat{T}}|\widehat{V}(\widehat{x})|^{2}\left|\operatorname{det} B_{T}\right| d^{3} \widehat{x}\right)^{\frac{1}{2}} \quad \text { (with } \widehat{v}(\widehat{x})=v\left(F_{T}(\widehat{x})\right)\right) \\
& =\left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{\frac{1}{2}}\left(\int_{\widehat{T}}|\widehat{V}(\widehat{x})|^{2} d^{3} \widehat{x}\right)^{\frac{1}{2}} \quad \text { since } \operatorname{det} B_{T} \text { is constant } \\
& =\left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{\frac{1}{2}}\|\widehat{V}\|_{L^{2}(\widehat{T})},
\end{aligned}
$$

or equivalently

$$
\|\widehat{v}\|_{L^{2}(\widehat{T})}=\left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{-\frac{1}{2}}\|v\|_{L^{2}(T)}
$$

L^{2}-norm transformation rules for tetrahedron

- B. Given a tetrahedron $T \subset \mathbb{R}^{3}$. Consider a face $F \subset \partial T$ with vertices $\left\{x_{0}, x_{1}, x_{2}\right\}$.

Define the mapping $F_{F}(\widehat{F})=F$, with \widehat{F} the reference triangle with vertices $\{(0,0),(1,0),(0,1)\}$, and for $x \in F, \widehat{x} \in \widehat{F}$, we have the relation

$$
x=\left(x_{1}-x_{0}\right) \widehat{x}+\left(x_{2}-x_{0}\right) \widehat{y}+x_{0} .
$$

L^{2}-norm transformation rules for tetrahedron

- Consider the $L^{2}(F)$-norm:

$$
\begin{aligned}
\|v\|_{L^{2}(F)} & =\left(\int_{F}|v(x)|^{2} d S\right)^{\frac{1}{2}} \\
& =\left(\int_{\widehat{F}}\left|v\left(F_{F}(\widehat{x})\right)\right|^{2}\left|\frac{\partial F_{F}}{\partial \widehat{x}} \times \frac{\partial F_{F}}{\partial \widehat{y}}\right| d \widehat{x} d \widehat{y}\right)^{\frac{1}{2}} \\
& =\left|\left(x_{1}-x_{0}\right) \times\left(x_{2}-x_{0}\right)\right|^{\frac{1}{2}}\left(\int_{\widehat{F}}|\widehat{v}(\widehat{x})|^{2} d \widehat{x} d \widehat{y}\right)^{\frac{1}{2}} \\
& =\left(\frac{\operatorname{Area}(F)}{\operatorname{Area}(\widehat{F})}\right)^{\frac{1}{2}}\|\widehat{v}\|_{L^{2}(\widehat{F})}
\end{aligned}
$$

since

$$
\left|\left(x_{1}-x_{0}\right) \times\left(x_{2}-x_{0}\right)\right|=\frac{\operatorname{Area}(\mathrm{F})}{\operatorname{Area}(\widehat{F})}
$$

L^{2}-norm transformation rules for tetrahedron

- The estimate

$$
\left\|\widehat{v}_{h}\right\|_{L^{2}(\widehat{F})} \leq \widehat{C}_{d, k}^{\prime}\left\|\widehat{v}_{h}\right\|_{L^{2}(\widehat{T})}
$$

is thus equal to

$$
\left(\frac{\operatorname{Area}(F)}{\operatorname{Area}(\widehat{F})}\right)^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(F)} \leq \widehat{C}_{d, k}^{\prime}(\widehat{F})\left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(T)}
$$

or equivalently,

$$
|F|_{d-1}^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(F)} \leq \widehat{C}_{d, k}|T|_{d}^{-\frac{1}{2}}\left\|v_{h}\right\|_{L^{2}(T)}
$$

Continuous trace inequality

- Lemma. (Continuous trace inequality) Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact-regular mesh sequence.

Then for all $h \in \mathcal{H}$, all $v \in H^{1}\left(\mathcal{T}_{h}\right)$ and all $T \in \mathcal{T}_{h}$, and all $F \in \mathcal{F}_{T}$,

$$
\|v\|_{L^{2}(F)}^{2} \leq C_{C t i}\left(2\|\nabla v\|_{\left[L^{2}(T)\right]^{d}}+d h_{T}^{-1}\|v\|_{L^{2}(T)}\right)\|v\|_{L^{2}(T)},
$$

with $C_{c t i}=\rho^{-1}$ if \mathcal{T}_{h} is a matching simplicial mesh and $C_{c t i}=(1+d)\left(\rho_{1} \rho_{2}\right)^{-1}$ otherwise.

Continuous trace inequality

- Proof. Let $v \in H^{1}\left(\mathcal{T}_{h}\right)$ and $F \in \mathcal{F}_{T}$. First, assume T is a simplex with vertices $\left\{x_{0}, \cdots, x_{3}\right\}$ and consider the \mathbb{R}^{d}-valued function

$$
\sigma_{F}=\frac{|F|_{d-1}}{d|T|_{d}}\left(x-a_{F}\right)
$$

where a_{F} is the vertex x_{0} of T opposite to face F, which has vertices $\left\{x_{1}, x_{2}, x_{3}\right\}$.
Note, σ_{T} is proportional to the lowest order Raviart-Thomas-Nédélec shape function in T.
At face F we have the normal vector

$$
n_{T}=\frac{\left(x_{1}-x_{3}\right) \times\left(x_{2}-x_{3}\right)}{\left|\left(x_{1}-x_{3}\right) \times\left(x_{2}-x_{3}\right)\right|}
$$

which gives

$$
n_{T}=\frac{\operatorname{Area}(\widehat{F})}{\operatorname{Area}(F)}\left(x_{1}-x_{3}\right) \times\left(x_{2}-x_{3}\right)=\frac{|\widehat{F}|_{d-1}}{|F|_{d-1}}\left(x_{1}-x_{3}\right) \times\left(x_{2}-x_{3}\right) .
$$

Continuous trace inequality

With $a_{F}=x_{0}$ we have that for $x-x_{0} \in F$,

$$
x-a_{F}=x-x_{0}=\left(x_{1}-x_{3}\right) \widehat{x}+\left(x_{2}-x_{3}\right) \widehat{y}+x_{3}-x_{0} .
$$

Then

$$
\begin{aligned}
n_{T} \cdot \sigma_{F} & =\frac{|\widehat{F}|_{d-1}}{|F|_{d-1}} \frac{|F|_{d-1}}{d|T|_{d}}\left(\left(x_{1}-x_{3}\right) \times\left(x_{2}-x_{3}\right)\right) \cdot\left(\left(x_{1}-x_{3}\right) \widehat{y}+\left(x_{2}-x_{3}\right) \widehat{y}+x_{3}-x_{0}\right) \\
& =\frac{|\widehat{F}|_{d-1}}{d|T|_{d}}\left(\left(x_{3}-x_{1}\right) \times\left(x_{3}-x_{2}\right)\right) \cdot\left(x_{3}-x_{0}\right) \\
& =\frac{|\widehat{F}|_{d-1}}{d|T|_{d}} \operatorname{det}\left|x_{3}-x_{0}, x_{3}-x_{1}, x_{3}-x_{2}\right| \\
& =\frac{|\widehat{F}|_{d-1}}{d|T|_{d}} \frac{|T|_{d}}{|\widehat{T}|_{d}} \\
& =1 \quad \text { since }|\widehat{F}|_{d-1}=\frac{1}{2},|\widehat{T}|_{d}=\frac{1}{6} \text { for } d=3 .
\end{aligned}
$$

Note, for the other faces F^{\prime} of T, we have $n_{T} \cdot \sigma_{F^{\prime}}=0$ since $\sigma_{F^{\prime}}$ is parallel to the face $F^{\prime} \neq F$.

Continuous trace inequality

- Using the divergence theorem we obtain

$$
\begin{aligned}
\|v\|_{L^{2}(F)}^{2} & =\int_{F}|v|^{2}=\int_{\partial T}|v|^{2}\left(\sigma_{F} \cdot n_{T}\right) \\
& \text { (since } \sigma_{F} \cdot n_{T}=1 \text { at } F \text { and } \\
& \left.\sigma_{F} \cdot n_{T}=0 \text { at } \partial T \backslash F\right) \\
& =\int_{T} \nabla \cdot\left(|v|^{2} \sigma_{F}\right) \\
& =\int_{T}\left(2 v \sigma_{F} \cdot \nabla v+|v|^{2} \nabla \cdot \sigma_{F}\right) .
\end{aligned}
$$

Hence

$$
\|v\|_{L^{2}(F)}^{2} \leq 2\|v\|_{L^{2}(T)}\left\|\sigma_{F} \cdot \nabla v\right\|_{L^{2}(T)}+\left\|\nabla \cdot \sigma_{F}\right\|_{L^{\infty}(T)}\|v\|_{L^{2}(T)}^{2} .
$$

Continuous trace inequality

Since

$$
\begin{gathered}
\left\|\sigma_{F}\right\|_{\left[L^{\infty}(T)\right]^{d}} \leq \frac{|F|_{d-1} h_{T}}{d|T|_{d}}, \quad \text { because } a_{F} \text { is the vertex opposite to } F, \\
\nabla \cdot \sigma_{F}=\frac{|F|_{d-1}}{|T|_{d}}, \\
\left\|\sigma_{F} \cdot \nabla v\right\|_{L^{2}(T)} \leq\left\|\sigma_{F}\right\|_{\left[L^{\infty}(T)\right]^{d}}\|\nabla v\|_{\left[L^{2}(T)\right]^{d}} \leq \frac{|F|_{d-1} h_{T}}{d|T|_{d}}\|\nabla v\|_{\left.L^{2}(T)\right]^{d}},
\end{gathered}
$$

we obtain the estimate

$$
\begin{aligned}
\|v\|_{L^{2}(F)}^{2} & \leq 2\|v\|_{L^{2}(T)}\left\|\sigma_{F} \cdot \nabla v\right\|_{L^{2}(T)}+\nabla \cdot \sigma_{F}\|v\|_{L^{2}(T)}^{2} \\
& \leq \frac{|F|_{d-1} h_{T}}{d|T|_{d}}\left(2\|\nabla v\|_{\left.L^{2}(T)\right]^{d}}+d h_{T}^{-1}\|v\|_{L^{2}(T)}\right)\|v\|_{L^{2}(T)} \\
& \leq \frac{1}{\rho_{1}}\left(2\|\nabla v\|_{\left[L^{2}(T)\right]^{d}}+d h_{T}^{-1}\|v\|_{L^{2}(T)}\right)\|v\|_{L^{2}(T)}, \quad \text { using } \frac{|F|_{d-1}}{|T|_{d}} \leq \frac{d}{\rho_{1} h_{T}} .
\end{aligned}
$$

Continuous trace inequality

- If \mathcal{T}_{h} is a general mesh use the subdivision into a matching simplicial mesh.

For each $F^{\prime} \in \mathscr{F}_{F}$, let T^{\prime} denote the simplex in \mathscr{C}_{T} of which F^{\prime} is a face.

Applying the continuous trace inequality for F^{\prime} and T^{\prime} yields,

$$
\|v\|_{L^{2}\left(F^{\prime}\right)}^{2} \leq \frac{1}{\rho_{1}}\left(2\|\nabla v\|_{\left[L^{2}\left(T^{\prime}\right)\right]^{d}}+d h_{T^{\prime}}^{-1}\|v\|_{L^{2}\left(T^{\prime}\right)}\right)\|v\|_{L^{2}\left(T^{\prime}\right)} .
$$

From the mesh regularity we have $h_{T^{\prime}} \geq \rho_{2} h_{T}$ and $\rho_{2} \leq 1$, which gives $\frac{1}{h_{T^{\prime}}} \leq \frac{1}{\rho_{2} h_{T}}$, and

$$
\|v\|_{L^{2}\left(F^{\prime}\right)}^{2} \leq \frac{1}{\rho_{1} \rho_{2}}\left(2\|\nabla v\|_{\left[L^{2}\left(T^{\prime}\right)\right]^{d}}+d h_{T}^{-1}\|v\|_{L^{2}\left(T^{\prime}\right)}\right)\|v\|_{L^{2}\left(T^{\prime}\right)} .
$$

Hence, after summing $F^{\prime} \in \mathscr{F}_{F}$ and using the fact that $T^{\prime} \in \mathscr{C}_{T}$ appears at most $(d+1)$-times gives

$$
\|v\|_{L^{2}(F)}^{2} \leq \frac{d+1}{\rho_{1} \rho_{2}}\left(2\|\nabla v\|_{\left[L^{2}(T)\right]^{d}}+d h_{T}^{-1}\|v\|_{L^{2}(T)}\right)\|v\|_{L^{2}(T)} .
$$

Comparison of $\|\cdot\|_{L^{P}(T)}$ - and $\|\cdot\|_{L^{q}(T)}$-norms

- Lemma. (Comparison of $\|\cdot\|_{L^{p}(T)}$ - and $\|\cdot\|_{L^{q}(T)}$-norms). Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact-regular mesh sequence with parameter ρ.

Let $1 \leq p, q, \leq \infty$ be two real numbers. Then for all $h \in \mathcal{H}$, all $v_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ and all $T \in \mathcal{T}_{h}$,

$$
\left\|v_{h}\right\|_{L^{p}(T)} \leq C_{i n v, p, q} h_{T}^{d\left(\frac{1}{p}-\frac{1}{q}\right)}\left\|v_{h}\right\|_{L q(T)}
$$

where $C_{i n v, p, q}$ only depends on ρ, d, k, p and q.

Comparison of $\|\cdot\|_{L^{P}(T)}$ - and $\|\cdot\|_{L^{q}(T)}$-norms

- Proof. Since $v_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$, we can use that all norms are equivalent in a finite dimensional space,

$$
\begin{aligned}
& \left\|\widehat{v}_{h}\right\|_{L^{p}(\widehat{T})} \leq \widehat{C}\left\|\widehat{v}_{h}\right\|_{L^{q}(\widehat{T})} \\
\Leftrightarrow & \left(\int_{T}\left|v_{h}(x)\right|^{p} \frac{1}{\operatorname{det} B_{T}} d x\right)^{\frac{1}{p}} \leq \widehat{C}\left(\int_{T}\left|v_{h}(x)\right|^{q} \frac{1}{\operatorname{det} B_{T}} d x\right)^{\frac{1}{q}} \\
\Leftrightarrow & \left(\frac{\operatorname{Vol}(\widehat{T})}{\operatorname{Vol}(T)}\right)^{\frac{1}{p}}\left\|v_{h}\right\|_{L^{p}(T)} \leq \widehat{C}\left(\frac{\operatorname{Vol}(\widehat{T})}{\operatorname{Vol}(T)}\right)^{\frac{1}{q}}\left\|v_{h}\right\|_{L^{q}(T)} \\
\Leftrightarrow & \left\|v_{h}\right\|_{L^{p}(T)} \leq \widehat{C}\left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{\frac{1}{p}-\frac{1}{q}}\left\|v_{h}\right\|_{L q(T)} \\
\Rightarrow & \left\|v_{h}\right\|_{L^{p}(T)} \leq C_{i n v, p, q} h_{T}^{d\left(\frac{1}{p}-\frac{1}{q}\right)}\left\|v_{h}\right\|_{L^{q}(T)} .
\end{aligned}
$$

Discrete trace inequality in $L^{p}(F)$

- Lemma. (Discrete trace inequality in $\left.L^{p}(F)\right)$. Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact-regular mesh sequence with parameter ρ.

Let $1 \leq p, q, \leq \infty$ be two real numbers. Then for all $h \in \mathcal{H}$, all $v_{h} \in \mathbb{P}_{d}^{k}\left(\mathcal{T}_{h}\right)$ and all $T \in \mathcal{T}_{h}$, and all $F \in \mathcal{T}_{T}$,

$$
h_{T}^{\frac{1}{p}}\left\|v_{h}\right\|_{L^{p}(F)} \leq C_{t r, p}\left\|v_{h}\right\|_{L^{p}(T)}
$$

where $C_{t r, p}$ only depends on ρ, d, k and p.

Discrete trace inequality in $L^{p}(F)$

- Proof. Combine the discrete trace inequality with the relation between L^{p} and L^{q}-norms, then

$$
\begin{aligned}
& h_{T}^{\frac{1}{p}}\left\|v_{h}\right\|_{L^{p}(F)} \leq C_{i n v, p, 2} h_{T}^{\frac{1}{p}} \delta_{F}^{(d-1)\left(\frac{1}{p}-\frac{1}{2}\right)}\left\|v_{h}\right\|_{L^{2}(F)} \quad \text { (use relation between } L^{p} \text { and } L^{q} \text { norms } \\
& \quad \text { with } q=2 \text { for a face } F \text { with } \operatorname{dim}(F)=d-1 \text {) } \\
& \leq C_{i n v, p, 2} C_{t r} h_{T}^{\frac{1}{p}-\frac{1}{2}} \delta_{F}^{(d-1)\left(\frac{1}{p}-\frac{1}{2}\right)}\left\|v_{h}\right\|_{L^{2}(T) \quad \text { (use discrete trace inequality) }} \\
& \leq C_{i n v, p, 2} C_{t r} C_{i n v, 2, p} h_{T}^{\frac{1}{p}-\frac{1}{2}} \delta_{F}^{(d-1)\left(\frac{1}{p}-\frac{1}{2}\right)} h_{T}^{d\left(\frac{1}{2}-\frac{1}{p}\right)}\left\|v_{h}\right\|_{L^{p}(T)} \\
& \quad \text { (use relation between } L^{p} \text { and } L^{q}-\text { norms) } \\
& \leq C_{t r, p}\left\|v_{h}\right\|_{L^{p}(T)} \text { using } \delta_{F} \cong h_{T} .
\end{aligned}
$$

Polynomial approximation

Since $u_{h} \in V_{h}$ we obtain from the error bound for the variational equation the relation

$$
\begin{equation*}
\inf _{y_{h} \in V_{h}}\left\|u-y_{h}\right\| \leq \leq\left\|u-u_{h}\right\|\left\|\leq C \inf _{y_{h} \in V_{h}}\right\| u-y_{h}\| \|_{*}, \tag{10}
\end{equation*}
$$

hence we need a bound for the approximation error on the righthand side of (10).
The optimality of the error estimate is classified as:

- (Optimality, quasi-optimality and suboptimality of the error estimate).
i) Optimal, if $||\cdot||\left|=|||\cdot|||{ }_{*}\right.$.
ii) Quasi-optimal, if the norms ||| $\cdot \| \mid$ and $\left|||\cdot|| \|_{*}\right.$ are different, but the lower and upper bounds in (10) converge for smooth u at the same rate as $h \rightarrow 0$.
iii) Suboptimal, if the upper bound in (10) converges at a slower rate than the lower bound.

Polynomial approximation

- (Optimal polynomial approximation). The mesh sequence $\mathcal{T}_{\mathcal{H}}$ has optimal polynomial approximation properties if for all $h \in \mathcal{H}$, all $T \in \mathcal{T}_{h}$ and all polynomial degrees k, there is a linear interpolation operator $I_{T}^{k}: L^{2}(T) \rightarrow \mathbb{P}_{d}^{k}(T)$ s.t. $\forall s \in\{0, \cdots, k+1\}$ and all $v \in H^{s}(T)$ there holds

$$
\left|v-I_{T}^{k} v\right|_{H^{m}(T)} \leq C_{a p p} h_{T}^{s-m}|v|_{H^{s}(T)} \quad \forall m \in\{0, \ldots, s\},
$$

where $C_{\text {app }}$ is independent of both T and h.

- (Admissible mesh sequences). A mesh sequence $\mathcal{T}_{\mathcal{H}}$ is admissible if it is shape- and contact-regular, and if it has optimal polynomial approximation properties.

Polynomial approximation

- Lemma. (Optimality of L^{2}-orthogonal projection). Let $\mathcal{T}_{\mathcal{H}}$ be an admissible mesh sequence.

Let π_{h} be the L^{2}-orthogonal projection onto \mathbb{P}_{d}^{k}. Then $\forall s \in\{0, \cdots, k+1\}$ and all $v \in H^{s}(T)$, we have

$$
\left|v-\pi_{h} v\right|_{H^{m}(T)} \leq C_{a p p}^{\prime} h_{T}^{s-m}|v|_{H^{s}(T)} \quad \forall m \in\{0, \cdots, s\} .
$$

where $C_{\text {app }}$ is independent of both T and h.

Polynomial approximation

Proof. For $m=0$, we have since $\pi_{h}: L^{2}(T) \rightarrow \mathbb{P}_{d}^{k}$ is the L^{2}-orthogonal projection that

$$
\left\|v-\pi_{h} v\right\|_{L^{2}(T)} \leq\left\|v-I_{T}^{k} v\right\|_{L^{2}(\Omega)} \leq C_{a p p} h_{T}^{s}|v|_{H^{s}(T)}
$$

For $m \geq 1$, use m-times the inverse inequality, together with the triangle inequality

$$
\begin{array}{rlr}
\left|v-\pi_{h} v\right|_{H^{m}(T)} & \leq\left|v-I_{T}^{k} v\right|_{H^{m}(T)}+\left|I_{T}^{k} v-\pi_{h} v\right|_{H^{m}(T)} & \text { (triangle inequality) } \\
& \leq\left|v-I_{T}^{k} v\right|_{H^{m}(T)}+C^{\prime} h_{T}^{-m}\left\|I_{T}^{k} v-\pi_{h} v\right\|_{L^{2}(T)} & \text { (use } m \text {-times inverse inequality) } \\
& \leq\left|v-I_{T}^{k} v\right|_{H^{m}(T)}+C^{\prime} h_{T}^{-m}\left\|v-I_{T}^{k} v\right\|_{L^{2}(T)}+C^{\prime} h_{T}^{-m}\left\|v-\pi_{h} v\right\|_{L^{2}(T)} \\
& \leq\left|v-I_{T}^{k} v\right|_{H^{m}(T)}+2 C^{\prime} h_{T}^{-m}\left\|v-I_{T}^{k} v\right\|_{L^{2}(T)} \quad \text { (using } m=0 \text { case) } \\
& \leq C_{a p p}^{\prime} h_{T}^{s-m}|v|_{H^{s}(T)} \quad \text { (use optimal polynomial approximation error). }
\end{array}
$$

Polynomial approximation

- Lemma. (Polynomial approximation on mesh faces). Let $\mathcal{T}_{\mathcal{H}}$ be an admissible mesh sequence.

Let π_{h} be the L^{2}-orthogonal projection onto \mathbb{P}_{d}^{k}. Then for all $s \in\{1, \cdots, k+1\}$ and all $v \in H^{s}(T)$, we have

$$
\left\|v-\pi_{h} v\right\|_{L^{2}(F)} \leq C_{a p p}^{\prime \prime} h_{T}^{s-\frac{1}{2}}|V|_{H^{s}(T)}
$$

and if $s \geq 2$,

$$
\left\|\left.\nabla\left(v-\pi_{h} v\right)\right|_{T} \cdot n_{T}\right\|_{L^{2}(F)} \leq C_{a p p}^{\prime \prime} h_{T}^{s-\frac{3}{2}}|v|_{H^{s}(T)}
$$

where $C_{a p p}^{\prime}, C_{a p p}^{\prime \prime}$ are independent of both T and h.

