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Introduction

● Discontinuous Galerkin (DG) methods are nowadays one of the main finite element methods
to solve partial differential equations.

● The key feature of DG methods is the use of discontinuous test and trial spaces. This results
in a local element wise discretization and a discontinuous approximation at element faces or
edges.
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Introduction

Benefits of discontinuous Galerkin methods:

● DG methods provide higher order accurate, element-wise conservative finite element
discretizations of partial differential equations with excellent stability and convergence
properties.

● The local, element based discretization in DG methods provides great flexibility to design:

solution adaptive numerical discretizations using local mesh refinement (h-adaptation)
and/or local adjustment of the polynomial order (p-refinement).

efficient parallel finite element discretizations due to the minimal element connectivity.
In general, only nearest neighboring elements are connected at element faces or
edges.

DG discretizations of time-dependent problems generally result in a block-diagonal
mass matrix, which is very beneficial when using an explicit time integration method.

● DG methods have a well established mathematical theory to analyse the convergence,
stability and accuracy of the finite element discretization.
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Introduction

Benefits of discontinuous Galerkin methods:

● Discontinuous Galerkin discretizations generally are more complicated than standard
conforming finite element discretizations and also their mathematical analysis is more
involved.
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Introduction

To main goals of these lectures are:

● To discuss the basic mathematical techniques necessary to understand the mathematical
properties of DG discretizations.

● To use these tools to study convergence, stability and accuracy of discontinuous Galerkin
discretizations of hyperbolic and elliptic model problems.
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● D.A. Di Pietro, A. Ern, Mathematical aspects of discontinuous Galerkin methods, Springer,
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Springer, 2008, ISBN 978-0-387-75933-3.
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Discrete setting

● The domain Ω is a bounded, connected subset of Rd , d ≥ 1, with Lipschitz continuous
boundary ∂Ω that has a unit outward normal vector n.

● For simplicity we will also assume that Ω is a polyhedron.

● Polyhedron:

P is a polyhedron in Rd if P is an open connected, bounded subset of Rd s.t. its
boundary ∂P is a finite union of parts of hyperplanes.

Moreover, each point in the interior of P is assumed to lie only on one side of the
hyperplane boundary.

Each polyhedron can be subdivided into a finite number of simplicial elements.
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Discrete setting

● A simplex is defined as:

Given a family {a0,⋯,ad} of d + 1 points in Rd s.t. the vectors {a1 − a0,⋯,ad − a0} are
linearly independent.

The interior of the convex hull of {a0,⋯,ad} is called a non-degenerate simplex in Rd .

● The points {a0,⋯,ad} are the vertices of the simplex.

● In Rd , for d = 1,2,3 simplices are, respectively, a line segment, a triangle, and a tetrahedron.

● Unit or reference simplex

Sd ∶= {(x1,⋯, xd) ∈ Rd ∣ xi > 0 ∀i ∈ {1,⋯,d} and x1 +⋯ + xd < 1}
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Discrete setting

Simplex faces and mesh:

● Let S be a non-degenerate simplex with vertices {a0,⋯,ad}.

For each i ∈ {0,⋯,d} the convex hull of {a0,⋯,ad}/{ai} is a face of simplex S.

● A simplicial mesh T of the (polyhedral) domain Ω is a finite collection of disjoint
non-degenerate simplices T = {T} forming a partition of Ω,

Ω = ∪T∈T T ,
with each T ∈ T a mesh element.

The outward unit normal vector at ∂T is denoted nT .
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Discrete setting

General mesh:

● A general mesh T of a domain Ω is a finite collection of disjoint polyhedra T = {T} forming a
partition of Ω.

● Note, a general mesh allows hanging nodes.

● Let T be a (general) mesh of Ω. For all T ∈ T , hT denotes the diameter of T and the mesh
size is defined as

h ∶= max
T∈T

hT .

● Th is a mesh T with mesh size h.
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Discrete setting

Mesh faces:

● Let Th be a mesh of Ω. A (closed) subset F of Ω is a mesh face if F has a positive
(d − 1)-dimensional Hausdorff measure and if either one of the two conditions is satisfied:

there are distinct mesh elements T1 and T2 s.t. F = ∂T1 ∩ ∂T2, then F is called an
interface;

there is a T ∈ Th s.t. F = ∂T ∩ ∂Ω, then F is called a boundary face.

● Interfaces are collected in the set F i
h, boundary faces in the set Fb

h , hence

Fh ∶= F i
h ∪ F

b
h .
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Discrete setting

● The set FT ∶= {F ∈ Fh ∣ F ⊂ ∂T} collects the mesh faces composing the boundary of
element T .

● The maximum number of mesh faces composing the boundary of mesh elements is

N∂ ∶= max
T∈Th

card(FT ).

● For any mesh face F ∈ Fh define the set

TF ∶= {T ∈ Th ∣ F ⊂ ∂T}.

● Note TF consists of two mesh elements if F ∈ F i
h and one mesh element if F ∈ Fb

h .
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Jumps and Averages

● Let v be a scalar valued function on Ω, sufficiently smooth to admit ∀F ∈ F i
h a possibly

two-valued trace.

● Denote with v ∣T for all T ∈ Th the restriction of v to T with trace at ∂T .

● For all F ∈ F i
h and a.e. x ∈ F the average of v is defined as

{{v}}F (x) ∶= 1
2
(v ∣T1(x) + v ∣T2(x)) ,

and the jump of v as

[[v]]F (x) ∶= v ∣T1(x) − v ∣T2(x).

● If v is a vector then the average and jump operators act component wise on v .
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Normal vectors

● For all F ∈ Fh and a.e. x ∈ F the unit normal nF to F at x is defined as

nF = nT1 , the normal vector to F at x pointing from element T1 to element T2 if F ∈ F i
h

with F = ∂T1 ∩ ∂T2.

At F ∈ F i
h we have nT2 = −nT1 .

The orientation of nF = nT1 is arbitrary, depending on the choice of T1 and T2, but this
orientation must be kept fixed.

n, the outward normal to Ω at x if F ∈ Fb
h .
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Lebesgue spaces

● Consider functions v ∶ Ω ⊂ Rd → R, d ≥ 1, that are Lebesgue measurable.

Let 1 ≤ p ≤ ∞ be a real number and define the norms

∥v∥Lp(Ω)
∶= (∫

Ω
∣v ∣p)

1
p

1 ≤ p < ∞,

∥v∥L∞(Ω)
∶= sup ess{∣v(x)∣ ∣ for almost every x ∈ Ω}

= inf{M > 0 ∣ ∣v(x)∣ ≤ M for almost every x ∈ Ω}.
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Lebesgue spaces

● The Lebesgue space is defined as

Lp(Ω) ∶= {v is Lebesgue measurable ∣ ∥v∥Lp(Ω)
< ∞}

● The Lebesgue space with norm ∥v∥Lp(Ω)
< ∞ is a Banach space for all 1 ≤ p ≤ ∞.

● For all 1 ≤ p < ∞ the space C∞

0 (Ω) of infinitely differentiable functions with compact support
is dense in Lp(Ω).

● For p = 2, the space L2(Ω) is a Hilbert space, equipped with the scalar product

(v ,w)L2(Ω)
∶= ∫

Ω
vw .
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Lebesgue spaces

● Holder’s inequality.

For all 1 ≤ p,q ≤ ∞ with 1
p +

1
q = 1 all v ∈ Lp(Ω) and all w ∈ Lq(Ω) there holds vw ∈ L1(Ω)

and

∫
Ω

vw ≤ ∥v∥Lp(Ω)
∥w∥Lq(Ω)

.

● For p = q = 2 Holder’s inequality becomes the Cauchy-Schwarz inequality.

For all v ,w ∈ L2(Ω), vw ∈ L1(Ω) and

(v ,w)L2(Ω)
≤ ∥v∥L2(Ω)

∥w∥L2(Ω)
.
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Sobolev spaces

● Given a Cartesian basis in Rd with coordinates (x1,⋯, xd), then ∂i with i ∈ {1,⋯,d} denotes
the distributional partial derivative with respect to xi .

● For α ∈ Nd , then ∂αv denotes the distributional or weak derivative ∂α1
1 ⋯∂αd

d v of v with
∂(0,⋯,0)v = v .

A function f ∈ L1
loc(Ω) has a distributional or weak derivative ∂αf provided there exists a

function g ∈ L1
loc(Ω) such that

∫
Ω

g(x)φ(x)dx = (−1)∣α∣ ∫
Ω

f(x)φ(α)dx ∀φ ∈ C∞

0 (Ω).

If such a g exists, then we define ∂αf = g.
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Sobolev spaces

Example. Take d = 1, Ω = [−1,1] and f(x) = 1 − ∣x ∣.

Then for φ ∈ C∞

0 (Ω), arbitrary, we have,

∫
1

−1
f(x)∂1

1φ(x)dx = ∫
0

−1
f(x)∂1

1φ(x)dx + ∫
1

0
f(x)∂1

1φ(x)dx

= −∫
0

−1
(+1)φ(x)dx + fφ∣0

−1 − ∫
1

0
(−1)φ(x)dx + fφ∣10 (integration by parts)

= −(∫
0

−1
(+1)φ(x)dx + ∫

1

0
(−1)φ(x)dx) + (fφ)(0−) − (fφ)(0+)

(since φ(−1) = φ(1) = 0)

= −∫
1

−1
g(x)φ(x)dx (since f is continuous at x = 0),

with

g(x) =
⎧⎪⎪⎨⎪⎪⎩

1 x < 0,

−1 x > 0.

The weak derivative ∂1
1 f(x) is then given by ∂1

1 f(x) = g(x).
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Sobolev spaces

● For 1 ≤ p ≤ ∞, p ∈ R, define for all ξ ∈ Rd , with ξ = (ξ1,⋯, ξd) in the Cartesian basis of Rd ,
the norm

∣ξ∣`p ∶=
⎛
⎝

d
∑
i=1

∣ξi ∣p
⎞
⎠

1
p

, 1 ≤ p < ∞,

∣ξ∣`∞ ∶= max
1≤i≤d

∣ξi ∣.

● Sobolev spaces

Let m ≥ 0, 1 ≤ p ≤ ∞. The Sobolev space W m,p(Ω) is defined as

W m,p(Ω) ∶= {v ∈ Lp(Ω) ∣ ∀α ∈ Am
d , ∂

αv ∈ Lp(Ω)},

where Am
p ∶= {α ∈ Nd ∣ ∣α∣`1 ≤ m}.

Note, W 0,p(Ω) = Lp(Ω).
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Sobolev spaces

● The Sobolev spaces W m,p(Ω) are a Banach space when equipped with the norm

∥v∥W m,p(Ω)
∶=

⎛
⎜
⎝
∑
α∈Am

d

∥∂αv∥p
Lp(Ω)

⎞
⎟
⎠

1
p

, 1 ≤ p < ∞,

∥v∥W m,∞(Ω)
∶= max
α∈Am

d

∥∂αv∥L∞(Ω)
.

● The semi-norm ∣ ⋅ ∣W m,p(Ω)
is obtained by keeping only the derivatives of global order m,

hence A
m
d ∶= {α ∈ Nd ∣ ∣α∣`1 = m}.
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Hilbert spaces

● For p = 2 we use the notation Hm(Ω) ∶= W m,2(Ω), hence

Hm(Ω) = {v ∈ L2(Ω) ∣ ∀α ∈ Am
d , ∂

αv ∈ L2(Ω)}

● Hm(Ω) is a Hilbert space when equipped with the scalar product

(v ,w)Hm(Ω)
∶= ∑
α∈Am

d

(∂αv , ∂αw)L2(Ω)
,

resulting in the norm and semi-norm

∥v∥Hm(Ω)
∶= ( ∑

α∈Am
d

∥∂αv∥2
L2(Ω)

)
1
2
, ∣v ∣Hm(Ω)

∶= ( ∑
α∈Am

d

∥∂αv∥2
L2(Ω)

)
1
2
.
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Hilbert spaces

● For m = 1 we can consider the gradient ∇v = (∂1v ,⋯, ∂d v)T ∈ Rd . The norm on W 1,p(Ω)
then is equal to

∥v∥W 1,p(Ω)
= (∥v∥p

Lp(Ω)
+ ∥∇v∥p

[Lp(Ω)]d )
1
p
, 1 ≤ p < ∞,

with

∥∇v∥p
[Lp(Ω)]d ∶= (∫

Ω
∣∇v ∣p

`p)
1
p = (∫

Ω

d
∑
i=1

∣∂i v ∣p)
1
p
.

● For p = 2 we have

(v ,w)H1(Ω)
= (v ,w)L2(Ω)

+ (∇v ,∇w)
[L2(Ω]d .
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Traces

● Boundary values of functions in the Sobolev space W 1,p(Ω) have a meaning as traces in
Lp(∂Ω).

● Trace inequalities:

For all 1 ≤ p ≤ ∞ there is a constant C s.t.

∥v∥Lp(∂Ω)
≤ C∥v∥

1− 1
p

Lp(Ω)
∥v∥

1
p

W 1,p(Ω)
, ∀v ∈ W 1,p(Ω).

For p = 2 this gives

∥v∥L2(∂Ω)
≤ C∥v∥

1
2
L2(Ω)

∥v∥
1
2
H1(Ω)

, ∀v ∈ H1(Ω).

● We will also consider Hilbert-Sobolev spaces Hs(Ω), s ∈ R, s > 0, e.g. functions in H
1
2+ε(Ω),

ε > 0 have a trace in L2(Ω).
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Polynomial spaces

● The space of polynomials Pk
d of total degree at most k , with k ≥ 0, integer, is defined as

Pk
d ∶= {p ∶ Rd ∋ x ↦ p(x) ∈ R ∣ ∃(γα)α∈Ak

d
∈ Rcard(Ak

d ) s.t. p(x) = ∑
α∈Ak

d

γαxα},

with for x = (x1,⋯, xd) ∈ Rd , xα ∶= Πd
i=1xαi

i and

Ak
d = {α ∈ Nd ∣ ∣α∣`1 ≤ k}

● The dimension of Pk
d is

dim (Pk
d) = card(Ak

d) = ( k + d
k ) = (k + d)!

k!d!
.
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Broken polynomial spaces

● The broken polynomial space Pk
d(Th) is defined as

Pk
d(Th) ∶= {v ∈ L2(Ω) ∣ ∀T ∈ Th, v ∣T ∈ Pk

d(T)},

with Pk
d(T) spanned by the restriction to T of polynomials in Pk

d .

● The dimension of Pk
d(Th) is

dim(Pk
d(Th)) = card(Th) × dim(Pk

d).
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Broken Sobolev spaces

● Let Th be a mesh in Ω. The broken Sobolev spaces are defined as

Hm(Th) ∶= {v ∈ L2(Ω) ∣ ∀T ∈ Th, v ∣T ∈ Hm(T)},

W m,p(Th) ∶= {v ∈ Lp(Ω) ∣ ∀T ∈ Th, v ∣T ∈ W m,p(T)},

with m ≥ 0, integer, 1 ≤ p ≤ ∞ a real number.
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Broken Sobolev spaces

● The continuous trace inequality gives ∀v ∈ W 1,p(Th) and ∀T ∈ Th,

∥v∥Lp(∂T)
≤ C∥v∥

1− 1
p

Lp(T)
∥v∥

1
p

W 1,p(T)
,

with for p = 2, ∀v ∈ Hm(Th) and ∀T ∈ Th,

∥v∥L2(∂T)
≤ C∥v∥

1
2
Lp(Ω)

∥v∥
1
2
H1(T)

.

● The broken gradient ∇h ∶ W 1,p(Th) → [Lp(Ω)]d is defined as

∀T ∈ Th, (∇hv) ∣T ∶= ∇(v ∣T ), ∀v ∈ W 1,p(Th).

Note, the subscript h will not be used if ∇h is used inside an integral over a fixed mesh
element T ∈ Th.
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Broken Sobolev spaces

● Lemma 1. (Broken gradient on usual Sobolev spaces). Let m ≥ 0, 1 ≤ p ≤ ∞. There holds
W m,p(Ω) ⊂ W m,p(Th).

Moreover, ∀v ∈ W 1,p(Ω), ∇hv = ∇v in [Lp(Ω)]d .

Proof. Take m = 1. Let v ∈ W 1,p(Ω). For all Φ ∈ [C∞

0 (T)]d we can since Φ = 0 at ∂T define
the extension of Φ by zero as EΦ ∈ [C∞

0 (Ω)]d . Then

∫
T
∇(v ∣T ) ⋅Φ = −∫

T
v(∇ ⋅Φ) = −∫

Ω
v(∇ ⋅ (EΦ))

= ∫
Ω
∇v ⋅ EΦ = ∫

T
(∇v)∣T ⋅Φ.

Since Φ is arbitrary, this implies ∇(v ∣T ) = (∇v)∣T .

Since T ∈ Th is arbitrary, using (∇hv)∣T ∶= ∇(v ∣T ), we obtain that ∇hv = ∇v . Hence
v ∈ W 1,p(Th).
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Broken Sobolev spaces

● The reverse inclusion, namely W m,p(Th) ⊂ W m,p(Ω), is in general not true (except for
m = 0) since functions in W m,p(Th) can have non-zero jumps at interfaces.
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Broken Sobolev spaces

● Lemma. (Characterization of W 1,p(Ω)). Let 1 ≤ p ≤ ∞. A function v ∈ W 1,p(Th) belongs to
W 1,p(Ω) if and only if

[[v]] = 0 ∀F ∈ F i
h.

Proof.

We will use for all Φ ∈ [C∞

0 (Ω)]d the relation

∑
T∈Th

∫
∂T

vT (Φ ⋅ nT ) = ∑
F∈Fh

∫
F
[[Φ ⋅ nF ]]{{v}} + ∑

F∈F i
h

∫
F
{{Φ ⋅ nT }}[[v]],

Using the fact that Φ is continuous across interfaces,

[[Φ ⋅ nF ]] = 0 and {{Φ ⋅ nF}} = Φ ⋅ nF for ∀F ∈ F i
h,

we obtain

∑
T∈Th

∫
∂T

vT (Φ ⋅ nT ) = ∑
F∈F i

h

∫
F
(Φ ⋅ nT )[[v]].
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Broken Sobolev spaces

Let v ∈ W 1,p(Th). Then ∀Φ ∈ [C∞

0 (Ω)]d , we obtain by integrating by parts element-wise that

∫
Ω
∇hv ⋅Φ = ∑

T∈Th

∫
T
∇(v ∣T ) ⋅Φ = − ∑

T∈Th

∫
T

v(∇ ⋅Φ) + ∑
T∈Th

∫
∂T

v ∣T (Φ ⋅ nT )

= −∫
Ω

v(∇ ⋅Φ) + ∑
F∈F i

h

∫
F
(Φ ⋅ nF )[[v]]. (1)

The condition [[v]] = 0, ∀F ∈ F i
h then implies

∫
Ω
∇hv ⋅Φ = −∫

Ω
v∇ ⋅Φ = ∫

Ω
∇v ⋅Φ ∀Φ ∈ [C∞

0 (Ω)]d ,

hence ∇v = ∇hv in [Lp(Ω)]d , thus v ∈ W 1,p(Ω).
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Broken Sobolev spaces

● Conversely, if v ∈ W 1,p(Ω), then ∇v = ∇hv in [Lp(Ω)]d owing to Lemma 1. Hence (1)
implies

∑
F∈F i

h

∫
F
(Φ ⋅ nF )[[v]] = ∫

Ω
∇hv ⋅Φ + ∫

Ω
v(∇ ⋅Φ)

= ∫
Ω
∇hv ⋅Φ − ∫

Ω
∇v ⋅Φ (since Φ ∈ [C∞

0 (Ω)]d )

= 0 (since ∇v = ∇hv for v ∈ W 1,p(Ω)).

This implies [[v]] = 0, ∀F ∈ F i
h, by choosing the support of Φ only to contain the two

elements T1,T2 ∈ Th connected to F ∈ F i
h, and Φ being arbitrary.
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Well-posedness for linear variational equations

For the well-posedness we consider:

● Let X and Y be two Banach spaces equipped with the norms ∥ ⋅ ∥X and ∥ ⋅ ∥Y .

● Let L(X ,Y) be the vector space spanned by linear operators from X to Y , equipped with the
norm

∥A∥
L(X ,Y)

∶= sup
v∈X/{0}

∥Av∥Y

∥v∥X
∀A ∈ L(X ,Y).

● Define the linear model model problem as

Find u ∈ X s.t. a(u, v) = ⟨f ,w⟩Y ′,Y ∀w ∈ Y , (2)

where a ∈ L(X × Y ,R) is a bounded bilinear form, f ∈ Y ′ ∶= L(Y ,R) is a bounded linear
form, and ⟨⋅, ⋅⟩Y ′,Y denotes the duality pairing between Y ′ and Y .
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Well-posedness of linear variational equations

● Alternatively, we can introduce the bounded linear operator A ∈ L(X ,Y) s.t.

⟨Av ,w⟩Y ′,Y ∶= a(v ,w) ∀(v ,w) ∈ X × Y ,
and consider

Find u ∈ X s.t. Au = f in Y ′. (3)

● Problems (2) and 3) are equivalent; u solves (2) if and only if u solves (3).

● Problems (2) and 3) are well-posed if they admit one and only one solution u ∈ X .
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Well-posedness of linear variational equations

● The well-posedness of (3) requires A to be an isomorphism (bijective mapping that
preserves the structure).

In Banach spaces this implies that if A ∈ L(X ,Y ′) is an isomorphism, then A−1 is bounded,
that is

∥A−1∥
L(X ,Y ′) ≤ C,

which implies that

∥u∥X = ∥A−1f∥X ≤ C∥f∥Y ′ .
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Banach-Nečas-Babuška theorem

● The Banach-Nečas-Babuška (BNB) theorem provides necessary and sufficient conditions for
well-posedness for linear variational equations.

● Theorem (BNB theorem). Let X be a Banach space and let Y be a reflexive space.

Let a ∈ L(X × Y ,R) and let f ∈ Y ′. Then the problem:

Find u ∈ X s.t. a(u,w) = ⟨f ,w⟩Y ′,Y ∀w ∈ Y

is well posed if and only if

i) There is a Csta > 0 s.t.

∀v ∈ X , Csta∥v∥X ≤ sup
w∈Y/{0}

a(v ,w)
∥w∥Y

.

ii) For all w ∈ Y , a(v ,w) = 0 implies that w = 0, ∀v ∈ X .
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Banach-Nečas-Babuška theorem

● Moreover, the following a priori estimate holds true

∥u∥X ≤ 1
Csta

∥f∥Y ′ .

● Note, the condition

∀v ∈ X , Csta∥v∥X ≤ sup
w∈Y/{0}

a(v ,w)
∥w∥Y

is equivalent to the inf-sup condition

Csta ≤ inf
v∈X/{0}

sup
w∈Y/{0}

a(v ,w)
∥v∥X ∥w∥Y

.

● The BNB-theorem is a direct result of the Banach Closed Range theorem and the Banach
Open Mapping Theorem.

38 / 86



Lax-Milgram lemma

● Let X be a Hilbert space, Y = X . Let a ∈ L(X × X ,R).

The bilinear form a is coercive on X if there is Csta > 0 s.t.

∀v ∈ X , Csta∥v∥2
X ≤ a(v , v).

● Equivalently, a bounded linear operator A ∈ L(X ,X ′) defined by

⟨Av ,w⟩X ′,X ∶= a(v ,w) ∀(v ,w) ∈ X × X

is coercive if ∃Csta > 0 s.t.

∀v ∈ X , Csta∥v∥2
X ≤ ⟨Av , v⟩X ′,X .

● The Lax-Milgram lemma provides sufficient conditions for well-posedness.
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Lax-Milgram lemma

● Lemma (Lax-Milgram) Let X be a Hilbert space. Let a ∈ L(X × X ,R) and let f ∈ X ′.

Then the problem

Find u ∈ X s.t. a(u,w) = ⟨f ,w⟩X ′,X ∀w ∈ X

is well posed if the bilinear form a is coercive on X .

Equivalently, the problem

Find u ∈ X , s.t. Au = f in X ′

is well-posed if the linear operator A ∈ L(X ,X ′) is coercive.

Moreover, the following estimate holds true

∥u∥X ≤ 1
Csta

∥f∥X ′ .
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Lax-Milgram lemma

Proof.

Let a be coercive, then for all v ∈ X/{0},

Csta∥v∥X ≤ a(v , v)
∥v∥X

≤ sup
w∈X/{0}

a(v ,w)
∥w∥X

,

and this condition also holds for v = 0.

To prove the second statement in the BNB theorem, namely,

For all w ∈ X , a(v ,w) = 0 implies that w = 0, ∀v ∈ X .

Let w ∈ X be such that a(v ,w) = 0, ∀v ∈ X . Then, choosing v = w yields ∥w∥X = 0 due to
the coercivity of a(v ,w). Hence w = 0.
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Abstract nonconforming error analysis

● Let Vh ⊂ L2(Ω) be a finite dimensional function space, e.g. Vh is a broken polynomial space.

Consider the discrete problem

Find uh ∈ Vh s.t. ah(uh,wh) = lh(wh) ∀wh ∈ Vh,

with discrete bilinear form ah ∶ Vh × Vh → R and discrete linear form lh ∶ Vh → R.

Since functions in Vh can be discontinuous across mesh elements, we have Vh /⊂ X and
Vh /⊂ Y .

Hence we have a nonconforming finite element discretization.

42 / 86



Abstract nonconforming error analysis

● Alternatively, consider the discrete linear operator Ah ∶ Vh → Vh s.t. ∀vh,wh ∈ Vh

(Ahvh,wh)L2(Ω)
∶= ah(vh,wh)

and the discrete function Lh ∈ Vh s.t. ∀wh ∈ Vh,

(Lh,wh)L2(Ω)
∶= lh(wh),

which gives the formulation

Find uh ∈ Vh s.t. Ahuh = Lh in Vh.

43 / 86



Abstract nonconforming error analysis

● Assume that the data f ∈ L2(Ω), then < f ,w >Y ′,Y= (f ,w)L2(Ω)
and

lh(wh) = (Lh,wh)L2(Ω)
= (f ,wh)L2(Ω)

, and Lh = πhf ,

with πh ∶ L2(Ω) → Vh the L2(Ω)-orthogonal projection onto Vh so that ∀v ∈ L2(Ω), πhv ∈ Vh
with

(πhv , yh)L2(Ω)
= (v , yh)L2(Ω)

∀yh ∈ Vh.

● Note, πhv can be computed in an element T independently from other elements in Th, hence
∀T ∈ Th, πhv ∣T ∈ Pk

d(T), s.t.

(πhv ∣T , ξ)L2(T)
= (v , ξ)L2(T) ∀ξ ∈ Pk

d(T).
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Discrete stability

Define the norm 9 ⋅9 on Vh.

● (Discrete stability) A discrete bilinear form ah has discrete stability on Vh if there is a Csta > 0
s.t.

∀vh ∈ Vh, Csta 9 vh9 ≤ sup
wh∈Vh/{0}

ah(vh,wh)
9wh9

. (4)

● Property (4) is called the discrete inf-sup condition and is equivalent to

Csta ≤ inf
vh∈Vh/{0}

sup
wh∈Vh/{0}

ah(vh,wh)
9vh 9 9wh9

.

● The coefficient Csta can depend on the mesh size h, but for convergence analysis it is
important to ensure Csta is independent of h.
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Discrete stability

● Lemma. (Discrete well-posedness) The discrete problem

Find uh ∈ Vh s.t. ah(uh,wh) = l(wh) ∀wh ∈ Vh,

is well-posed if and only if the discrete inf-sup condition (4) is satisfied.

Proof. The discrete inf-sup condition is the discrete counterpart of the inf-sup condition in the
BNB theorem.

Since Vh /⊂ V in a DG discretization the discrete inf-sup condition does not follow from the
inf-sup condition in the space V , and must be separately proven.

46 / 86



Discrete stability

● A sufficient condition for discrete stability (and easier to verify) is coercivity:

There is a Csta > 0 s.t. ∀vh ∈ Vh, Csta 9 vh92 ≤ ah(vh, vh). (5)

● Discrete coercivity implies the discrete inf-sup condition since ∀vh ∈ Vh/{0},

Csta 9 vh9 ≤ ah(vh, vh)
9vh9

≤ sup
wh∈Vh/{0}

ah(vh,wh)
9wh9

.

● Property (5) is the discrete counterpart of the Lax-Milgram lemma.
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Consistency

● A (rather strong) form of consistency requires that the exact solution u of the variational
equation satisfies the discrete problem

Find uh ∈ Vh s.t. ah(uh,wh) = l(wh) ∀wh ∈ Vh. (6)

This requires that ah(u,wh) has a meaning, which may not be possible since ah is only
defined on Vh × Vh.

● Assume that there is a subspace X∗ ⊂ X s.t. the exact solution belongs to X∗ and that the
bilinear form can be extended to X∗ × Vh.

● (Consistency) The discrete problem (6) is consistent if for the exact solution u ∈ X∗,

ah(u,wh) = l(wh) ∀wh ∈ Vh.
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Consistency

● Consistency is equivalent to the Galerkin orthogonality property

ah(u − uh,wh) = 0 ∀wh ∈ Vh. (7)

Proof. Substracting

ah(u,wh) = lh(wh) wh ∈ Vh,

ah(uh,wh) = lh(wh) wh ∈ Vh,

and using the linearity of ah gives (7).
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Boundedness

● Define the vector space

X∗h ∶= X∗ + Vh

with X∗ ⊂ X the space for the exact solution and Vh the discrete space.

The approximation error then is u − uh ∈ X∗h.

● Assume that the discrete norm 9 ⋅9 can be extended to X∗h.

For many problems to prove boundedness in the space X∗h × Vh and we need to define also
a norm 9 ⋅9∗ on X∗h s.t.

∀v ∈ X∗h, 9v9 ≤ 9v9∗

50 / 86



Boundedness

● (Boundedness) A discrete bilinear form ah is bounded in X∗h × Vh if there is Cbnd > 0 s.t.

∀(v ,w) ∈ X∗h × Vh, ∣ah(v ,w)∣ ≤ Cbnd 9 v 9∗ 9w 9 .

We assume that Cbnd is independent of h.
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Error estimate

● Theorem (Abstract error estimate) Let u solve

Find u ∈ X s.t . a(u,w) = (f ,w)L2(Ω)
∀w ∈ Y

with f ∈ L2(Ω). Let uh solve

Find uh ∈ Vh s.t . ah(uh,wh) = (f ,wh)L2(Ω)
∀wh ∈ Vh.

Let X∗ ⊂ X and assume u ∈ X∗. Set X∗h = X∗ + Vh and assume that the bilinear form ah can
be extended to X∗h × Vh.

Let 9 ⋅9 and 9 ⋅9∗ be two norms defined on X∗h s.t. ∀v ∈ X∗h, 9v9 ≤ 9v9∗.

Assume discrete stability, consistency and boundedness. Then the following error estimate
holds true

9u − uh9 ≤ inf
yh∈Vh

9u − yh9∗,

with C = 1 +C−1
staCbnd .
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Error estimate

● Proof. Let yh ∈ Vh. Use the discrete stability and consistence, then

9uh − yh9 ≤ C−1
sta sup

wh∈Vh/{0}

ah(uh − yh,wh)
9wh9

(discrete stability)

≤ C−1
sta sup

wh∈Vh/{0}

ah(u − yh,wh)
9wh9

(orthogonality)

≤ C−1
staCbnd sup

wh∈Vh/{0}

9u − yh 9∗ 9wh9
9wh9

boundedness)

= C−1
staCbnd 9 u − yh 9∗ .
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Error estimate

● Next, use the triangle inequality and the fact that

9u − yh9 ≤ 9u − yh9∗

Then

9u − uh9 ≤ 9u − yh 9 +9 uh − yh9

≤ 9u − yh 9∗ +C−1
staCbnd 9 u − yh9∗

≤ (1 +C−1
staCbnd) inf

yh∈Vh
9u − yh9∗,

since yh ∈ Vh is arbitrary.

54 / 86



Admissible meshes

● Consider a mesh sequence TH ∶= (Th)h∈H.

H denotes a countable subset of R>0 ∶= {x ∈ R ∣ x > 0} having 0 as only accumulation point.

● (Matching simplicial mesh) A mesh Th is a matching simplicial mesh if it is a simplicial mesh
and if for any element T ∈ Th with vertices {a0,⋯,ad}, the set ∂T ∩ ∂T ′ for any
T ′ ∈ Th,T ′ ≠ T is the convex hull of a (possibly empty) subset of {a0,⋯,ad}.

For instance in 2D, the set ∂T ∩ ∂T ′ for two distinct elements of a matching simplicial mesh
is either a common vertex or common edge.
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Simplicial submesh

● (Matching simplicial submesh) Let Th be a general polyhedral mesh. Then Ch is a matching
simplicial submesh of Th if

i) Ch is a matching simplicial mesh.

ii) For all T ′ ∈ Ch, there is only one T ∈ Th s.t. T ′ ⊂ T .

iii) For all F ′ ∈ Fh, which is the set collecting the mesh faces of Ch, there is at most one
F ∈ Fh s.t. F ′ ⊂ F .

The simplices in Ch are called subelements. The mesh faces in Fh are called subfaces.

Define for all T ∈ Th the sets

CT ∶= {T ′ ∈ Ch ∣ T ′ ⊂ T},

FT ∶= {F ′ ∈ Fh ∣ F ′ ⊂ ∂T},

∀F ∈ Fh ∶ FF ∶= {F ′ ∈ Fh ∣ F ′ ⊂ F}.
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Shape and contact regularity

● A mesh sequence TH is shape and contact regular if ∀h ∈ H, Th admits a matching
simplicial submesh Ch s.t.

i) The mesh sequence CH is shape regular, namely ∃ρ1 > 0, independent of h, s.t.
∀T ′ ∈ Ch

ρ1hT ′ ≤ rT ′ ,

where hT ′ is the diameter of T ′ and rT ′ the radius of the largest ball inscribed in T ′.

ii) ∃ρ2 > 0, independent of h, s.t. ∀T ∈ Th and ∀T ′ ∈ Ch

ρ2hT ≤ hT ′ .

The parameters ρ1 and ρ2 are called mesh regularity parameters and are denoted as ρ.

If Th itself is matching and simplicial, then Ch = Th and the only requirement is shape
regularity, ρ1 > 0, independent of h.
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Geometric properties of the mesh

● Lemma (Bound on card(CT )). Let TH be a shape- and contact -regular mesh sequence.

Then, for all h ∈ H and all T ∈ Th, card(CT ) is bounded uniformly in h.

Proof. Let ∣ ⋅ ∣d denote the d-dimensional Haussdorff measure and let Bd be the unit ball in
Rd . Then,

hd
T ≥ ∣T ∣d = ∑

T ′∈CT

∣T ′∣d ≥ ∑
T ′∈CT

∣Bd ∣d rd
T ′ ≥ ∑

T ′∈CT

∣Bd ∣d ρd
1 hd

T ′

≥ ∑
T ′∈CT

∣Bd ∣d ρd
1ρ

d
2 hd

T

≥ ∣Bd ∣d ρd
1ρ

d
2 card(CT )hd

T ,

hence

card(CT ) ≤ 1
∣Bd ∣d ρd

1ρ
d
2

.
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Geometric properties of the mesh

● Lemma. (Bound on card(FT ), card(FT ), N∂ and card(FF )) Let TH be a shape- and
contact-regular mesh sequence with parameter ρ.

Then, for all h ∈ H and ∀T ∈ Th, card(FT ), card(FT ), and N∂ are bounded uniformly in h.

In addition, for all F ∈ Fh, card(FF ) is bounded uniformly in h.

Proof. Observe that

card(FT ) ≤ card(FT ) ≤ (d + 1)card (CT ),

where in the last inequality we used the fact that a simplicial element has d + 1 faces.

Since card(CT ) is uniformly bounded in h, then also card(FT ) and card(FT ) are uniformly
bounded in h. Hence,

N∂ = max
T∈Th

card(FT )

is also bounded in h. Finally, take T ∈ Th s.t. F ∈ FT , use card(FF ) ≤ card(CT ).
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Geometric properties of the mesh

● Lemma. (Lower bound on face diameters). Let TH be a shape- and contact-regular mesh
sequence with parameter ρ.

Then for all h ∈ H, all T ∈ Th and all F ∈ FT ,

δF ≥ ρ1ρ2hT ,

where δF is the diameter of F .

Proof. Let T ∈ Th, F ∈ FT . Then, take an F ′ ∈ FF and denote by T ′ ∈ CT the simplex to
which the subface F ′ belongs. Then

δF ≥ δF ′ ≥ rT ′ ≥ ρ1hT ′ ≥ ρ1ρ2hT .
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Inverse and trace inequalities

● Lemma. (Inverse inequality) Let TH be a shape- and contact regular mesh sequence with
parameter ρ.

Then, for all h ∈ H and all vh ∈ Pk
d(Th) and all T ∈ Th,

∥∇vh∥[L2(T)]d ≤ Cinv h−1
T ∥vh∥L2(T))

,

where Cinv only depends on ρ, d and k .

Proof. Let vh ∈ Pk
d(Th), T ∈ Th. For all T ′ ∈ CT , the restriction vh ∣T ′ ∈ Pk

d(T ′).

Use the inverse inequality on simplices, see e.g. Brenner & Scott, Math. Theory. of FEM or
Ern & Guermond, Theory and Practice FEM,

∥∇vh∥[L2(T ′)]d ≤ Cinv,sh−1
T ′ ∥vh∥L2(T ′),

where Cinv,s only depends on ρ1, d and k .
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Inverse and trace inequalities

Using the shape- and contact regularity of the mesh, namely

∃ρ2 > 0 s.t. ρ2hT ≤ hT ′ , hence
1

hT ′
≤ 1
ρ2hT

,

gives

∥∇vh∥[L2(T ′)]d ≤ Cinv,sρ
−1
2 h−1

T ∥vh∥[L2(T ′)]d

Squaring the inequality and summing over all T ′ ∈ CT proves the result.
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Inverse and trace inequalities

● Lemma. (Discrete trace inequality) Let TH be a shape- and contact regular mesh sequence
with parameter ρ.

Then, for all h ∈ H, all vh ∈ Pk
d(Th), all T ∈ Th and all F ∈ FT ,

h
1
2
T ∥vh∥L2(F)

≤ Ctr ∥vh∥L2(T)
,

where Ctr only depends on ρ, d , and k .
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Inverse and trace inequalities

● Proof. Let vh ∈ Pk
d(Th), let T ∈ Th,F ∈ FT . First assume that Th is a matching simplicial

mesh.

Let T̂ be the unit simplex in Rd , and let FT be the bijective map such that FT (T̂) = T .

Let F̂ be any face of T̂ . Since the unit sphere in Pk
d(T̂) for the L2(T̂)-norm is a compact set

(Pk
d is finite dimensional), there is a Ĉd,k(F̂), only depending on d , k and F̂ s.t. ∀v̂ ∈ Pk

d(T̂)

∥v̂∥L2(F̂)
≤ Ĉd,k(F̂)∥v̂∥L2(T̂)

. (8)

Applying inequality (8) now to the function v̂ = vh ∣T ○ F−1
T , which is in Pk

d(T̂), gives

∣F ∣−
1
2

d−1∥vh∥L2(F)
≤ Ĉd,k ∣T ∣−

1
2

d ∥vh∥L2(T)
.
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Inverse and trace inequalities

Note,
∣T ∣d

∣F ∣d−1
= Vol(T)

Area(F)
=

hT ,F

d
≥ 1

d
rT ≥ 1

d
ρ1hT , (9)

where hT ,F denotes the distance of the vertex opposite to F to that face, and rT is the radius of
the largest ball inscribed in T . Hence,

∣F ∣−
1
2

d−1∥vh∥L2(F)
≤ Ĉd,k ∣T ∣−

1
2

d ∥vh∥L2(T)

is equal to

( ∣T ∣d
∣F ∣d−1

)
1
2
∥vh∥L2(F)

≤ Ĉd,k∥vh∥L2(T)

and finally using (9) we obtain

h
1
2
T ∥vh∥L2(F)

≤ Ctr,s∥vh∥L2(T)
,

with Ctr,s = d
1
2 ρ

−
1
2

1 Ĉd,k only depending on ρ, d and k .
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Inverse and trace inequalities

● General mesh.

For each F ′ ∈ FF , let T ′ denote the simplex in CT of which F ′ is a face.

Since the restriction vh ∣T ′ ∈ Pk
d(T ′), the discrete trace inequality yields

h
1
2
T ′∥vh∥L2(F ′) ≤ Ctr,s∥vh∥L2(T ′) ≤ Ctr,s∥vh∥L2(T)

.

This gives

( ∑
F ′∈FF

hT ′∥vh∥2
L2(F ′))

1
2 ≤ Ctr,s(card(FF ))

1
2 ∥vh∥L2(T)

since hT ′ ≥ ρ2hT and card(FF ) ≤ (d + 1)card(CT ) is uniformly bounded.
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L2-norm transformation rules for tetrahedron

● A. Consider a tetrahedron K ⊂ R3 with vertices {x0,⋯, x3}.

Define the mapping FT (T̂) = T , with T̂ the reference tetrahedron with vertices
{(0,0,0), (1,0,0), (0,1,0), (0,0,1)}, and for x ∈ T , x̂ ∈ T̂ , we have the relation

x = BT x̂ + x0,

with Jacobian matrix

BT = ∂x
∂x̂

=
⎛
⎜
⎝

x1 − x0 x2 − x0 x3 − x0
y1 − y0 y2 − y0 y3 − y0
z1 − z0 z2 − z0 z3 − z0

⎞
⎟
⎠

and

det BT = Vol(T)
Vol(T̂)

.
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L2-norm transformation rules for tetrahedron

● Consider the L2(T)-norm:

∥v∥L2(T)
= (∫

T
∣v(x)∣2d3x)

1
2

= (∫
T̂
∣v̂(x̂)∣2 ∣det BT ∣d3x̂)

1
2 (with v̂(x̂) = v(FT (x̂)))

= (Vol(T)
Vol(T̂)

)
1
2
(∫

T̂
∣v̂(x̂)∣2d3x̂)

1
2 since det BT is constant

= (Vol(T)
Vol(T̂)

)
1
2
∥v̂∥L2(T̂)

,

or equivalently

∥v̂∥L2(T̂)
= (Vol(T)

Vol(T̂)
)
−

1
2
∥v∥L2(T)

.
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L2-norm transformation rules for tetrahedron

● B. Given a tetrahedron T ⊂ R3. Consider a face F ⊂ ∂T with vertices {x0, x1, x2}.

Define the mapping FF (F̂) = F , with F̂ the reference triangle with vertices
{(0,0), (1,0), (0,1)}, and for x ∈ F , x̂ ∈ F̂ , we have the relation

x = (x1 − x0)x̂ + (x2 − x0)ŷ + x0.
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L2-norm transformation rules for tetrahedron

● Consider the L2(F)-norm:

∥v∥L2(F)
= (∫

F
∣v(x)∣2dS)

1
2

= (∫
F̂
∣v(FF (x̂))∣2 ∣∂FF

∂x̂
× ∂FF

∂ŷ
∣dx̂dŷ)

1
2

= ∣(x1 − x0) × (x2 − x0)∣
1
2 (∫

F̂
∣v̂(x̂)∣2 dx̂dŷ)

1
2

= ( Area(F)
Area(F̂)

)
1
2
∥v̂∥L2(F̂)

since

∣(x1 − x0) × (x2 − x0)∣ =
Area(F)
Area(F̂)

.
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L2-norm transformation rules for tetrahedron

● The estimate

∥v̂h∥L2(F̂)
≤ Ĉ′

d,k∥v̂h∥L2(T̂)

is thus equal to

(Area(F)
Area(F̂)

)
−

1
2
∥vh∥L2(F)

≤ Ĉ′

d,k(F̂)(Vol(T)
Vol(T̂)

)
−

1
2
∥vh∥L2(T)

or equivalently,

∣F ∣−
1
2

d−1∥vh∥L2(F)
≤ Ĉd,k ∣T ∣−

1
2

d ∥vh∥L2(T)
.
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Continuous trace inequality

● Lemma. (Continuous trace inequality) Let TH be a shape- and contact-regular mesh
sequence.

Then for all h ∈ H, all v ∈ H1(Th) and all T ∈ Th, and all F ∈ FT ,

∥v∥2
L2(F)

≤ Ccti(2∥∇v∥
[L2(T)]d + dh−1

T ∥v∥L2(T)
)∥v∥L2(T)

,

with Ccti = ρ−1 if Th is a matching simplicial mesh and Ccti = (1 + d)(ρ1ρ2)−1 otherwise.
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Continuous trace inequality

● Proof. Let v ∈ H1(Th) and F ∈ FT . First, assume T is a simplex with vertices {x0,⋯, x3} and
consider the Rd -valued function

σF = ∣F ∣d−1

d ∣T ∣d
(x − aF ),

where aF is the vertex x0 of T opposite to face F , which has vertices {x1, x2, x3}.

Note, σT is proportional to the lowest order Raviart-Thomas-Nédélec shape function in T .

At face F we have the normal vector

nT = (x1 − x3) × (x2 − x3)
∣(x1 − x3) × (x2 − x3)∣

,

which gives

nT = Area(F̂)
Area(F)

(x1 − x3) × (x2 − x3) =
∣F̂ ∣d−1

∣F ∣d−1
(x1 − x3) × (x2 − x3).
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Continuous trace inequality

With aF = x0 we have that for x − x0 ∈ F ,

x − aF = x − x0 = (x1 − x3)x̂ + (x2 − x3)ŷ + x3 − x0.

Then

nT ⋅ σF = ∣F̂ ∣d−1

∣F ∣d−1

∣F ∣d−1

d ∣T ∣d
((x1 − x3) × (x2 − x3)) ⋅ ((x1 − x3)ŷ + (x2 − x3)ŷ + x3 − x0)

= ∣F̂ ∣d−1

d ∣T ∣d
((x3 − x1) × (x3 − x2)) ⋅ (x3 − x0)

= ∣F̂ ∣d−1

d ∣T ∣d
det ∣x3 − x0, x3 − x1, x3 − x2∣

= ∣F̂ ∣d−1

d ∣T ∣d
∣T ∣d
∣T̂ ∣d

= 1 since ∣F̂ ∣d−1 =
1
2

, ∣T̂ ∣d = 1
6

for d = 3.

Note, for the other faces F ′ of T , we have nT ⋅ σF ′ = 0 since σF ′ is parallel to the face F ′ ≠ F .
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Continuous trace inequality

● Using the divergence theorem we obtain

∥v∥2
L2(F)

= ∫
F
∣v ∣2 = ∫

∂T
∣v ∣2(σF ⋅ nT ) (since σF ⋅ nT = 1 at F and

σF ⋅ nT = 0 at ∂T /F )

= ∫
T
∇ ⋅ (∣v ∣2σF )

= ∫
T
(2vσF ⋅ ∇v + ∣v ∣2∇ ⋅ σF ).

Hence

∥v∥2
L2(F)

≤ 2∥v∥L2(T)
∥σF ⋅ ∇v∥L2(T)

+ ∥∇ ⋅ σF ∥L∞(T)
∥v∥2

L2(T)
.
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Continuous trace inequality

Since

∥σF ∥[L∞(T)]d ≤ ∣F ∣d−1hT

d ∣T ∣d
, because aF is the vertex opposite to F ,

∇ ⋅ σF = ∣F ∣d−1

∣T ∣d
,

∥σF ⋅ ∇v∥L2(T)
≤ ∥σF ∥[L∞(T)]d ∥∇v∥

[L2(T)]d ≤ ∣F ∣d−1hT

d ∣T ∣d
∥∇v∥

[L2(T)]d ,

we obtain the estimate

∥v∥2
L2(F)

≤ 2∥v∥L2(T)
∥σF ⋅ ∇v∥L2(T)

+∇ ⋅ σF ∥v∥2
L2(T)

≤ ∣F ∣d−1hT

d ∣T ∣d
(2∥∇v∥

[L2(T)]d + dh−1
T ∥v∥L2(T)

)∥v∥L2(T)

≤ 1
ρ1

(2∥∇v∥
[L2(T)]d + dh−1

T ∥v∥L2(T)
)∥v∥L2(T)

, using
∣F ∣d−1

∣T ∣d
≤ d
ρ1hT

.
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Continuous trace inequality

● If Th is a general mesh use the subdivision into a matching simplicial mesh.

For each F ′ ∈ FF , let T ′ denote the simplex in CT of which F ′ is a face.

Applying the continuous trace inequality for F ′ and T ′ yields,

∥v∥2
L2(F ′) ≤

1
ρ1

(2∥∇v∥
[L2(T ′)]d + dh−1

T ′ ∥v∥L2(T ′))∥v∥L2(T ′).

From the mesh regularity we have hT ′ ≥ ρ2hT and ρ2 ≤ 1, which gives 1
hT ′

≤ 1
ρ2hT

, and

∥v∥2
L2(F ′) ≤

1
ρ1ρ2

(2∥∇v∥
[L2(T ′)]d + dh−1

T ∥v∥L2(T ′))∥v∥L2(T ′).

Hence, after summing F ′ ∈ FF and using the fact that T ′ ∈ CT appears at most (d + 1)-times
gives

∥v∥2
L2(F)

≤ d + 1
ρ1ρ2

(2∥∇v∥
[L2(T)]d + dh−1

T ∥v∥L2(T)
)∥v∥L2(T)

.
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Comparison of ∥ ⋅ ∥Lp(T)- and ∥ ⋅ ∥Lq(T)-norms

● Lemma. (Comparison of ∥ ⋅ ∥Lp(T)
- and ∥ ⋅ ∥Lq(T)

-norms). Let TH be a shape- and
contact-regular mesh sequence with parameter ρ.

Let 1 ≤ p,q,≤ ∞ be two real numbers. Then for all h ∈ H, all vh ∈ Pk
d(Th) and all T ∈ Th,

∥vh∥Lp(T)
≤ Cinv,p,qh

d( 1
p −

1
q )

T ∥vh∥Lq(T)

where Cinv,p,q only depends on ρ,d , k ,p and q.
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Comparison of ∥ ⋅ ∥Lp(T)- and ∥ ⋅ ∥Lq(T)-norms

● Proof. Since vh ∈ Pk
d(Th), we can use that all norms are equivalent in a finite dimensional

space,

∥v̂h∥Lp(T̂)
≤ Ĉ∥v̂h∥Lq(T̂)

⇔(∫
T
∣vh(x)∣p 1

det BT
dx)

1
p ≤ Ĉ(∫

T
∣vh(x)∣q 1

det BT
dx)

1
q

⇔(Vol(T̂)
Vol(T)

)
1
p

∥vh∥Lp(T)
≤ Ĉ (Vol(T̂)

Vol(T)
)

1
q

∥vh∥Lq(T)

⇔∥vh∥Lp(T)
≤ Ĉ (Vol(T)

Vol(T̂)
)

1
p −

1
q
∥vh∥Lq(T)

⇒∥vh∥Lp(T)
≤ Cinv,p,qh

d( 1
p −

1
q )

T ∥vh∥Lq(T)
.
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Discrete trace inequality in Lp
(F)

● Lemma. (Discrete trace inequality in Lp(F)). Let TH be a shape- and contact-regular mesh
sequence with parameter ρ.

Let 1 ≤ p,q,≤ ∞ be two real numbers. Then for all h ∈ H, all vh ∈ Pk
d(Th) and all T ∈ Th, and

all F ∈ TT ,

h
1
p
T ∥vh∥Lp(F)

≤ Ctr,p∥vh∥Lp(T)
,

where Ctr,p only depends on ρ, d , k and p.
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Discrete trace inequality in Lp
(F)

● Proof. Combine the discrete trace inequality with the relation between Lpand Lq-norms, then

h
1
p
T ∥vh∥Lp(F)

≤ Cinv,p,2h
1
p
T δ

(d−1)( 1
p −

1
2 )

F ∥vh∥L2(F)
(use relation between Lp and Lq norms

with q = 2 for a face F with dim(F) = d − 1)

≤ Cinv,p,2Ctr h
1
p −

1
2

T δ
(d−1)( 1

p −
1
2 )

F ∥vh∥L2(T)
(use discrete trace inequality)

≤ Cinv,p,2Ctr Cinv,2,ph
1
p −

1
2

T δ
(d−1)( 1

p −
1
2 )

F h
d( 1

2−
1
p )

T ∥vh∥Lp(T)

(use relation between Lpand Lq-norms)

≤ Ctr,p∥vh∥Lp(T)
using δF ≅ hT .
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Polynomial approximation

Since uh ∈ Vh we obtain from the error bound for the variational equation the relation

inf
yh∈Vh

9u − yh9 ≤ 9u − uh9 ≤ C inf
yh∈Vh

9u − yh9∗, (10)

hence we need a bound for the approximation error on the righthand side of (10).

The optimality of the error estimate is classified as:

● (Optimality, quasi-optimality and suboptimality of the error estimate).

i) Optimal, if 9 ⋅9 = 9 ⋅9∗.

ii) Quasi-optimal, if the norms 9 ⋅9 and 9 ⋅9∗ are different, but the lower and upper
bounds in (10) converge for smooth u at the same rate as h → 0.

iii) Suboptimal, if the upper bound in (10) converges at a slower rate than the lower bound.
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Polynomial approximation

● (Optimal polynomial approximation). The mesh sequence TH has optimal polynomial
approximation properties if for all h ∈ H, all T ∈ Th and all polynomial degrees k , there is a
linear interpolation operator Ik

T ∶ L2(T) → Pk
d(T) s.t. ∀s ∈ {0,⋯, k + 1} and all v ∈ Hs(T)

there holds

∣v − Ik
T v ∣Hm(T)

≤ Capphs−m
T ∣v ∣Hs(T)

∀m ∈ {0, ..., s},

where Capp is independent of both T and h.

● (Admissible mesh sequences). A mesh sequence TH is admissible if it is shape- and
contact-regular, and if it has optimal polynomial approximation properties.

83 / 86



Polynomial approximation

● Lemma. (Optimality of L2-orthogonal projection). Let TH be an admissible mesh sequence.

Let πh be the L2-orthogonal projection onto Pk
d . Then ∀s ∈ {0,⋯, k + 1} and all v ∈ Hs(T),

we have

∣v − πhv ∣Hm(T)
≤ C′

apphs−m
T ∣v ∣Hs(T)

∀m ∈ {0,⋯, s}.

where Capp is independent of both T and h.
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Polynomial approximation

Proof. For m = 0, we have since πh ∶ L2(T) → Pk
d is the L2-orthogonal projection that

∥v − πhv∥L2(T)
≤ ∥v − Ik

T v∥L2(Ω)
≤ Capphs

T ∣v ∣Hs(T)

For m ≥ 1, use m-times the inverse inequality, together with the triangle inequality

∣v − πhv ∣Hm(T)
≤ ∣v − Ik

T v ∣Hm(T)
+ ∣Ik

T v − πhv ∣Hm(T)
(triangle inequality)

≤ ∣v − Ik
T v ∣Hm(T)

+C′h−m
T ∥Ik

T v − πhv∥L2(T)
(use m-times inverse inequality)

≤ ∣v − Ik
T v ∣Hm(T)

+C′h−m
T ∥v − Ik

T v∥L2(T)
+C′h−m

T ∥v − πhv∥L2(T)

≤ ∣v − Ik
T v ∣Hm(T)

+ 2C′h−m
T ∥v − Ik

T v∥L2(T)
(using m = 0 case)

≤ C′

apphs−m
T ∣v ∣Hs(T)

(use optimal polynomial approximation error).
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Polynomial approximation

● Lemma. (Polynomial approximation on mesh faces). Let TH be an admissible mesh
sequence.

Let πh be the L2-orthogonal projection onto Pk
d . Then for all s ∈ {1,⋯, k + 1} and all

v ∈ Hs(T), we have

∥v − πhv∥L2(F)
≤ C′′

apph
s− 1

2
T ∣v ∣Hs(T)

,

and if s ≥ 2,

∥∇(v − πhv)∣T ⋅ nT ∥L2(F)
≤ C′′

apph
s− 3

2
T ∣v ∣Hs(T)

,

where C′

app, C′′

app are independent of both T and h.
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