Discontinuous Galerkin Methods

Jaap van der Vegt

Numerical Analysis and Computational Science Group Department of Applied Mathematics Universiteit Twente

Enschede, The Netherlands

Part 1.

USTC Summer School, September 4 - September 8, 2023

- Discontinuous Galerkin (DG) methods are nowadays one of the main finite element methods to solve partial differential equations.
- The key feature of DG methods is the use of discontinuous test and trial spaces. This results in a local element wise discretization and a discontinuous approximation at element faces or edges.

Introduction

Benefits of discontinuous Galerkin methods:

- DG methods provide higher order accurate, element-wise conservative finite element discretizations of partial differential equations with excellent stability and convergence properties.
- The local, element based discretization in DG methods provides great flexibility to design:
 - solution adaptive numerical discretizations using local mesh refinement (*h*-adaptation) and/or local adjustment of the polynomial order (*p*-refinement).
 - efficient parallel finite element discretizations due to the minimal element connectivity. In general, only nearest neighboring elements are connected at element faces or edges.
 - DG discretizations of time-dependent problems generally result in a block-diagonal mass matrix, which is very beneficial when using an explicit time integration method.
- DG methods have a well established mathematical theory to analyse the convergence, stability and accuracy of the finite element discretization.

Benefits of discontinuous Galerkin methods:

 Discontinuous Galerkin discretizations generally are more complicated than standard conforming finite element discretizations and also their mathematical analysis is more involved. To main goals of these lectures are:

- To discuss the basic mathematical techniques necessary to understand the mathematical properties of DG discretizations.
- To use these tools to study convergence, stability and accuracy of discontinuous Galerkin discretizations of hyperbolic and elliptic model problems.

These lectures are mainly based on:

- D.A. Di Pietro, A. Ern, Mathematical aspects of discontinuous Galerkin methods, Springer, 2012, ISBN 978-3-642-22979-4.
- A. Ern, J.-L. Guermond, Theory and practice of finite elements, Springer, 2004, ISBN 0-387-20574-8.
- S.C. Brenner, L.R. Scott, The mathematical theory of finite element methods, 3rd edition, Springer, 2008, ISBN 978-0-387-75933-3.

Discrete setting

- The domain Ω is a bounded, connected subset of \mathbb{R}^d , $d \ge 1$, with Lipschitz continuous boundary $\partial \Omega$ that has a unit outward normal vector *n*.
- For simplicity we will also assume that Ω is a polyhedron.
- Polyhedron:
 - P is a polyhedron in ℝ^d if P is an open connected, bounded subset of ℝ^d s.t. its boundary ∂P is a finite union of parts of hyperplanes.
 - Moreover, each point in the interior of *P* is assumed to lie only on one side of the hyperplane boundary.
 - Each polyhedron can be subdivided into a finite number of simplicial elements.

Discrete setting

- A simplex is defined as:
 - Given a family {a₀, ..., a_d} of d + 1 points in ℝ^d s.t. the vectors {a₁ a₀, ..., a_d a₀} are linearly independent.
 - The interior of the convex hull of $\{a_0, \dots, a_d\}$ is called a non-degenerate simplex in \mathbb{R}^d .
- The points $\{a_0, \dots, a_d\}$ are the vertices of the simplex.
- In \mathbb{R}^d , for d = 1, 2, 3 simplices are, respectively, a line segment, a triangle, and a tetrahedron.
- Unit or reference simplex

$$S_d := \{(x_1, \dots, x_d) \in \mathbb{R}^d \mid x_i > 0 \ \forall i \in \{1, \dots, d\} \text{ and } x_1 + \dots + x_d < 1\}$$

Simplex faces and mesh:

• Let *S* be a non-degenerate simplex with vertices $\{a_0, \dots, a_d\}$.

For each $i \in \{0, \dots, d\}$ the convex hull of $\{a_0, \dots, a_d\} \setminus \{a_i\}$ is a face of simplex S.

 A simplicial mesh T of the (polyhedral) domain Ω is a finite collection of disjoint non-degenerate simplices T = {T} forming a partition of Ω,

$$\overline{\Omega} = \cup_{T \in \mathcal{T}} \overline{T},$$

with each $T \in T$ a mesh element.

The outward unit normal vector at ∂T is denoted n_T .

General mesh:

- A general mesh T of a domain Ω is a finite collection of disjoint polyhedra T = {T} forming a partition of Ω.
- Note, a general mesh allows hanging nodes.
- Let T be a (general) mesh of Ω . For all $T \in T$, h_T denotes the diameter of T and the mesh size is defined as

$$h := \max_{T \in \mathcal{T}} h_T.$$

• T_h is a mesh T with mesh size h.

Mesh faces:

- Let *T_h* be a mesh of Ω. A (closed) subset *F* of Ω is a mesh face if *F* has a positive (*d* − 1)-dimensional Hausdorff measure and if either one of the two conditions is satisfied:
 - there are distinct mesh elements T_1 and T_2 s.t. $F = \partial T_1 \cap \partial T_2$, then F is called an interface;
 - there is a $T \in \mathcal{T}_h$ s.t. $F = \partial T \cap \partial \Omega$, then *F* is called a boundary face.
- Interfaces are collected in the set \mathcal{F}_h^i , boundary faces in the set \mathcal{F}_h^b , hence

$$\mathcal{F}_h \coloneqq \mathcal{F}_h^i \cup \mathcal{F}_h^b.$$

Discrete setting

- The set *F_T* := {*F* ∈ *F_h* | *F* ⊂ ∂*T*} collects the mesh faces composing the boundary of element *T*.
- The maximum number of mesh faces composing the boundary of mesh elements is

 $N_{\partial} \coloneqq \max_{T \in \mathcal{T}_h} \operatorname{card}(\mathcal{F}_T).$

• For any mesh face $F \in \mathcal{F}_h$ define the set

$$\mathcal{T}_F \coloneqq \{T \in \mathcal{T}_h \mid F \subset \partial T\}.$$

• Note \mathcal{T}_F consists of two mesh elements if $F \in \mathcal{F}_h^i$ and one mesh element if $F \in \mathcal{F}_h^b$.

Jumps and Averages

- Let v be a scalar valued function on Ω, sufficiently smooth to admit ∀F ∈ Fⁱ_h a possibly two-valued trace.
- Denote with $v|_T$ for all $T \in \mathcal{T}_h$ the restriction of v to T with trace at ∂T .
- For all F ∈ 𝒯ⁱ_h and a.e. x ∈ F the average of v is defined as

$$\{\!\{v\}\!\}_F(x) \coloneqq \frac{1}{2} \left(v |_{T_1}(x) + v |_{T_2}(x) \right),\$$

and the jump of v as

$$[[v]]_{F}(x) := v|_{T_{1}}(x) - v|_{T_{2}}(x).$$

• If v is a vector then the average and jump operators act component wise on v.

- For all $F \in \mathcal{F}_h$ and a.e. $x \in F$ the unit normal n_F to F at x is defined as
 - *n_F* = *n<sub>T₁*, the normal vector to *F* at *x* pointing from element *T₁* to element *T₂* if *F* ∈ *Fⁱ_h* with *F* = ∂*T₁* ∩ ∂*T₂*.
 </sub>

At
$$F \in \mathcal{F}_h^i$$
 we have $n_{T_2} = -n_{T_1}$.

The orientation of $n_F = n_{T_1}$ is arbitrary, depending on the choice of T_1 and T_2 , but this orientation must be kept fixed.

• *n*, the outward normal to Ω at *x* if $F \in \mathcal{F}_h^b$.

• Consider functions $v : \Omega \subset \mathbb{R}^d \to \mathbb{R}, d \ge 1$, that are Lebesgue measurable.

Let $1 \le p \le \infty$ be a real number and define the norms

$$\|v\|_{L^p(\Omega)} := \left(\int_{\Omega} |v|^p\right)^{\frac{1}{p}} \qquad 1 \le p < \infty,$$

$$\begin{split} \|v\|_{L^{\infty}(\Omega)} &:= \sup \operatorname{ess}\{|v(x)| \mid \text{for almost every } x \in \Omega\} \\ &= \inf\{M > 0 \mid |v(x)| \le M \text{ for almost every } x \in \Omega\}. \end{split}$$

Lebesgue spaces

• The Lebesgue space is defined as

```
L^{p}(\Omega) := \{ v \text{ is Lebesgue measurable } | ||v||_{L^{p}(\Omega)} < \infty \}
```

- The Lebesgue space with norm ||v||_{L^p(Ω)} < ∞ is a Banach space for all 1 ≤ p ≤ ∞.
- For all 1 ≤ p < ∞ the space C₀[∞](Ω) of infinitely differentiable functions with compact support is dense in L^p(Ω).
- For p = 2, the space $L^2(\Omega)$ is a Hilbert space, equipped with the scalar product

$$(\mathbf{v},\mathbf{w})_{L^2(\Omega)} \coloneqq \int_{\Omega} \mathbf{v} \mathbf{w}.$$

• Holder's inequality.

For all $1 \le p, q \le \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$ all $v \in L^p(\Omega)$ and all $w \in L^q(\Omega)$ there holds $vw \in L^1(\Omega)$ and

$$\int_{\Omega} \mathbf{v} \mathbf{w} \leq \|\mathbf{v}\|_{L^{p}(\Omega)} \|\mathbf{w}\|_{L^{q}(\Omega)}.$$

For p = q = 2 Holder's inequality becomes the Cauchy-Schwarz inequality.
 For all v, w ∈ L²(Ω), vw ∈ L¹(Ω) and

$$(v, w)_{L^{2}(\Omega)} \leq ||v||_{L^{2}(\Omega)} ||w||_{L^{2}(\Omega)}.$$

- Given a Cartesian basis in ℝ^d with coordinates (x₁,..., x_d), then ∂_i with i ∈ {1,..., d} denotes the distributional partial derivative with respect to x_i.
- For $\alpha \in \mathbb{N}^d$, then $\partial^{\alpha} v$ denotes the distributional or weak derivative $\partial_1^{\alpha_1} \cdots \partial_d^{\alpha_d} v$ of v with $\partial^{(0,\dots,0)} v = v$.

A function $f \in L^1_{loc}(\Omega)$ has a distributional or weak derivative $\partial^{\alpha} f$ provided there exists a function $g \in L^1_{loc}(\Omega)$ such that

$$\int_{\Omega} g(x)\phi(x)dx = (-1)^{|\alpha|} \int_{\Omega} f(x)\phi^{(\alpha)}dx \quad \forall \phi \in C_0^{\infty}(\Omega)$$

If such a *g* exists, then we define $\partial^{\alpha} f = g$.

Sobolev spaces

Example. Take d = 1, $\Omega = [-1, 1]$ and f(x) = 1 - |x|.

Then for $\phi \in C_0^{\infty}(\Omega)$, arbitrary, we have,

$$\int_{-1}^{1} f(x)\partial_{1}^{1}\phi(x)dx = \int_{-1}^{0} f(x)\partial_{1}^{1}\phi(x)dx + \int_{0}^{1} f(x)\partial_{1}^{1}\phi(x)dx$$
$$= -\int_{-1}^{0} (+1)\phi(x)dx + f\phi|_{-1}^{0} - \int_{0}^{1} (-1)\phi(x)dx + f\phi|_{0}^{1} \quad \text{(integration by parts)}$$
$$= -\left(\int_{-1}^{0} (+1)\phi(x)dx + \int_{0}^{1} (-1)\phi(x)dx\right) + (f\phi)(0-) - (f\phi)(0+)$$
$$(\text{since } \phi(-1) = \phi(1) = 0)$$

$$= -\int_{-1}^{1} g(x)\phi(x)dx \qquad (since f is continuous at x = 0),$$

with

$$g(x) = \begin{cases} 1 & x < 0, \\ -1 & x > 0. \end{cases}$$

The weak derivative $\partial_1^1 f(x)$ is then given by $\partial_1^1 f(x) = g(x)$.

Sobolev spaces

For 1 ≤ p ≤ ∞, p ∈ ℝ, define for all ξ ∈ ℝ^d, with ξ = (ξ₁, ..., ξ_d) in the Cartesian basis of ℝ^d, the norm

$$\begin{split} |\xi|_{\ell^p} &:= \left(\sum_{i=1}^d |\xi_i|^p\right)^{\frac{1}{p}}, \qquad 1 \le p < \infty, \\ |\xi|_{\ell^\infty} &:= \max_{1 \le i \le d} |\xi_i|. \end{split}$$

Sobolev spaces

Let $m \ge 0, 1 \le p \le \infty$. The Sobolev space $W^{m,p}(\Omega)$ is defined as

$$W^{m,p}(\Omega) \coloneqq \{ v \in L^p(\Omega) \mid \forall \alpha \in A^m_d, \ \partial^{\alpha} v \in L^p(\Omega) \}$$

where $A_p^m \coloneqq \{ \alpha \in \mathbb{N}^d \mid |\alpha|_{\ell^1} \le m \}.$

Note, $W^{0,p}(\Omega) = L^p(\Omega)$.

Sobolev spaces

The Sobolev spaces W^{m,p}(Ω) are a Banach space when equipped with the norm

$$\|v\|_{W^{m,p}(\Omega)} := \left(\sum_{\alpha \in A_{\alpha}^{m}} \|\partial^{\alpha}v\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}, \qquad 1 \le p < \infty,$$
$$\|v\|_{W^{m,\infty}(\Omega)} := \max_{\alpha \in A_{\alpha}^{m}} \|\partial^{\alpha}v\|_{L^{\infty}(\Omega)}.$$

Hilbert spaces

• For p = 2 we use the notation $H^m(\Omega) := W^{m,2}(\Omega)$, hence

$$H^{m}(\Omega) = \{ v \in L^{2}(\Omega) \mid \forall \alpha \in A_{d}^{m}, \ \partial^{\alpha} v \in L^{2}(\Omega) \}$$

• $H^m(\Omega)$ is a Hilbert space when equipped with the scalar product

$$(\mathbf{v}, \mathbf{w})_{H^m(\Omega)} \coloneqq \sum_{\alpha \in A^m_d} (\partial^{\alpha} \mathbf{v}, \partial^{\alpha} \mathbf{w})_{L^2(\Omega)}$$

resulting in the norm and semi-norm

$$\|v\|_{H^m(\Omega)} \coloneqq \Big(\sum_{\alpha \in A^m_d} \|\partial^{\alpha} v\|^2_{L^2(\Omega)}\Big)^{\frac{1}{2}}, \qquad |v|_{H^m(\Omega)} \coloneqq \Big(\sum_{\alpha \in \overline{A}^m_d} \|\partial^{\alpha} v\|^2_{L^2(\Omega)}\Big)^{\frac{1}{2}}.$$

Hilbert spaces

• For m = 1 we can consider the gradient $\nabla v = (\partial_1 v, \dots, \partial_d v)^T \in \mathbb{R}^d$. The norm on $W^{1,p}(\Omega)$ then is equal to

$$\|v\|_{W^{1,p}(\Omega)} = \left(\|v\|_{L^p(\Omega)}^{\rho} + \|\nabla v\|_{[L^p(\Omega)]^d}^{\rho}\right)^{\frac{1}{p}}, \qquad 1 \le \rho < \infty,$$

with

$$\|\nabla v\|_{[L^p(\Omega)]^d}^p \coloneqq \Big(\int_\Omega |\nabla v|_{\ell^p}^p\Big)^{\frac{1}{p}} = \Big(\int_\Omega \sum_{i=1}^d |\partial_i v|^p\Big)^{\frac{1}{p}}.$$

• For *p* = 2 we have

$$(\mathbf{v},\mathbf{w})_{H^1(\Omega)} = (\mathbf{v},\mathbf{w})_{L^2(\Omega)} + (\nabla \mathbf{v},\nabla \mathbf{w})_{[L^2(\Omega]^d}.$$

Traces

- Boundary values of functions in the Sobolev space $W^{1,p}(\Omega)$ have a meaning as traces in $L^p(\partial\Omega)$.
- Trace inequalities:

For all $1 \le p \le \infty$ there is a constant *C* s.t.

$$\|v\|_{L^p(\partial\Omega)} \le C \|v\|_{L^p(\Omega)}^{1-\frac{1}{p}} \|v\|_{W^{1,p}(\Omega)}^{\frac{1}{p}}, \qquad \forall v \in W^{1,p}(\Omega)$$

For p = 2 this gives

$$\|\boldsymbol{v}\|_{L^{2}(\partial\Omega)} \leq C \|\boldsymbol{v}\|_{L^{2}(\Omega)}^{\frac{1}{2}} \|\boldsymbol{v}\|_{H^{1}(\Omega)}^{\frac{1}{2}}, \qquad \forall \boldsymbol{v} \in H^{1}(\Omega).$$

 We will also consider Hilbert-Sobolev spaces H^s(Ω), s ∈ ℝ, s > 0, e.g. functions in H^{1/2+ε}(Ω), ε > 0 have a trace in L²(Ω).

Polynomial spaces

• The space of polynomials \mathcal{P}_d^k of total degree at most k, with $k \ge 0$, integer, is defined as

$$\mathcal{P}_{d}^{k} \coloneqq \{ p \colon \mathbb{R}^{d} \ni x \mapsto p(x) \in \mathbb{R} \mid \exists (\gamma_{\alpha})_{\alpha \in A_{d}^{k}} \in \mathbb{R}^{\operatorname{card}(A_{d}^{k})} \text{ s.t. } p(x) = \sum_{\alpha \in A_{d}^{k}} \gamma_{\alpha} x^{\alpha} \},$$

with for $x = (x_1, \dots, x_d) \in \mathbb{R}^d$, $x^{\alpha} := \prod_{i=1}^d x_i^{\alpha_i}$ and

$$A_d^k = \{ \alpha \in \mathbb{N}^d \mid |\alpha|_{\ell^1} \leq k \}$$

• The dimension of \mathbb{P}_d^k is

$$\dim \left(\mathbb{P}_{d}^{k} \right) = \operatorname{card} \left(A_{d}^{k} \right) = \left(\begin{array}{c} k+d \\ k \end{array} \right) = \frac{(k+d)!}{k!d!}$$

Broken polynomial spaces

• The broken polynomial space $\mathbb{P}_d^k(\mathcal{T}_h)$ is defined as

$$\mathbb{P}^k_d(\mathcal{T}_h) \coloneqq \{ v \in L^2(\Omega) \mid \forall T \in \mathcal{T}_h, \ v|_T \in \mathbb{P}^k_d(T) \},$$

with $\mathbb{P}_{d}^{k}(T)$ spanned by the restriction to T of polynomials in \mathbb{P}_{d}^{k} .

• The dimension of $\mathbb{P}^k_d(\mathcal{T}_h)$ is

$$\dim(\mathbb{P}^k_d(\mathcal{T}_h)) = \operatorname{card}(\mathcal{T}_h) \times \dim(\mathbb{P}^k_d).$$

• Let T_h be a mesh in Ω . The broken Sobolev spaces are defined as

$$H^m(\mathcal{T}_h) \coloneqq \{ v \in L^2(\Omega) \mid \forall T \in \mathcal{T}_h, \ v|_T \in H^m(T) \},\$$

$$W^{m,p}(\mathcal{T}_h) \coloneqq \{ v \in L^p(\Omega) \mid \forall T \in \mathcal{T}_h, v \mid_T \in W^{m,p}(T) \},\$$

with $m \ge 0$, integer, $1 \le p \le \infty$ a real number.

• The continuous trace inequality gives $\forall v \in W^{1,p}(\mathcal{T}_h)$ and $\forall T \in \mathcal{T}_h$,

$$\|v\|_{L^{p}(\partial T)} \leq C \|v\|_{L^{p}(T)}^{1-\frac{1}{p}} \|v\|_{W^{1,p}(T)}^{\frac{1}{p}}$$

with for p = 2, $\forall v \in H^m(\mathcal{T}_h)$ and $\forall T \in \mathcal{T}_h$,

$$\|v\|_{L^{2}(\partial T)} \leq C \|v\|_{L^{p}(\Omega)}^{\frac{1}{2}} \|v\|_{H^{1}(T)}^{\frac{1}{2}}.$$

• The broken gradient $\nabla_h : W^{1,p}(\mathcal{T}_h) \to [L^p(\Omega)]^d$ is defined as

$$\forall T \in \mathcal{T}_h, \qquad (\nabla_h v) |_T \coloneqq \nabla(v|_T), \qquad \forall v \in W^{1,p}(\mathcal{T}_h).$$

Note, the subscript *h* will not be used if ∇_h is used inside an integral over a fixed mesh element $T \in \mathcal{T}_h$.

• Lemma 1. (Broken gradient on usual Sobolev spaces). Let $m \ge 0, 1 \le p \le \infty$. There holds $W^{m,p}(\Omega) \subset W^{m,p}(\mathcal{T}_h)$.

Moreover, $\forall v \in W^{1,p}(\Omega)$, $\nabla_h v = \nabla v$ in $[L^p(\Omega)]^d$.

Proof. Take m = 1. Let $v \in W^{1,p}(\Omega)$. For all $\Phi \in [C_0^{\infty}(T)]^d$ we can since $\Phi = 0$ at ∂T define the extension of Φ by zero as $E\Phi \in [C_0^{\infty}(\Omega)]^d$. Then

$$\begin{split} \int_{T} \nabla(\boldsymbol{v}|_{T}) \cdot \boldsymbol{\Phi} &= -\int_{T} \boldsymbol{v} (\nabla \cdot \boldsymbol{\Phi}) = -\int_{\Omega} \boldsymbol{v} (\nabla \cdot (\boldsymbol{E} \boldsymbol{\Phi})) \\ &= \int_{\Omega} \nabla \boldsymbol{v} \cdot \boldsymbol{E} \boldsymbol{\Phi} = \int_{T} (\nabla \boldsymbol{v})|_{T} \cdot \boldsymbol{\Phi}. \end{split}$$

Since Φ is arbitrary, this implies $\nabla(v|_T) = (\nabla v)|_T$.

Since $T \in T_h$ is arbitrary, using $(\nabla_h v)|_T := \nabla(v|_T)$, we obtain that $\nabla_h v = \nabla v$. Hence $v \in W^{1,p}(T_h)$.

The reverse inclusion, namely W^{m,p}(T_h) ⊂ W^{m,p}(Ω), is in general not true (except for m = 0) since functions in W^{m,p}(T_h) can have non-zero jumps at interfaces.

Lemma. (Characterization of W^{1,p}(Ω)). Let 1 ≤ p ≤ ∞. A function v ∈ W^{1,p}(T_h) belongs to W^{1,p}(Ω) if and only if

$$[[v]] = 0 \qquad \forall F \in \mathcal{F}_h^i.$$

Proof.

We will use for all $\Phi \in [C_0^{\infty}(\Omega)]^d$ the relation

$$\sum_{T \in \mathcal{T}_h} \int_{\partial T} v_T (\Phi \cdot n_T) = \sum_{F \in \mathcal{F}_h} \int_F [[\Phi \cdot n_F]] \{\!\!\{ v \}\!\!\} + \sum_{F \in \mathcal{F}_h^i} \int_F \{\!\!\{ \Phi \cdot n_T \}\!\!\} [[v]],$$

Using the fact that Φ is continuous across interfaces,

$$[[\Phi \cdot n_F]] = 0 \quad \text{and} \quad \{\!\!\{\Phi \cdot n_F\}\!\!\} = \Phi \cdot n_F \qquad \text{for } \forall F \in \mathcal{F}_h^i,$$

we obtain

$$\sum_{T \in \mathcal{T}_h} \int_{\partial T} v_T(\Phi \cdot n_T) = \sum_{F \in \mathcal{F}_h^i} \int_F (\Phi \cdot n_T)[[v]].$$

Let $v \in W^{1,p}(\mathcal{T}_h)$. Then $\forall \Phi \in [C_0^{\infty}(\Omega)]^d$, we obtain by integrating by parts element-wise that

$$\int_{\Omega} \nabla_{h} \mathbf{v} \cdot \mathbf{\Phi} = \sum_{T \in \mathcal{T}_{h}} \int_{T} \nabla(\mathbf{v}|_{T}) \cdot \mathbf{\Phi} = -\sum_{T \in \mathcal{T}_{h}} \int_{T} \mathbf{v} (\nabla \cdot \mathbf{\Phi}) + \sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \mathbf{v}|_{T} (\mathbf{\Phi} \cdot \mathbf{n}_{T})$$
$$= -\int_{\Omega} \mathbf{v} (\nabla \cdot \mathbf{\Phi}) + \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} (\mathbf{\Phi} \cdot \mathbf{n}_{F}) [[\mathbf{v}]]. \tag{1}$$

The condition $[[v]] = 0, \forall F \in \mathcal{F}_h^i$ then implies

$$\int_{\Omega} \nabla_h \mathbf{v} \cdot \mathbf{\Phi} = -\int_{\Omega} \mathbf{v} \nabla \cdot \mathbf{\Phi} = \int_{\Omega} \nabla \mathbf{v} \cdot \mathbf{\Phi} \qquad \forall \mathbf{\Phi} \in [C_0^{\infty}(\Omega)]^d$$

hence $\nabla v = \nabla_h v$ in $[L^p(\Omega)]^d$, thus $v \in W^{1,p}(\Omega)$.

Conversely, if v ∈ W^{1,p}(Ω), then ∇v = ∇_hv in [L^p(Ω)]^d owing to Lemma 1. Hence (1) implies

$$\sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} (\Phi \cdot n_{F})[[v]] = \int_{\Omega} \nabla_{h} v \cdot \Phi + \int_{\Omega} v(\nabla \cdot \Phi)$$
$$= \int_{\Omega} \nabla_{h} v \cdot \Phi - \int_{\Omega} \nabla v \cdot \Phi \quad (\text{since } \Phi \in [C_{0}^{\infty}(\Omega)]^{d})$$
$$= 0 \quad (\text{since } \nabla v = \nabla_{h} v \text{ for } v \in W^{1,p}(\Omega)).$$

This implies [[v]] = 0, $\forall F \in \mathcal{F}_h^i$, by choosing the support of Φ only to contain the two elements $T_1, T_2 \in \mathcal{T}_h$ connected to $F \in \mathcal{F}_h^i$, and Φ being arbitrary.

Well-posedness for linear variational equations

For the well-posedness we consider:

- Let X and Y be two Banach spaces equipped with the norms $\|\cdot\|_X$ and $\|\cdot\|_Y$.
- Let L(X, Y) be the vector space spanned by linear operators from X to Y, equipped with the norm

$$\|A\|_{\mathcal{L}(X,Y)} \coloneqq \sup_{v \in X \setminus \{0\}} \frac{\|Av\|_Y}{\|v\|_X} \qquad \forall A \in \mathcal{L}(X,Y).$$

Define the linear model model problem as

Find
$$u \in X$$
 s.t. $a(u, v) = \langle f, w \rangle_{Y', Y} \quad \forall w \in Y,$ (2)

where $a \in \mathcal{L}(X \times Y, \mathbb{R})$ is a bounded bilinear form, $f \in Y' := \mathcal{L}(Y, \mathbb{R})$ is a bounded linear form, and $\langle \cdot, \cdot \rangle_{Y',Y}$ denotes the duality pairing between Y' and Y.

Well-posedness of linear variational equations

• Alternatively, we can introduce the bounded linear operator $A \in \mathcal{L}(X, Y)$ s.t.

$$\langle Av, w \rangle_{Y',Y} \coloneqq a(v,w) \qquad \forall (v,w) \in X \times Y,$$

and consider

Find
$$u \in X$$
 s.t. $Au = f$ in Y' . (3)

- Problems (2) and 3) are equivalent; *u* solves (2) if and only if *u* solves (3).
- Problems (2) and 3) are well-posed if they admit one and only one solution $u \in X$.

Well-posedness of linear variational equations

• The well-posedness of (3) requires *A* to be an isomorphism (bijective mapping that preserves the structure).

In Banach spaces this implies that if $A \in \mathcal{L}(X, Y')$ is an isomorphism, then A^{-1} is bounded, that is

$$\|\boldsymbol{A}^{-1}\|_{\mathcal{L}(\boldsymbol{X},\boldsymbol{Y'})} \leq \boldsymbol{C},$$

which implies that

 $||u||_X = ||A^{-1}f||_X \le C ||f||_{Y'}.$

Banach-Nečas-Babuška theorem

- The Banach-Nečas-Babuška (BNB) theorem provides necessary and sufficient conditions for well-posedness for linear variational equations.
- Theorem (BNB theorem). Let X be a Banach space and let Y be a reflexive space.
 Let a ∈ L(X × Y, ℝ) and let f ∈ Y'. Then the problem:

Find $u \in X$ s.t. $a(u, w) = \langle f, w \rangle_{Y', Y} \quad \forall w \in Y$

is well posed if and only if

i) There is a $C_{sta} > 0$ s.t.

$$\forall v \in X, \quad C_{sta} \|v\|_X \leq \sup_{w \in Y \setminus \{0\}} \frac{a(v, w)}{\|w\|_Y}.$$

ii) For all $w \in Y$, a(v, w) = 0 implies that w = 0, $\forall v \in X$.

Banach-Nečas-Babuška theorem

· Moreover, the following a priori estimate holds true

$$||u||_X \leq \frac{1}{C_{sta}} ||f||_{Y'}.$$

Note, the condition

$$\forall v \in X, \quad C_{sta} \|v\|_X \leq \sup_{w \in Y \setminus \{0\}} \frac{a(v, w)}{\|w\|_Y}$$

is equivalent to the inf-sup condition

$$C_{sta} \leq \inf_{v \in X \setminus \{0\}} \sup_{w \in Y \setminus \{0\}} \frac{a(v, w)}{\|v\|_X \|w\|_Y}$$

• The BNB-theorem is a direct result of the Banach Closed Range theorem and the Banach Open Mapping Theorem.

Lax-Milgram lemma

• Let X be a Hilbert space, Y = X. Let $a \in \mathcal{L}(X \times X, \mathbb{R})$.

The bilinear form *a* is coercive on *X* if there is $C_{sta} > 0$ s.t.

$$\forall v \in X, \quad C_{sta} \|v\|_X^2 \leq a(v, v).$$

• Equivalently, a bounded linear operator $A \in \mathcal{L}(X, X')$ defined by

$$\langle Av, w \rangle_{X', X} \coloneqq a(v, w) \quad \forall (v, w) \in X \times X$$

is coercive if $\exists C_{sta} > 0$ s.t.

$$\forall v \in X, \quad C_{sta} \|v\|_X^2 \leq \langle Av, v \rangle_{X',X}.$$

• The Lax-Milgram lemma provides sufficient conditions for well-posedness.

Lax-Milgram lemma

Lemma (Lax-Milgram) Let X be a Hilbert space. Let a ∈ L(X × X, ℝ) and let f ∈ X'.
 Then the problem

Find
$$u \in X$$
 s.t. $a(u, w) = \langle f, w \rangle_{X', X} \quad \forall w \in X$

is well posed if the bilinear form *a* is coercive on *X*.

Equivalently, the problem

Find $u \in X$, s.t. Au = f in X'

is well-posed if the linear operator $A \in \mathcal{L}(X, X')$ is coercive.

Moreover, the following estimate holds true

$$||u||_X \leq \frac{1}{C_{sta}} ||f||_{X'}.$$

Lax-Milgram lemma

Proof.

• Let *a* be coercive, then for all $v \in X \setminus \{0\}$,

$$C_{sta} \|v\|_X \le \frac{a(v,v)}{\|v\|_X} \le \sup_{w \in X \setminus \{0\}} \frac{a(v,w)}{\|w\|_X},$$

and this condition also holds for v = 0.

To prove the second statement in the BNB theorem, namely,

For all $w \in X$, a(v, w) = 0 implies that w = 0, $\forall v \in X$.

Let $w \in X$ be such that a(v, w) = 0, $\forall v \in X$. Then, choosing v = w yields $||w||_X = 0$ due to the coercivity of a(v, w). Hence w = 0.

Abstract nonconforming error analysis

Let V_h ⊂ L²(Ω) be a finite dimensional function space, e.g. V_h is a broken polynomial space.
 Consider the discrete problem

Find
$$u_h \in V_h$$
 s.t. $a_h(u_h, w_h) = I_h(w_h) \quad \forall w_h \in V_h$,

with discrete bilinear form $a_h : V_h \times V_h \to \mathbb{R}$ and discrete linear form $I_h : V_h \to \mathbb{R}$.

Since functions in V_h can be discontinuous across mesh elements, we have $V_h \notin X$ and $V_h \notin Y$.

Hence we have a nonconforming finite element discretization.

Abstract nonconforming error analysis

• Alternatively, consider the discrete linear operator $A_h: V_h \rightarrow V_h$ s.t. $\forall v_h, w_h \in V_h$

$$(A_h v_h, w_h)_{L^2(\Omega)} \coloneqq a_h(v_h, w_h)$$

and the discrete function $L_h \in V_h$ s.t. $\forall w_h \in V_h$,

$$(L_h, w_h)_{L^2(\Omega)} \coloneqq I_h(w_h),$$

which gives the formulation

Find $u_h \in V_h$ s.t. $A_h u_h = L_h$ in V_h .

Abstract nonconforming error analysis

• Assume that the data $f \in L^2(\Omega)$, then $\langle f, w \rangle_{Y',Y} = (f, w)_{L^2(\Omega)}$ and

$$I_h(w_h) = (L_h, w_h)_{L^2(\Omega)} = (f, w_h)_{L^2(\Omega)}, \text{ and } L_h = \pi_h f,$$

with $\pi_h : L^2(\Omega) \to V_h$ the $L^2(\Omega)$ -orthogonal projection onto V_h so that $\forall v \in L^2(\Omega), \pi_h v \in V_h$ with

$$(\pi_h v, y_h)_{L^2(\Omega)} = (v, y_h)_{L^2(\Omega)} \qquad \forall y_h \in V_h.$$

• Note, $\pi_h v$ can be computed in an element T independently from other elements in \mathcal{T}_h , hence $\forall T \in \mathcal{T}_h, \pi_h v |_T \in \mathbb{P}^k_d(T)$, s.t.

$$(\pi_h v|_T,\xi)_{L^2(T)} = (v,\xi)L^2(T) \qquad \forall \xi \in \mathbb{P}^k_d(T).$$

Discrete stability

Define the norm $||| \cdot |||$ on V_h .

 (Discrete stability) A discrete bilinear form a_h has discrete stability on V_h if there is a C_{sta} > 0 s.t.

$$\forall \mathbf{v}_h \in \mathbf{V}_h, \quad \mathbf{C}_{sta} \mid \mid \mathbf{v}_h \mid \mid \leq \sup_{\mathbf{w}_h \in \mathbf{V}_h \setminus \{0\}} \frac{a_h(\mathbf{v}_h, \mathbf{w}_h)}{\mid \mid \mathbf{w}_h \mid \mid}.$$
(4)

• Property (4) is called the discrete inf-sup condition and is equivalent to

$$C_{sta} \leq \inf_{v_h \in V_h \setminus \{0\}} \sup_{w_h \in V_h \setminus \{0\}} \frac{a_h(v_h, w_h)}{\||v_h|\| \, \||w_h|\|}$$

The coefficient C_{sta} can depend on the mesh size h, but for convergence analysis it is
important to ensure C_{sta} is independent of h.

• Lemma. (Discrete well-posedness) The discrete problem

Find
$$u_h \in V_h$$
 s.t. $a_h(u_h, w_h) = I(w_h) \quad \forall w_h \in V_h$,

is well-posed if and only if the discrete inf-sup condition (4) is satisfied.

Proof. The discrete inf-sup condition is the discrete counterpart of the inf-sup condition in the BNB theorem.

Since $V_h \notin V$ in a DG discretization the discrete inf-sup condition does not follow from the inf-sup condition in the space *V*, and must be separately proven.

• A sufficient condition for discrete stability (and easier to verify) is coercivity:

There is a
$$C_{sta} > 0$$
 s.t. $\forall v_h \in V_h$, $C_{sta} \parallel \parallel v_h \parallel^2 \le a_h(v_h, v_h)$. (5)

• Discrete coercivity implies the discrete inf-sup condition since $\forall v_h \in V_h \setminus \{0\}$,

$$C_{sta} ||| v_h ||| \le \frac{a_h(v_h, v_h)}{|||v_h|||} \le \sup_{w_h \in V_h \setminus \{0\}} \frac{a_h(v_h, w_h)}{|||w_h|||}.$$

• Property (5) is the discrete counterpart of the Lax-Milgram lemma.

Consistency

• A (rather strong) form of consistency requires that the exact solution *u* of the variational equation satisfies the discrete problem

Find
$$u_h \in V_h$$
 s.t. $a_h(u_h, w_h) = I(w_h) \quad \forall w_h \in V_h.$ (6)

This requires that $a_h(u, w_h)$ has a meaning, which may not be possible since a_h is only defined on $V_h \times V_h$.

- Assume that there is a subspace X_{*} ⊂ X s.t. the exact solution belongs to X_{*} and that the bilinear form can be extended to X_{*} × V_h.
- (Consistency) The discrete problem (6) is consistent if for the exact solution $u \in X_*$,

$$a_h(u, w_h) = I(w_h) \quad \forall w_h \in V_h.$$

· Consistency is equivalent to the Galerkin orthogonality property

$$a_h(u-u_h,w_h)=0 \qquad \forall w_h \in V_h. \tag{7}$$

Proof. Substracting

$$a_h(u, w_h) = I_h(w_h) \qquad w_h \in V_h,$$
$$a_h(u_h, w_h) = I_h(w_h) \qquad w_h \in V_h,$$

and using the linearity of a_h gives (7).

Boundedness

Define the vector space

$$X_{*h} \coloneqq X_* + V_h$$

with $X_* \subset X$ the space for the exact solution and V_h the discrete space.

The approximation error then is $u - u_h \in X_{*h}$.

Assume that the discrete norm ||| · ||| can be extended to X_{*h}.

For many problems to prove boundedness in the space $X_{*h} \times V_h$ and we need to define also a norm $\||\cdot||_*$ on X_{*h} s.t.

 $\forall v \in X_{*h}, \quad |||v||| \le |||v|||_*$

• (Boundedness) A discrete bilinear form a_h is bounded in $X_{\star h} \times V_h$ if there is $C_{bnd} > 0$ s.t.

 $\forall (v, w) \in X_{*h} \times V_h, \quad |a_h(v, w)| \le C_{bnd} ||| v |||_* ||| w |||.$

We assume that C_{bnd} is independent of *h*.

Error estimate

• Theorem (Abstract error estimate) Let u solve

Find
$$u \in X$$
 s.t. $a(u, w) = (f, w)_{L^2(\Omega)} \quad \forall w \in Y$

with $f \in L^2(\Omega)$. Let u_h solve

Find
$$u_h \in V_h \ s.t. \ a_h(u_h, w_h) = (f, w_h)_{L^2(\Omega)} \quad \forall w_h \in V_h.$$

Let $X_* \subset X$ and assume $u \in X_*$. Set $X_{*h} = X_* + V_h$ and assume that the bilinear form a_h can be extended to $X_{*h} \times V_h$.

Let $||| \cdot |||$ and $||| \cdot |||_*$ be two norms defined on X_{*h} s.t. $\forall v \in X_{*h}$, $|||v||| \le |||v|||_*$.

Assume discrete stability, consistency and boundedness. Then the following error estimate holds true

$$|||u - u_h||| \le \inf_{y_h \in V_h} |||u - y_h|||_*,$$

with $C = 1 + C_{sta}^{-1} C_{bnd}$.

Error estimate

• Proof. Let $y_h \in V_h$. Use the discrete stability and consistence, then

$$\begin{split} |||u_{h} - y_{h}||| &\leq C_{sta}^{-1} \sup_{w_{h} \in V_{h} \setminus \{0\}} \frac{a_{h}(u_{h} - y_{h}, w_{h})}{|||w_{h}|||} \qquad (\text{discrete stability}) \\ &\leq C_{sta}^{-1} \sup_{w_{h} \in V_{h} \setminus \{0\}} \frac{a_{h}(u - y_{h}, w_{h})}{|||w_{h}|||} \qquad (\text{orthogonality}) \\ &\leq C_{sta}^{-1} C_{bnd} \sup_{w_{h} \in V_{h} \setminus \{0\}} \frac{|||u - y_{h}|||_{*} |||w_{h}|||}{|||w_{h}|||} \qquad \text{boundedness}) \\ &= C_{sta}^{-1} C_{bnd} |||u - y_{h}|||_{*} . \end{split}$$

Error estimate

• Next, use the triangle inequality and the fact that

$$|||u - y_h||| \le |||u - y_h|||_*$$

Then

$$|||u - u_h||| \le |||u - y_h||| + ||| u_h - y_h|||$$

$$\le |||u - y_h|||_* + C_{sta}^{-1} C_{bnd} ||| u - y_h|||_*$$

$$\le (1 + C_{sta}^{-1} C_{bnd}) \inf_{y_h \in V_h} |||u - y_h|||_*,$$

since $y_h \in V_h$ is arbitrary.

Consider a mesh sequence *T_H* := (*T_h*)_{*h*∈*H*}.

 \mathcal{H} denotes a countable subset of $\mathbb{R}_{>0} := \{x \in \mathbb{R} \mid x > 0\}$ having 0 as only accumulation point.

 (Matching simplicial mesh) A mesh *T_h* is a matching simplicial mesh if it is a simplicial mesh and if for any element *T* ∈ *T_h* with vertices {*a*₀,..., *a_d*}, the set ∂*T* ∩ ∂*T'* for any *T'* ∈ *T_h*, *T'* ≠ *T* is the convex hull of a (possibly empty) subset of {*a*₀,..., *a_d*}.

For instance in 2D, the set $\partial T \cap \partial T'$ for two distinct elements of a matching simplicial mesh is either a common vertex or common edge.

Simplicial submesh

- (Matching simplicial submesh) Let T_h be a general polyhedral mesh. Then C_h is a matching simplicial submesh of T_h if
 - i) \mathscr{C}_h is a matching simplicial mesh.
 - ii) For all $T' \in \mathcal{C}_h$, there is only one $T \in \mathcal{T}_h$ s.t. $T' \subset T$.
 - iii) For all $F' \in \mathscr{F}_h$, which is the set collecting the mesh faces of \mathscr{C}_h , there is at most one $F \in \mathscr{F}_h$ s.t. $F' \subset F$.

The simplices in \mathcal{C}_h are called subelements. The mesh faces in \mathcal{F}_h are called subfaces.

Define for all $T \in T_h$ the sets

$$\begin{aligned} \mathscr{C}_T &:= \{T' \in \mathscr{C}_h \mid T' \subset T\}, \\ \mathscr{F}_T &:= \{F' \in \mathscr{F}_h \mid F' \subset \partial T\}, \\ \forall F \in \mathscr{F}_h \colon \mathscr{F}_F &:= \{F' \in \mathscr{F}_h \mid F' \subset F\}. \end{aligned}$$

Shape and contact regularity

- A mesh sequence *T_H* is shape and contact regular if ∀*h* ∈ *H*, *T_h* admits a matching simplicial submesh *C_h* s.t.
 - i) The mesh sequence $\mathscr{C}_{\mathcal{H}}$ is shape regular, namely $\exists \rho_1 > 0$, independent of *h*, s.t. $\forall T' \in \mathscr{C}_h$

 $\rho_1 h_{T'} \leq r_{T'},$

where $h_{T'}$ is the diameter of T' and $r_{T'}$ the radius of the largest ball inscribed in T'.

ii) $\exists \rho_2 > 0$, independent of *h*, s.t. $\forall T \in \mathcal{T}_h$ and $\forall T' \in \mathscr{C}_h$

 $\rho_2 h_T \leq h_{T'}.$

The parameters ρ_1 and ρ_2 are called mesh regularity parameters and are denoted as ρ .

If T_h itself is matching and simplicial, then $\mathcal{C}_h = T_h$ and the only requirement is shape regularity, $\rho_1 > 0$, independent of *h*.

Geometric properties of the mesh

Lemma (Bound on card(𝒞_T)). Let T_H be a shape- and contact -regular mesh sequence.
 Then, for all *h* ∈ H and all *T* ∈ T_h, card(𝒱_T) is bounded uniformly in *h*.

Proof. Let $|\cdot|_d$ denote the *d*-dimensional Haussdorff measure and let B_d be the unit ball in \mathbb{R}^d . Then,

$$\begin{split} h_T^d \geq |T|_d &= \sum_{T' \in \mathscr{C}_T} |T'|_d \geq \sum_{T' \in \mathscr{C}_T} |B_d|_d r_{T'}^d \geq \sum_{T' \in \mathscr{C}_T} |B_d|_d \rho_1^d h_{T'}^d \\ &\geq \sum_{T' \in \mathscr{C}_T} |B_d|_d \rho_1^d \rho_2^d h_T^d \\ &\geq |B_d|_d \rho_1^d \rho_2^d \mathrm{card}(\mathscr{C}_T) h_T^d, \end{split}$$

hence

$$\operatorname{card}(\mathscr{C}_T) \leq \frac{1}{|B_d|_d \, \rho_1^d \rho_2^d}.$$

Geometric properties of the mesh

Lemma. (Bound on card(𝒫_T), card(𝒫_T), N_∂ and card(𝒫_F)) Let 𝒯_H be a shape- and contact-regular mesh sequence with parameter ρ.

Then, for all $h \in \mathcal{H}$ and $\forall T \in \mathcal{T}_h$, card (\mathcal{F}_T) , card (\mathcal{F}_T) , and N_∂ are bounded uniformly in h.

In addition, for all $F \in \mathcal{F}_h$, card(\mathscr{F}_F) is bounded uniformly in *h*.

Proof. Observe that

$$\operatorname{card}(\mathcal{F}_T) \leq \operatorname{card}(\mathscr{F}_T) \leq (d+1)\operatorname{card}(\mathscr{C}_T),$$

where in the last inequality we used the fact that a simplicial element has d + 1 faces.

Since $\operatorname{card}(\mathscr{C}_T)$ is uniformly bounded in *h*, then also $\operatorname{card}(\mathscr{F}_T)$ and $\operatorname{card}(\mathscr{F}_T)$ are uniformly bounded in *h*. Hence,

$$N_{\partial} = \max_{T \in \mathcal{T}_h} \operatorname{card}(\mathcal{F}_T)$$

is also bounded in *h*. Finally, take $T \in \mathcal{T}_h$ s.t. $F \in \mathcal{F}_T$, use $\operatorname{card}(\mathscr{F}_F) \leq \operatorname{card}(\mathscr{C}_T)$.

Geometric properties of the mesh

• Lemma. (Lower bound on face diameters). Let $T_{\mathcal{H}}$ be a shape- and contact-regular mesh sequence with parameter ρ .

Then for all $h \in \mathcal{H}$, all $T \in \mathcal{T}_h$ and all $F \in \mathcal{F}_T$,

 $\delta_F \ge \rho_1 \rho_2 h_T,$

where δ_F is the diameter of *F*.

Proof. Let $T \in \mathcal{T}_h$, $F \in \mathcal{F}_T$. Then, take an $F' \in \mathscr{F}_F$ and denote by $T' \in \mathscr{C}_T$ the simplex to which the subface F' belongs. Then

 $\delta_F \geq \delta_{F'} \geq r_{T'} \geq \rho_1 h_{T'} \geq \rho_1 \rho_2 h_T.$

 Lemma. (Inverse inequality) Let T_H be a shape- and contact regular mesh sequence with parameter ρ.

Then, for all $h \in \mathcal{H}$ and all $v_h \in \mathbb{P}^k_d(\mathcal{T}_h)$ and all $T \in \mathcal{T}_h$,

$$\|\nabla v_h\|_{[L^2(T)]^d} \leq C_{inv} h_T^{-1} \|v_h\|_{L^2(T)},$$

where C_{inv} only depends on ρ , d and k.

Proof. Let $v_h \in \mathbb{P}_d^k(\mathcal{T}_h)$, $T \in \mathcal{T}_h$. For all $T' \in \mathscr{C}_T$, the restriction $v_h|_{T'} \in \mathbb{P}_d^k(T')$.

Use the inverse inequality on simplices, see e.g. Brenner & Scott, Math. Theory. of FEM or Ern & Guermond, Theory and Practice FEM,

$$\|\nabla v_h\|_{[L^2(T')]^d} \leq C_{inv,s}h_{T'}^{-1}\|v_h\|_{L^2(T')},$$

where $C_{inv,s}$ only depends on ρ_1 , d and k.

Using the shape- and contact regularity of the mesh, namely

 $\exists \rho_2 > 0 \text{ s.t. } \rho_2 h_T \leq h_{T'}, \quad \text{hence} \quad \frac{1}{h_{T'}} \leq \frac{1}{\rho_2 h_T},$

gives

$$\|\nabla v_h\|_{[L^2(T')]^d} \le C_{inv,s}\rho_2^{-1}h_T^{-1}\|v_h\|_{[L^2(T')]^d}$$

Squaring the inequality and summing over all $T' \in \mathscr{C}_T$ proves the result.

• Lemma. (Discrete trace inequality) Let T_H be a shape- and contact regular mesh sequence with parameter ρ .

Then, for all $h \in \mathcal{H}$, all $v_h \in \mathbb{P}^k_d(\mathcal{T}_h)$, all $T \in \mathcal{T}_h$ and all $F \in \mathcal{F}_T$,

$$h_T^{\frac{1}{2}} \| v_h \|_{L^2(F)} \le C_{tr} \| v_h \|_{L^2(T)},$$

where C_{tr} only depends on ρ , d, and k.

Proof. Let v_h ∈ ℙ^k_d(T_h), let T ∈ T_h, F ∈ F_T. First assume that T_h is a matching simplicial mesh.

Let \widehat{T} be the unit simplex in \mathbb{R}^d , and let F_T be the bijective map such that $F_T(\widehat{T}) = T$.

Let \widehat{F} be any face of \widehat{T} . Since the unit sphere in $\mathbb{P}_{d}^{k}(\widehat{T})$ for the $L^{2}(\widehat{T})$ -norm is a compact set $(\mathbb{P}_{d}^{k} \text{ is finite dimensional})$, there is a $\widehat{C}_{d,k}(\widehat{F})$, only depending on d, k and \widehat{F} s.t. $\forall \widehat{v} \in \mathbb{P}_{d}^{k}(\widehat{T})$

$$\|\widehat{\mathbf{V}}\|_{L^{2}(\widehat{F})} \leq \widehat{C}_{d,k}(\widehat{F}) \|\widehat{\mathbf{V}}\|_{L^{2}(\widehat{T})}.$$
(8)

Applying inequality (8) now to the function $\hat{v} = v_h|_T \circ F_T^{-1}$, which is in $\mathbb{P}_d^k(\hat{T})$, gives

$$\|F\|_{d-1}^{-\frac{1}{2}}\|v_h\|_{L^2(F)} \leq \widehat{C}_{d,k}\|T\|_d^{-\frac{1}{2}}\|v_h\|_{L^2(T)}.$$

Note,

$$\frac{|T|_d}{|F|_{d-1}} = \frac{\operatorname{Vol}(T)}{\operatorname{Area}(F)} = \frac{h_{T,F}}{d} \ge \frac{1}{d}r_T \ge \frac{1}{d}\rho_1 h_T,$$
(9)

where $h_{T,F}$ denotes the distance of the vertex opposite to *F* to that face, and r_T is the radius of the largest ball inscribed in *T*. Hence,

$$\|F\|_{d-1}^{-\frac{1}{2}} \|v_h\|_{L^2(F)} \le \widehat{C}_{d,k} \|T\|_d^{-\frac{1}{2}} \|v_h\|_{L^2(T)}$$

is equal to

$$\left(\frac{|T|_d}{|F|_{d-1}}\right)^{\frac{1}{2}} \|v_h\|_{L^2(F)} \le \widehat{C}_{d,k} \|v_h\|_{L^2(T)}$$

and finally using (9) we obtain

$$h_T^{\frac{1}{2}} \| v_h \|_{L^2(F)} \le C_{tr,s} \| v_h \|_{L^2(T)},$$

with $C_{tr,s} = d^{\frac{1}{2}} \rho_1^{-\frac{1}{2}} \widehat{C}_{d,k}$ only depending on ρ , d and k.

• General mesh.

For each $F' \in \mathscr{F}_F$, let T' denote the simplex in \mathscr{C}_T of which F' is a face. Since the restriction $v_h|_{T'} \in \mathbb{P}^k_d(T')$, the discrete trace inequality yields

$$h_{T'}^{\frac{1}{2}} \| v_h \|_{L^2(F')} \le C_{tr,s} \| v_h \|_{L^2(T')} \le C_{tr,s} \| v_h \|_{L^2(T)}.$$

This gives

$$\Big(\sum_{F'\in\mathscr{F}_{F}}h_{T'}\|v_{h}\|_{L^{2}(F')}^{2}\Big)^{\frac{1}{2}}\leq C_{tr,s}(\mathrm{card}(\mathscr{F}_{F}))^{\frac{1}{2}}\|v_{h}\|_{L^{2}(T)}$$

since $h_{T'} \ge \rho_2 h_T$ and $\operatorname{card}(\mathscr{F}_F) \le (d+1)\operatorname{card}(\mathscr{C}_T)$ is uniformly bounded.

• A. Consider a tetrahedron $K \subset \mathbb{R}^3$ with vertices $\{x_0, \dots, x_3\}$.

Define the mapping $F_T(\widehat{T}) = T$, with \widehat{T} the reference tetrahedron with vertices $\{(0,0,0), (1,0,0), (0,1,0), (0,0,1)\}$, and for $x \in T$, $\widehat{x} \in \widehat{T}$, we have the relation

$$x=B_T\widehat{x}+x_0,$$

with Jacobian matrix

$$B_{T} = \frac{\partial x}{\partial \widehat{x}} = \begin{pmatrix} x_{1} - x_{0} & x_{2} - x_{0} & x_{3} - x_{0} \\ y_{1} - y_{0} & y_{2} - y_{0} & y_{3} - y_{0} \\ z_{1} - z_{0} & z_{2} - z_{0} & z_{3} - z_{0} \end{pmatrix}$$

and

$$\det B_T = \frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}.$$

• Consider the $L^2(T)$ -norm:

$$\begin{aligned} \|v\|_{L^{2}(T)} &= \left(\int_{T} |v(x)|^{2} d^{3}x\right)^{\frac{1}{2}} \\ &= \left(\int_{\widehat{T}} |\widehat{v}(\widehat{x})|^{2} |\det B_{T}| d^{3}\widehat{x}\right)^{\frac{1}{2}} \qquad \text{(with } \widehat{v}(\widehat{x}) = v(F_{T}(\widehat{x}))) \\ &= \left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{\frac{1}{2}} \left(\int_{\widehat{T}} |\widehat{v}(\widehat{x})|^{2} d^{3}\widehat{x}\right)^{\frac{1}{2}} \qquad \text{since } \det B_{T} \text{ is constant} \\ &= \left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{\frac{1}{2}} \|\widehat{v}\|_{L^{2}(\widehat{T})}, \end{aligned}$$

or equivalently

$$\|\widehat{\boldsymbol{v}}\|_{L^{2}(\widehat{T})} = \left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{-\frac{1}{2}} \|\boldsymbol{v}\|_{L^{2}(T)}.$$

• B. Given a tetrahedron $T \subset \mathbb{R}^3$. Consider a face $F \subset \partial T$ with vertices $\{x_0, x_1, x_2\}$.

Define the mapping $F_F(\widehat{F}) = F$, with \widehat{F} the reference triangle with vertices $\{(0,0), (1,0), (0,1)\}$, and for $x \in F$, $\widehat{x} \in \widehat{F}$, we have the relation

$$x = (x_1 - x_0)\widehat{x} + (x_2 - x_0)\widehat{y} + x_0.$$

• Consider the $L^2(F)$ -norm:

$$\begin{aligned} v\|_{L^{2}(F)} &= \left(\int_{F} |v(x)|^{2} dS\right)^{\frac{1}{2}} \\ &= \left(\int_{\widehat{F}} |v(F_{F}(\widehat{x}))|^{2} \left|\frac{\partial F_{F}}{\partial \widehat{x}} \times \frac{\partial F_{F}}{\partial \widehat{y}}\right| d\widehat{x} d\widehat{y}\right)^{\frac{1}{2}} \\ &= \left|(x_{1} - x_{0}) \times (x_{2} - x_{0})\right|^{\frac{1}{2}} \left(\int_{\widehat{F}} |\widehat{v}(\widehat{x})|^{2} d\widehat{x} d\widehat{y}\right)^{\frac{1}{2}} \\ &= \left(\frac{\operatorname{Area}(F)}{\operatorname{Area}(\widehat{F})}\right)^{\frac{1}{2}} \|\widehat{v}\|_{L^{2}(\widehat{F})} \end{aligned}$$

since

$$\left| (x_1 - x_0) \times (x_2 - x_0) \right| = \frac{\operatorname{Area}(F)}{\operatorname{Area}(\widehat{F})}.$$

The estimate

$$\|\widehat{\boldsymbol{v}}_h\|_{L^2(\widehat{F})} \leq \widehat{C}'_{d,k} \|\widehat{\boldsymbol{v}}_h\|_{L^2(\widehat{T})}$$

is thus equal to

$$\left(\frac{\operatorname{Area}(F)}{\operatorname{Area}(\widehat{F})}\right)^{-\frac{1}{2}} \|v_h\|_{L^2(F)} \leq \widehat{C}'_{d,k}(\widehat{F}) \left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{-\frac{1}{2}} \|v_h\|_{L^2(T)}$$

or equivalently,

$$\|F\|_{d-1}^{-\frac{1}{2}}\|v_h\|_{L^2(F)} \leq \widehat{C}_{d,k}\|T\|_{d}^{-\frac{1}{2}}\|v_h\|_{L^2(T)}.$$

- Lemma. (Continuous trace inequality) Let $\mathcal{T}_{\mathcal{H}}$ be a shape- and contact-regular mesh sequence.

Then for all $h \in \mathcal{H}$, all $v \in H^1(\mathcal{T}_h)$ and all $T \in \mathcal{T}_h$, and all $F \in \mathcal{F}_T$,

$$\|v\|_{L^{2}(F)}^{2} \leq C_{cti}(2\|\nabla v\|_{[L^{2}(T)]^{d}} + dh_{T}^{-1}\|v\|_{L^{2}(T)})\|v\|_{L^{2}(T)},$$

with $C_{cti} = \rho^{-1}$ if \mathcal{T}_h is a matching simplicial mesh and $C_{cti} = (1 + d)(\rho_1 \rho_2)^{-1}$ otherwise.

• Proof. Let $v \in H^1(\mathcal{T}_h)$ and $F \in \mathcal{F}_T$. First, assume T is a simplex with vertices $\{x_0, \dots, x_3\}$ and consider the \mathbb{R}^d -valued function

$$\sigma_F = \frac{|F|_{d-1}}{d|T|_d}(x-a_F),$$

where a_F is the vertex x_0 of T opposite to face F, which has vertices $\{x_1, x_2, x_3\}$.

Note, σ_T is proportional to the lowest order Raviart-Thomas-Nédélec shape function in T.

At face F we have the normal vector

$$n_T = \frac{(x_1 - x_3) \times (x_2 - x_3)}{|(x_1 - x_3) \times (x_2 - x_3)|},$$

which gives

$$n_{T} = \frac{\operatorname{Area}(\widehat{F})}{\operatorname{Area}(F)}(x_{1} - x_{3}) \times (x_{2} - x_{3}) = \frac{|\widehat{F}|_{d-1}}{|F|_{d-1}}(x_{1} - x_{3}) \times (x_{2} - x_{3}).$$

With $a_F = x_0$ we have that for $x - x_0 \in F$,

$$x - a_F = x - x_0 = (x_1 - x_3)\widehat{x} + (x_2 - x_3)\widehat{y} + x_3 - x_0.$$

Then

$$\begin{split} n_T \cdot \sigma_F &= \frac{|\widehat{F}|_{d-1}}{|F|_{d-1}} \frac{|F|_{d-1}}{d|T|_d} \left((x_1 - x_3) \times (x_2 - x_3) \right) \cdot \left((x_1 - x_3) \widehat{y} + (x_2 - x_3) \widehat{y} + x_3 - x_0 \right) \\ &= \frac{|\widehat{F}|_{d-1}}{d|T|_d} \left((x_3 - x_1) \times (x_3 - x_2) \right) \cdot (x_3 - x_0) \\ &= \frac{|\widehat{F}|_{d-1}}{d|T|_d} \det |x_3 - x_0, x_3 - x_1, x_3 - x_2| \\ &= \frac{|\widehat{F}|_{d-1}}{d|T|_d} \frac{|T|_d}{|\widehat{T}|_d} \\ &= 1 \qquad \text{since } |\widehat{F}|_{d-1} = \frac{1}{2}, |\widehat{T}|_d = \frac{1}{6} \text{ for } d = 3. \end{split}$$

Note, for the other faces F' of T, we have $n_T \cdot \sigma_{F'} = 0$ since $\sigma_{F'}$ is parallel to the face $F' \neq F$.

• Using the divergence theorem we obtain

$$\|v\|_{L^{2}(F)}^{2} = \int_{F} |v|^{2} = \int_{\partial T} |v|^{2} (\sigma_{F} \cdot n_{T}) \quad (\text{since } \sigma_{F} \cdot n_{T} = 1 \text{ at } F \text{ and}$$
$$\sigma_{F} \cdot n_{T} = 0 \text{ at } \partial T \setminus F)$$
$$= \int_{T} \nabla \cdot (|v|^{2} \sigma_{F})$$
$$= \int_{T} (2v\sigma_{F} \cdot \nabla v + |v|^{2} \nabla \cdot \sigma_{F}).$$

Hence

$$\|v\|_{L^{2}(F)}^{2} \leq 2\|v\|_{L^{2}(T)} \|\sigma_{F} \cdot \nabla v\|_{L^{2}(T)} + \|\nabla \cdot \sigma_{F}\|_{L^{\infty}(T)} \|v\|_{L^{2}(T)}^{2}$$

Since

$$\begin{split} \|\sigma_F\|_{[L^{\infty}(T)]^d} &\leq \frac{|F|_{d-1}h_T}{d|T|_d},\\ \nabla\cdot\sigma_F &= \frac{|F|_{d-1}}{|T|_d}, \end{split}$$

because a_F is the vertex opposite to F,

$$\|\sigma_{F} \cdot \nabla v\|_{L^{2}(T)} \leq \|\sigma_{F}\|_{[L^{\infty}(T)]^{d}} \|\nabla v\|_{[L^{2}(T)]^{d}} \leq \frac{|F|_{d-1}h_{T}}{d|T|_{d}} \|\nabla v\|_{[L^{2}(T)]^{d}}$$

we obtain the estimate

$$\begin{split} v\|_{L^{2}(F)}^{2} &\leq 2\|v\|_{L^{2}(T)}\|\sigma_{F} \cdot \nabla v\|_{L^{2}(T)} + \nabla \cdot \sigma_{F}\|v\|_{L^{2}(T)}^{2} \\ &\leq \frac{|F|_{d-1}h_{T}}{d|T|_{d}} \Big(2\|\nabla v\|_{[L^{2}(T)]^{d}} + dh_{T}^{-1}\|v\|_{L^{2}(T)}\Big)\|v\|_{L^{2}(T)} \\ &\leq \frac{1}{\rho_{1}} \Big(2\|\nabla v\|_{[L^{2}(T)]^{d}} + dh_{T}^{-1}\|v\|_{L^{2}(T)}\Big)\|v\|_{L^{2}(T)}, \quad \text{using } \frac{|F|_{d-1}}{|T|_{d}} \leq \frac{d}{\rho_{1}h_{T}} \end{split}$$

• If T_h is a general mesh use the subdivision into a matching simplicial mesh.

For each $F' \in \mathscr{F}_F$, let T' denote the simplex in \mathscr{C}_T of which F' is a face.

Applying the continuous trace inequality for F' and T' yields,

$$\|v\|_{L^{2}(F')}^{2} \leq \frac{1}{\rho_{1}} \Big(2\|\nabla v\|_{[L^{2}(T')]^{d}} + dh_{T'}^{-1} \|v\|_{L^{2}(T')} \Big) \|v\|_{L^{2}(T')}.$$

From the mesh regularity we have $h_{T'} \ge \rho_2 h_T$ and $\rho_2 \le 1$, which gives $\frac{1}{h_{T'}} \le \frac{1}{\rho_2 h_T}$, and

$$\|v\|_{L^{2}(F')}^{2} \leq \frac{1}{\rho_{1}\rho_{2}} \Big(2\|\nabla v\|_{[L^{2}(T')]^{d}} + dh_{T}^{-1} \|v\|_{L^{2}(T')} \Big) \|v\|_{L^{2}(T')}.$$

Hence, after summing $F' \in \mathscr{F}_F$ and using the fact that $T' \in \mathscr{C}_T$ appears at most (d + 1)-times gives

$$\|v\|_{L^{2}(F)}^{2} \leq \frac{d+1}{\rho_{1}\rho_{2}} \Big(2\|\nabla v\|_{[L^{2}(T)]^{d}} + dh_{T}^{-1}\|v\|_{L^{2}(T)}\Big)\|v\|_{L^{2}(T)}.$$

Comparison of $\|\cdot\|_{L^p(T)}$ - and $\|\cdot\|_{L^q(T)}$ -norms

Lemma. (Comparison of || · ||_{L^p(T)}- and || · ||_{L^q(T)}-norms). Let T_H be a shape- and contact-regular mesh sequence with parameter ρ.

Let $1 \le p, q, \le \infty$ be two real numbers. Then for all $h \in \mathcal{H}$, all $v_h \in \mathbb{P}_d^k(\mathcal{T}_h)$ and all $T \in \mathcal{T}_h$,

$$\|v_h\|_{L^p(T)} \leq C_{inv,p,q} h_T^{d(\frac{1}{p}-\frac{1}{q})} \|v_h\|_{L^q(T)}$$

where $C_{inv,p,q}$ only depends on ρ , d, k, p and q.

Comparison of $\|\cdot\|_{L^p(T)}$ - and $\|\cdot\|_{L^q(T)}$ -norms

• Proof. Since $v_h \in \mathbb{P}^k_d(\mathcal{T}_h)$, we can use that all norms are equivalent in a finite dimensional space,

$$\begin{split} \|\widehat{v}_{h}\|_{L^{p}(\widehat{T})} &\leq \widehat{C} \|\widehat{v}_{h}\|_{L^{q}(\widehat{T})} \\ \Leftrightarrow \Big(\int_{T} |v_{h}(x)|^{p} \frac{1}{\det B_{T}} dx\Big)^{\frac{1}{p}} \leq \widehat{C} \Big(\int_{T} |v_{h}(x)|^{q} \frac{1}{\det B_{T}} dx\Big)^{\frac{1}{q}} \\ \Leftrightarrow \left(\frac{\operatorname{Vol}(\widehat{T})}{\operatorname{Vol}(T)}\right)^{\frac{1}{p}} \|v_{h}\|_{L^{p}(T)} \leq \widehat{C} \left(\frac{\operatorname{Vol}(\widehat{T})}{\operatorname{Vol}(T)}\right)^{\frac{1}{q}} \|v_{h}\|_{L^{q}(T)} \\ \Leftrightarrow \|v_{h}\|_{L^{p}(T)} \leq \widehat{C} \left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}(\widehat{T})}\right)^{\frac{1}{p} - \frac{1}{q}} \|v_{h}\|_{L^{q}(T)} \\ \Rightarrow \|v_{h}\|_{L^{p}(T)} \leq C_{inv,p,q} h_{T}^{d(\frac{1}{p} - \frac{1}{q})} \|v_{h}\|_{L^{q}(T)}. \end{split}$$

Lemma. (Discrete trace inequality in L^ρ(F)). Let T_H be a shape- and contact-regular mesh sequence with parameter ρ.

Let $1 \le p, q, \le \infty$ be two real numbers. Then for all $h \in \mathcal{H}$, all $v_h \in \mathbb{P}^k_d(\mathcal{T}_h)$ and all $T \in \mathcal{T}_h$, and all $F \in \mathcal{T}_T$,

$$h_{T}^{\frac{1}{p}} \| v_{h} \|_{L^{p}(F)} \leq C_{tr,p} \| v_{h} \|_{L^{p}(T)},$$

where $C_{tr,p}$ only depends on ρ , d, k and p.

Discrete trace inequality in $L^{p}(F)$

Proof. Combine the discrete trace inequality with the relation between L^p and L^q-norms, then

$$h_T^{\frac{1}{p}} \|v_h\|_{L^p(F)} \le C_{inv,p,2} h_T^{\frac{1}{p}} \delta_F^{(d-1)(\frac{1}{p}-\frac{1}{2})} \|v_h\|_{L^2(F)} \quad \text{(use relation between } L^p \text{ and } L^q \text{ norms}$$

with $q = 2$ for a face F with dim $(F) = d - 1$)

 $\leq C_{inv,p,2}C_{tr}h_{T}^{\frac{1}{p}-\frac{1}{2}}\delta_{F}^{(d-1)(\frac{1}{p}-\frac{1}{2})} \|v_{h}\|_{L^{2}(T)}$ (use discrete trace inequality) $\leq C_{inv,p,2}C_{tr}C_{inv,2,p}h_{T}^{\frac{1}{p}-\frac{1}{2}}\delta_{F}^{(d-1)(\frac{1}{p}-\frac{1}{2})}h_{T}^{d(\frac{1}{2}-\frac{1}{p})} \|v_{h}\|_{L^{p}(T)}$

(use relation between L^{p} and L^{q} -norms)

$$\leq C_{tr,p} \| v_h \|_{L^p(T)} \qquad \qquad \text{using } \delta_F \cong h_T.$$

Since $u_h \in V_h$ we obtain from the error bound for the variational equation the relation

$$\inf_{y_h \in V_h} |||u - y_h||| \le |||u - u_h||| \le C \inf_{y_h \in V_h} |||u - y_h|||_*,$$
(10)

hence we need a bound for the approximation error on the righthand side of (10).

The optimality of the error estimate is classified as:

- (Optimality, quasi-optimality and suboptimality of the error estimate).
 - i) Optimal, if $||| \cdot ||| = ||| \cdot |||_*$.
 - ii) Quasi-optimal, if the norms $||| \cdot |||$ and $||| \cdot |||_*$ are different, but the lower and upper bounds in (10) converge for smooth *u* at the same rate as $h \rightarrow 0$.
 - iii) Suboptimal, if the upper bound in (10) converges at a slower rate than the lower bound.

• (Optimal polynomial approximation). The mesh sequence $\mathcal{T}_{\mathcal{H}}$ has optimal polynomial approximation properties if for all $h \in \mathcal{H}$, all $T \in \mathcal{T}_h$ and all polynomial degrees k, there is a linear interpolation operator $I_T^k : L^2(T) \to \mathbb{P}_d^k(T)$ s.t. $\forall s \in \{0, \dots, k+1\}$ and all $v \in H^s(T)$ there holds

$$|v - I_T^k v|_{H^m(T)} \le C_{app} h_T^{s-m} |v|_{H^s(T)} \qquad \forall m \in \{0, ..., s\},$$

where C_{app} is independent of both T and h.

• (Admissible mesh sequences). A mesh sequence $T_{\mathcal{H}}$ is admissible if it is shape- and contact-regular, and if it has optimal polynomial approximation properties.

• Lemma. (Optimality of L^2 -orthogonal projection). Let $\mathcal{T}_{\mathcal{H}}$ be an admissible mesh sequence.

Let π_h be the L^2 -orthogonal projection onto \mathbb{P}_d^k . Then $\forall s \in \{0, \dots, k+1\}$ and all $v \in H^s(T)$, we have

$$|\boldsymbol{v} - \pi_h \boldsymbol{v}|_{H^m(T)} \leq C'_{app} h_T^{s-m} |\boldsymbol{v}|_{H^s(T)} \qquad \forall m \in \{0, \cdots, s\}.$$

where C_{app} is independent of both T and h.

Proof. For m = 0, we have since $\pi_h : L^2(T) \to \mathbb{P}^k_d$ is the L^2 -orthogonal projection that

$$\|v - \pi_h v\|_{L^2(T)} \le \|v - l_T^k v\|_{L^2(\Omega)} \le C_{app} h_T^s |v|_{H^s(T)}$$

For $m \ge 1$, use *m*-times the inverse inequality, together with the triangle inequality

$$\begin{aligned} |v - \pi_h v|_{H^m(T)} &\leq |v - l_T^k v|_{H^m(T)} + |l_T^k v - \pi_h v|_{H^m(T)} & \text{(triangle inequality)} \\ &\leq |v - l_T^k v|_{H^m(T)} + C' h_T^{-m} \| l_T^k v - \pi_h v \|_{L^2(T)} & \text{(use m-times inverse inequality)} \\ &\leq |v - l_T^k v|_{H^m(T)} + C' h_T^{-m} \| v - l_T^k v \|_{L^2(T)} + C' h_T^{-m} \| v - \pi_h v \|_{L^2(T)} \\ &\leq |v - l_T^k v|_{H^m(T)} + 2C' h_T^{-m} \| v - l_T^k v \|_{L^2(T)} & \text{(using $m = 0$ case)} \\ &\leq C'_{app} h_T^{s-m} | v |_{H^s(T)} & \text{(use optimal polynomial approximation error)}. \end{aligned}$$

- Lemma. (Polynomial approximation on mesh faces). Let $\mathcal{T}_{\mathcal{H}}$ be an admissible mesh sequence.

Let π_h be the L^2 -orthogonal projection onto \mathbb{P}_d^k . Then for all $s \in \{1, \dots, k+1\}$ and all $v \in H^s(T)$, we have

$$\|\mathbf{v} - \pi_h \mathbf{v}\|_{L^2(F)} \le C''_{app} h_T^{s-\frac{1}{2}} \|\mathbf{v}\|_{H^s(T)},$$

and if $s \ge 2$,

$$\|\nabla(v - \pi_h v)|_T \cdot n_T\|_{L^2(F)} \le C''_{app} h_T^{s-\frac{3}{2}} |v|_{H^s(T)},$$

where C'_{app} , C''_{app} are independent of both T and h.