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Introduction

e Discontinuous Galerkin (DG) methods are nowadays one of the main finite element methods
to solve partial differential equations.

e The key feature of DG methods is the use of discontinuous test and trial spaces. This results
in a local element wise discretization and a discontinuous approximation at element faces or

edges.
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Introduction

Benefits of discontinuous Galerkin methods:
e DG methods provide higher order accurate, element-wise conservative finite element

discretizations of partial differential equations with excellent stability and convergence
properties.

e The local, element based discretization in DG methods provides great flexibility to design:

e solution adaptive numerical discretizations using local mesh refinement (h-adaptation)
and/or local adjustment of the polynomial order (p-refinement).

o efficient parallel finite element discretizations due to the minimal element connectivity.
In general, only nearest neighboring elements are connected at element faces or
edges.

o DG discretizations of time-dependent problems generally result in a block-diagonal
mass matrix, which is very beneficial when using an explicit time integration method.

e DG methods have a well established mathematical theory to analyse the convergence,
stability and accuracy of the finite element discretization.
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Introduction

Benefits of discontinuous Galerkin methods:
o Discontinuous Galerkin discretizations generally are more complicated than standard

conforming finite element discretizations and also their mathematical analysis is more
involved.
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Introduction

To main goals of these lectures are:

o To discuss the basic mathematical techniques necessary to understand the mathematical
properties of DG discretizations.

o To use these tools to study convergence, stability and accuracy of discontinuous Galerkin
discretizations of hyperbolic and elliptic model problems.
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Main references

These lectures are mainly based on:

e D.A. Di Pietro, A. Ern, Mathematical aspects of discontinuous Galerkin methods, Springer,
2012, ISBN 978-3-642-22979-4.

e A. Ern, J.-L. Guermond, Theory and practice of finite elements, Springer, 2004, ISBN
0-387-20574-8.

e S.C. Brenner, L.R. Scott, The mathematical theory of finite element methods, 3rd edition,
Springer, 2008, ISBN 978-0-387-75933-3.
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Discrete setting

o The domain € is a bounded, connected subset of R?, d > 1, with Lipschitz continuous
boundary 92 that has a unit outward normal vector n.

o For simplicity we will also assume that Q2 is a polyhedron.

e Polyhedron:

e Pis a polyhedron in R if P is an open connected, bounded subset of R? s.t. its
boundary 0P is a finite union of parts of hyperplanes.

@ Moreover, each point in the interior of P is assumed to lie only on one side of the
hyperplane boundary.

e Each polyhedron can be subdivided into a finite number of simplicial elements.
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Discrete setting

o A simplex is defined as:

e Given a family {ag, -, a4} of d + 1 points in RY s.t. the vectors {a; — &g, -+, ay — a} are
linearly independent.

o The interior of the convex hull of {ag, ---, a4} is called a non-degenerate simplex in RY.
e The points {ap, -, a4} are the vertices of the simplex.

o InRY, for d = 1,2, 3 simplices are, respectively, a line segment, a triangle, and a tetrahedron.

o Unit or reference simplex

Syi={(X1,,Xg) eRY | Xx; >0 Vie {1, dyand xq + -+ Xg <1}
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Discrete setting

Simplex faces and mesh:
e Let S be a non-degenerate simplex with vertices {ay, -, aq4}-

For each i € {0, -+, d} the convex hull of {ag, -, aq}\{a;} is a face of simplex S.

o A simplicial mesh 7 of the (polyhedral) domain 2 is a finite collection of disjoint
non-degenerate simplices 7 = { T} forming a partition of Q,

ﬁ =UTeT T7
with each T € T a mesh element.

The outward unit normal vector at 9T is denoted nr.

9/86



Discrete setting

General mesh:

e A general mesh T of a domain Q is a finite collection of disjoint polyhedra 7 = { T} forming a
partition of Q.

o Note, a general mesh allows hanging nodes.

e Let 7 be a (general) mesh of Q. For all T € T, hy denotes the diameter of T and the mesh
size is defined as

h:=maxhr.

TeT

e Tpis a mesh 7 with mesh size h.
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Discrete setting

Mesh faces:

o Let 7;, be a mesh of Q. A (closed) subset F of Q is a mesh face if F has a positive
(d - 1)-dimensional Hausdorff measure and if either one of the two conditions is satisfied:

o there are distinct mesh elements Ty and T, s.t. F =9T; ndT,, then F is called an
interface;

o thereisa T € Ty s.t. F =0T n 9%, then F is called a boundary face.
o Interfaces are collected in the set ]—‘,"7, boundary faces in the set F2, hence

Fpi=FhuFp.
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Discrete setting

e The set Fr:={F € F, | F c 9T} collects the mesh faces composing the boundary of
element T.

e The maximum number of mesh faces composing the boundary of mesh elements is
Np := d(FT).
b = max car (Fr)
e For any mesh face F € F}, define the set

Tr={TeTy|FcaT}.

« Note 7f consists of two mesh elements if F ¢ ], and one mesh element if F ¢ 2.
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Jumps and Averages

e Let v be a scalar valued function on £, sufficiently smooth to admit VF ¢ ]—‘,", a possibly
two-valued trace.

o Denote with v|r for all T € T, the restriction of v to T with trace at 4T.

e Forall F e F and a.e. x € F the average of v is defined as

Vr(0 = 5 (V5,00 + Mir, (),
and the jump of v as
([VIIF(X) = VI, (%) = VI, (X).

o If v is a vector then the average and jump operators act component wise on v.
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Normal vectors

e Forall F e Fjanda.e. x € F the unit normal ng to F at x is defined as

@ ng = nr,, the normal vector to F at x pointing from element T to element Ty if F € }‘,",
with F = 87} r|87}.

At F e F| we have nr, = -nr,.

The orientation of ng = ny, is arbitrary, depending on the choice of Ty and Tp, but this
orientation must be kept fixed.

e n, the outward normal to Q at x if F e FP.
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Lebesgue spaces

 Consider functions v: Q c R? - R, d > 1, that are Lebesgue measurable.

Let 1 < p < o be a real number and define the norms

1
Wiy = ([ IP)" 1<p<os,

[V] oo (@) = supess{|v(x)]| | for almost every x € Q}

=inf{M >0 ||v(x)| < M for almost every x € Q}.
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Lebesgue spaces

e The Lebesgue space is defined as

LP(Q) := {v is Lebesgue measurable | [|V]p(q) < oo}
e The Lebesgue space with norm ||v| ;p(qy < oo is @ Banach space for all 1 < p < co.

e Forall 1 < p < oo the space Cg°(Q2) of infinitely differentiable functions with compact support
is dense in LP(Q).

o For p = 2, the space L?() is a Hilbert space, equipped with the scalar product

(v, W) 2 (q) ::/va.
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Lebesgue spaces

e Holder’s inequality.

Forall 1 < p, g < oo with 1p +1-1allvelP(Q)andall we LI(Q) there holds vw ¢ L' (Q)

and

1
q

Jovw < Vo) IWliace).

o For p = g =2 Holder’s inequality becomes the Cauchy-Schwarz inequality.

Forall v,w e L?(Q), vw e L' (Q) and

(v,W)2qy < VI Wl 2(q)-
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Sobolev spaces

 Given a Cartesian basis in RY with coordinates (x1, -, Xg), then 8; with i € {1, -, d} denotes
the distributional partial derivative with respect to x;.

%dy of v with

o For a € N9, then 8*v denotes the distributional or weak derivative 8?‘ 0y

800y =y,

A function f € L}OC(Q) has a distributional or weak derivative 9“f provided there exists a

function g € L! _(Q) such that

loc
[ aGae00ax = (=) [ fx)6@ax voe G5 (@),

If such a g exists, then we define 9“f = g.
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Sobolev spaces
Example. Take d =1, Q= [-1,1] and f(x) = 1 —|x|.

Then for ¢ € C§°(Q2), arbitrary, we have,

f_: f(x)811¢>(x)dx:/_:) F(x)01 p(x)dx + f01f(x)611¢(x)dx
= f°(+1)¢(x)dx+f¢|° f1( 1)é(x)dx + f¢|!  (integration by part
==/, Sy d(x)dx + ¢|O (integration by parts)
= ([ eDa00ax [1Domax) + (18)(0-) - (16)(0+)

(since ¢(-1) =¢(1) =0)
=- f_: g(x)p(x)dx (since f is continuous at x = 0),

with

-1 x>0.

1 x <0,
g(X)={

The weak derivative 9] f(x) is then given by 8] 7(x) = g(x).

19/86



Sobolev spaces

e For1<p<oo,peR,define for all £ € RY, with £ = (&, -+, &4) in the Cartesian basis of RY,
the norm

d\p
|€|ZP = (Z gip) ) 1< p < oo,
i=1

€] geo = max [l

e Sobolev spaces

Let m>0, 1 < p < oo. The Sobolev space W™P(Q) is defined as
W™P(Q) = {v e P(Q) | Vae AT, 9°v e LP(Q)},

where AT := {a e N | |a ;1 < m}.

Note, WO-P(Q) = LP(Q).
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Sobolev spaces

e The Sobolev spaces WP () are a Banach space when equipped with the norm

1
P
”V”Wm’p(Q) :=( Z 8av|fp(g)) ) 1Sp<°°7
aeA;"
v oo = O%V|| oo () -
[VIwm.e () o'j;f\f"H Lo (02)

e The semi-norm | - [yym.p(q) is obtained by keeping only the derivatives of global order m,
—m o
hence Ay := {a e N? | |af,1 = m}.
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Hilbert spaces

« For p = 2 we use the notation H™(Q) := W™2(Q), hence

H™(Q) = {vel?(Q)|VaecAl, 0% ¢ ?(Q)}

o H™(Q) is a Hilbert space when equipped with the scalar product

(Vs W)meqy = D, (3%V,0%W) 2,

aeAg
resulting in the norm and semi-norm
2 \? 2 \?
Wikmy = (2 10°VIGg)) " Wlkmeay = ( 3 10%VI% )"
aeAg ozeAZ’
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Hilbert spaces

o For m =1 we can consider the gradient Vv = (8y v, -, 94v)T € R%. The norm on W'P(Q)
then is equal to

1
IVlwiocy = (VI ay + IVVIE o) *s T<P<00,

with

1 1

o= (R 1ov8) = (i)’

[vv(?

e For p =2 we have

(Vs W)t @) = (v, W)L2(Q) +(Vv, vW)[L2(§2]d

23/86



Traces

« Boundary values of functions in the Sobolev space W'-P(Q) have a meaning as traces in
LP(0Q).

e Trace inequalities:

For all 1 < p < oo there is a constant C s.t.
1-1 1 1
IVleo) < CIVIp () IVIg1pq) 7V EWHP(Q).

For p = 2 this gives

1 1
Wiz gony < CIVIG oy MIZ gy ¥V EH'(R).

o We will also consider Hilbert-Sobolev spaces H5(Q2), s R, s > 0, e.g. functions in H%“(Q),
e >0 have a trace in L?(Q).
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Polynomial spaces

o The space of polynomials Pg of total degree at most k, with k > 0, integer, is defined as

. K -
Pg = {,0 : Rd 3xep(x)eR ‘ H(VQ)QEAZ € thrd(Ad) s.t. p(x) = E YaX },
acAk
d

with for x = (xy, -+, Xg) € RY, x* := N9, x™ and

A ={aeN? [Jaly <k}

e The dimension of PX is

dim(Pz):card(Ag):( k+d )= (k+d)!'

k kid!
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Broken polynomial spaces

e The broken polynomial space ]P’Z(’ﬁ,) is defined as
Pg(Th) = {v e LX(Q) | VT € Th, vIr € Pg(T)},
with IP’";(T) spanned by the restriction to T of polynomials in ]P”‘;.
o The dimension of PK(75) is

dim(P&(Th)) = card(7p) x dim(PX).
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Broken Sobolev spaces

o Let 7, be a mesh in Q. The broken Sobolev spaces are defined as

H™(Th) = {v e L2(Q) VT € T, vir e H(T)},

W™P(Tp) ={velP(Q) | YT e Th, vire W™P(T)},

with m > 0, integer, 1 < p < oo a real number.
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Broken Sobolev spaces

« The continuous trace inequality gives Vv e W'-P(7;) and VT € Tp,

1-1 1
IViecory < CIVIe Ty IV G101y

with for p=2, Vv e H™(Tp) and VT € Tp,
2 2
Ilizary < CIVI Loy IVI G 7y
o The broken gradient v, : W'P(T;,) — [LP(€2)]? is defined as
VTeTh,  (VnV)Ir=V(vr),  Yve W'P(Ty).

Note, the subscript h will not be used if V, is used inside an integral over a fixed mesh
element T € Tp,.
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Broken Sobolev spaces

e Lemma 1. (Broken gradient on usual Sobolev spaces). Let m> 0, 1 < p < oo. There holds
W™P(Q) ¢ WM™P(Tp).

Moreover, Yv e W'P(Q), v,V = Vvin [LP(Q)]7.

Proof. Take m=1. Let v e W'P(Q). Forall ¢ ¢ [Cg"(T)]d we can since ¢ = 0 at 9T define
the extension of ® by zero as E® ¢ [Cg"(Q)]d. Then

[y o=- [v(v-0)-- [ v(v-(E®)

=fﬂvv.Eq>=/T(vv)\T.¢.

Since & is arbitrary, this implies V(v|7) = (VVv)|7.

Since T € Ty, is arbitrary, using (VxVv)|7 := V(v|71), we obtain that v,v = Vv. Hence
ve WHP(Th).
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Broken Sobolev spaces

e The reverse inclusion, namely W™P(T) ¢ W™P(Q), is in general not true (except for
m = 0) since functions in W™P(T;) can have non-zero jumps at interfaces.
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Broken Sobolev spaces

o Lemma. (Characterization of W'P(Q)). Let 1 < p < 0. A function v e W' (T}) belongs to
W'-P(Q) if and only if

[vll=0 VFeF,
Proof.

We will use for all & € [C5°()]9 the relation

> [ovr@-nn= > [1e-nelivh+ ¥ [ (e nrdiv,

T FeFp FeFl

Using the fact that @ is continuous across interfaces,

[®-nel]=0 and {®-neff=®-np for VF e ]—',",,

we obtain

> [fovr@nn= % [(@nn(v.

T<7h Fer)
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Broken Sobolev spaces

Let ve W'P(T;). Then Vo ¢ [Cg"(ﬂ)]d, we obtain by integrating by parts element-wise that

JoT o= 2 [v0An-0-- 3 fuv-o)x 5 [ virte-nn)
=—[va-cb)+FszﬂfF<¢-nF>[[v]]. 4

The condition [[v]] = 0, ¥F e F}, then implies

/thv-cb:—/;zvv-cbz_[QVv-(b Yo e [C(Q)]7,

hence Vv = v,v in [LP(Q)]9, thus v e WT:P(Q).
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Broken Sobolev spaces

o Conversely, if v e W'P(Q), then Vv = Vv in [LP(2)]¢ owing to Lemma 1. Hence (1)
implies

> f(¢ ng)[lv [an~¢+[9v(v-¢)

FeF]
= [ vv-d- ) i oo d
7fﬂ pvV - fﬂvv ¢ (since ® € [C5°(Q)]9)

=0 (since Vv =vVpviorve W'P(Q)).

This implies [[v]] =0, VF ¢ ]?,{,, by choosing the support of ¢ only to contain the two
elements Ty, To € T, connected to F ¢ ]-‘,"7, and & being arbitrary.
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Well-posedness for linear variational equations

For the well-posedness we consider:

e Let X and Y be two Banach spaces equipped with the norms | - | x and | - || y.

e Let £(X,Y) be the vector space spanned by linear operators from X to Y, equipped with the

norm
Av
IAleeyy= sup 2 yaepx, vy,
vex\{o} VvIlx
o Define the linear model model problem as
Findue X st. a(u,v) =(f,wyry VweY, @)

where ae £(X x Y,R) is a bounded bilinear form, f ¢ Y := £L(Y,R) is a bounded linear
form, and (-, )y y denotes the duality pairing between Y’ and Y.
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Well-posedness of linear variational equations

o Alternatively, we can introduce the bounded linear operator Ae L(X,Y) s.t.

(Av,w)y: y = a(v,w) V(v,w)eXxY,
and consider

FindueX st. Au=f inY' @)

e Problems (2) and 3) are equivalent; u solves (2) if and only if u solves (3).

e Problems (2) and 3) are well-posed if they admit one and only one solution u € X.
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Well-posedness of linear variational equations

e The well-posedness of (3) requires A to be an isomorphism (bijective mapping that
preserves the structure).

In Banach spaces this implies that if A< £(X, Y’) is an isomorphism, then A~" is bounded,
that is

1A 2ox,vry < C,
which implies that

lulx = 1A Flx < Clflly-
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Banach-Necas-Babuska theorem

e The Banach-Nec¢as-Babuska (BNB) theorem provides necessary and sufficient conditions for
well-posedness for linear variational equations.

e Theorem (BNB theorem). Let X be a Banach space and let Y be a reflexive space.
Letae £L(X x Y,R) and let f € Y’. Then the problem:

Findue X st a(u,w) =(f,w)y,y VweY

is well posed if and only if

i) Thereis a Cgiz >0 s.t.

a(v,w
weX, Cualvixs sup 209
wen{o} [wlly

i) Forallwe Y, a(v,w) =0 implies that w =0, Vv e X.
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Banach-Necas-Babuska theorem

e Moreover, the following a priori estimate holds true

1
lulx < =—Iflly
Csta

o Note, the condition

a(v,w)

VveX, Csa|vlx< sup
wenvioy Wiy

is equivalent to the inf-sup condition

a(v,w)

Csta< inf sup ——————.
#8Z vex\{0} wevrgoy [VIx Wy

e The BNB-theorem is a direct result of the Banach Closed Range theorem and the Banach
Open Mapping Theorem.
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Lax-Milgram lemma

e Let X be a Hilbert space, Y = X. Let ae £L(X x X,R).

The bilinear form a is coercive on X if there is Cgt5 > 0 s.1.

VveX, Csalvlk <a(v,v).

e Equivalently, a bounded linear operator A € £L(X, X") defined by
(Av,w)xs x = a(v,w) V(v,w)eXxX
is coercive if 3Cgt5 > 0 s.1.
VveX, CsalVlk < (Av,v)xr x.
e The Lax-Milgram lemma provides sufficient conditions for well-posedness.
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Lax-Milgram lemma

e Lemma (Lax-Milgram) Let X be a Hilbert space. Let ae £(X x X,R) and let f € X’.

Then the problem
Findue Xs.t. a(u,w) = (f,w)xr x YweX
is well posed if the bilinear form a is coercive on X.
Equivalently, the problem
Findue X,s.t. Au=finX’

is well-posed if the linear operator A € L(X, X") is coercive.

Moreover, the following estimate holds true

1
lulx < =—Iflx-
Csta
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Lax-Milgram lemma

Proof.

@ Let abe coercive, then for all v e X\{0},

a(v,v) < a(v,w)

Cstal Vilx < < s
IVIx = wexvioy lIwlx

and this condition also holds for v = 0.
@ To prove the second statement in the BNB theorem, namely,
For all w e X, a(v,w) = 0 implies that w =0, Vv € X.

Let w € X be such that a(v,w) =0, Vv € X. Then, choosing v = w yields |w| x = 0 due to
the coercivity of a(v, w). Hence w = 0.
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Abstract nonconforming error analysis

o Let Vj, c L2(Q) be a finite dimensional function space, e.g. Vj is a broken polynomial space.

Consider the discrete problem
Find Up € Vh s.t. ah(uh, Wh) = /h(Wh) VYwy e Vh,

with discrete bilinear form ap, : Vj, x V;; — R and discrete linear form I, : V), —= R.

Since functions in V}, can be discontinuous across mesh elements, we have V;, ¢ X and
Vh¢ Y.

Hence we have a nonconforming finite element discretization.
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Abstract nonconforming error analysis

o Alternatively, consider the discrete linear operator A, : Vi - Vj, s.t. Vv, wp e V)
(AnVh, Wh) 2(q) = an(Vh, Wh)
and the discrete function Ly € Vj, s.t. Vwy € Vp,
(Ln, Wh)2(qy = In(Wh),
which gives the formulation

Find Up € Vh s.t. AhUh = L/—, in Vh.
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Abstract nonconforming error analysis

o Assume that the data f € L?(Q2), then < f,w >y: y= (f, W) 2oy and
In(Wn) = (Ln, Wn) 2(qy = (f, Wn) 2(qy, and Ly =mf,

with 7, : L2(Q) — V}, the L2(Q2)-orthogonal projection onto Vj, so that Vv € L2(Q), mpv € Vj
with

(ThV, ¥n)12¢q) = (Vs ¥n) 12(q) Vyp € V.

e Note, m,v can be computed in an element T independently from other elements in 73, hence
VT e Th, mavlr e PE(T), sit.

(maVlT, ) 2¢ry = (V,OLA(T)  VEPE(T).
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Discrete stability

Define the norm ||| - ||| on Vj,.

o (Discrete stability) A discrete bilinear form a, has discrete stability on Vj, if there is a Csta > 0
s.t.

ap(Vh, Wh)
VvpeVh, Caalllvall € sup ——rms
weeV (0} |lIWalll

e Property (4) is called the discrete inf-sup condition and is equivalent to

an(vi, w,
Cota< inf sup M
VheVi\0} wyevi\ {0} [IVa (Il [l whll

e The coefficient Cgsi; can depend on the mesh size h, but for convergence analysis it is
important to ensure Cg; is independent of h.
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Discrete stability

e Lemma. (Discrete well-posedness) The discrete problem
Find Up € Vh s.t. ah(uh, Wh) = I(Wh) VWh € Vh7

is well-posed if and only if the discrete inf-sup condition (4) is satisfied.

Proof. The discrete inf-sup condition is the discrete counterpart of the inf-sup condition in the
BNB theorem.

Since Vj, ¢ V in a DG discretization the discrete inf-sup condition does not follow from the
inf-sup condition in the space V, and must be separately proven.
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Discrete stability

o A sufficient condition for discrete stability (and easier to verify) is coercivity:

Thereis a Csa > 08t Yvhe Vi,  Cssalll Valll? < @an(va, va). (5)

o Discrete coercivity implies the discrete inf-sup condition since Vv, € Vp\{0},

an(Vh, Va) ap(Vp, Wh)

Csta ll| valll < <
valll wheVi\{0} || Wl

e Property (5) is the discrete counterpart of the Lax-Milgram lemma.
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Consistency

o A (rather strong) form of consistency requires that the exact solution u of the variational
equation satisfies the discrete problem

Find up € V), s.t. ah(u,,, Wh) = I(Wh) Vwp e V. (6)

This requires that a,(u, wy) has a meaning, which may not be possible since ay, is only
defined on V), x V.

e Assume that there is a subspace X. c X s.t. the exact solution belongs to X, and that the
bilinear form can be extended to X, x Vj,.

o (Consistency) The discrete problem (6) is consistent if for the exact solution u € X,

ah(u, Wh) = /(Wh) VYwp e V.
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Consistency

e Consistency is equivalent to the Galerkin orthogonality property
an(u—up,wh) =0 VW € Vh. (7)

Proof. Substracting
an(u, wp) = In(wp)  Whe Vp,

anp(up, wp) = In(wp)  whe Vp,

and using the linearity of aj, gives (7).
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Boundedness

o Define the vector space
Xeh = X + Vpy

with X.x c X the space for the exact solution and V), the discrete space.
The approximation error then is u — up € X;p.
e Assume that the discrete norm ||| - ||| can be extended to X, .
For many problems to prove boundedness in the space X, x V}, and we need to define also

anorm ||| - [||+ on X, s.t.

vveXon, IVIF< v«
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Boundedness

e (Boundedness) A discrete bilinear form ay, is bounded in X, x Vj, if there is Cppg > 0 s.t.

V(v,w) € Xinx Vi, |an(v, W) < Cong Il V [ll+ W]l -

We assume that Cp,q is independent of h.
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Error estimate

e Theorem (Abstract error estimate) Let u solve

Findue X s.t. a(u,w) = (f,w)2(q) vweY

with f e L2(Q). Let up, solve
Find up € V) s.t. ah(uh, wp) = (f, Wh)LZ(Q) Vwpy e V.

Let X. c X and assume u € X.. Set X, = X. + V;, and assume that the bilinear form a;, can
be extended to X, x V.

Let ||| - ||| and ||| - |||+ be two norms defined on X,p, s.t. Yv e Xop, |||V < [[|V]|]+-

Assume discrete stability, consistency and boundedness. Then the following error estimate
holds true

llu=up|ll < inf |llu=ynlll+,
YneVh

withC=1+ Cs_[écbnd-
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Error estimate

e Proof. Let yy, € Vj,. Use the discrete stability and consistence, then

an(Up = Yn, W, i -
llun - yulll < o sup (U = Y, Wh) (discrete stability)

WheVi\ {0} llwalll
an(U = Yn, Wn)

< C3
= 1
Sawhev,,\{o} |H"|’h|”

(orthogonality)

- U=y lll+ [llwall
Scst;Cbnd sup m—*

boundedness)
WheVy\ {0} [l walll

1
= CstaCbna Il U= Y [l| -
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Error estimate

o Next, use the triangle inequality and the fact that

v = yalll < [llu=ynlll«
Then

llu=unlll < lllu = yu lll + 11l un = yalll
-1
<|llu=ya lll+ +CoaCona lll U = yalll+
-1 .
< (1+ CgaCpna) inf [[[U = Ynlll«,
YheVh

since yp € V, is arbitrary.
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Admissible meshes

o Consider a mesh sequence T := (Th) he -

‘H denotes a countable subset of R, := {x e R | x > 0} having 0 as only accumulation point.

o (Matching simplicial mesh) A mesh Tj, is a matching simplicial mesh if it is a simplicial mesh
and if for any element T e T, with vertices {ag, -, a4}, the set 9T n T for any
T' e Tp, T' # T is the convex hull of a (possibly empty) subset of {ag, -, aq}-

For instance in 2D, the set 3T n &T" for two distinct elements of a matching simplicial mesh
is either a common vertex or common edge.
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Simplicial submesh

e (Matching simplicial submesh) Let 7; be a general polyhedral mesh. Then %}, is a matching
simplicial submesh of 7, if

i) ¢ is a matching simplicial mesh.
iy Forall T" € ¢y, thereisonlyone Te Tps.t. T'c T.

iy Forall F' € #, which is the set collecting the mesh faces of 6}, there is at most one
FeFpst F'cF.

The simplices in ¢} are called subelements. The mesh faces in .%, are called subfaces.

Define for all T € T, the sets

Cr = {T’ €Ch | T c T},
Fr={F e 7| F 0T},

YFeFn: Fr={F ¢ Fy|F cF}.
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Shape and contact regularity

e A mesh sequence Ty is shape and contact regular if Vh € H, T, admits a matching
simplicial submesh %}, s.t.

i) The mesh sequence %% is shape regular, namely 3p; > 0, independent of h, s.t.
VT ety

prhrr <rpe,
where hy is the diameter of T’ and ry/ the radius of the largest ball inscribed in T’.
i) 3po >0, independentof h,s.t. VT e Toand VT’ € 6,
poht < hyr.
The parameters py and p, are called mesh regularity parameters and are denoted as p.

If T, itself is matching and simplicial, then %}, = T, and the only requirement is shape
regularity, p1 > 0, independent of h.
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Geometric properties of the mesh

e Lemma (Bound on card(%7)). Let T3 be a shape- and contact -regular mesh sequence.

Then, for all he H and all T € T, card(467) is bounded uniformly in h.

Proof. Let | - |4 denote the d-dimensional Haussdorff measure and let By be the unit ball in

R. Then,
d d dpd
hg>(Tlg= Y 1Tg2 Y |Balaryr= > |Bdlap{h%
T'eer T'cer T'eer
d dpd
> > |Bylapfpaht
T'e6T
dd d
2 |Bglg p1pacard(6T)hT,
hence

card(47) < ————.
1Bala p9pg
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Geometric properties of the mesh

e Lemma. (Bound on card(F7), card(-#1), Ny and card(.%F)) Let T3, be a shape- and
contact-regular mesh sequence with parameter p.

Then, forall he H and VT € Tp, card(Fr), card(-#71), and Ny are bounded uniformly in h.
In addition, for all F € Fp, card(.%F) is bounded uniformly in h.
Proof. Observe that

card(Fr) < card(F7) < (d + 1)card (¢7),

where in the last inequality we used the fact that a simplicial element has d + 1 faces.

Since card(%7) is uniformly bounded in h, then also card(Fr) and card(.#7) are uniformly
bounded in h. Hence,

Ny = [rng%card(]:r)
is also bounded in h. Finally, take T € Tp, s.t. F € Fr, use card(.F¢) < card(67).
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Geometric properties of the mesh

e Lemma. (Lower bound on face diameters). Let 7 be a shape- and contact-regular mesh
sequence with parameter p.

Thenforallhe H,all T € T, and all F € Fr,

dF 2 p1p2hr,
where 6f is the diameter of F.

Proof. Let T € T, F € Fr. Then, take an F’ € .#¢ and denote by T’ € ¢ the simplex to
which the subface F’ belongs. Then

OF 2 0pr 2 1y 2 prhyr 2 prp2hr.
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Inverse and trace inequalities

e Lemma. (Inverse inequality) Let 73, be a shape- and contact regular mesh sequence with
parameter p.

Then, for all he H and all v, € P’;(ﬁ) andall T € T,
”VVhH[LZ(T)]d < Cinvh;'1 [ VhHLZ(T)y
where Cj,, only depends on p, d and k.

Proof. Let v, € PK(Tp,), T € Tp. For all T’ € €, the restriction vj|7 € PK(T").

Use the inverse inequality on simplices, see e.g. Brenner & Scott, Math. Theory. of FEM or
Ern & Guermond, Theory and Practice FEM,

”vVhH[LZ(T/)]d < Cinv,sh;'J [ VhHL2(7'1)7

where Cjpy s only depends on pq, d and k.
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Inverse and trace inequalities

Using the shape- and contact regularity of the mesh, namely

1
<

Jdpo > 0 s.t. pohr < hyr, hence < —,
7 p2hr

gives

HVVhH[LZ(T/)]d < Cinv,sPE1 h? [ VhH[LZ(T/)]d

Squaring the inequality and summing over all T € €7 proves the result.
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Inverse and trace inequalities

e Lemma. (Discrete trace inequality) Let 73; be a shape- and contact regular mesh sequence
with parameter p.
Then, forall he H, all v, € IP”(;(T,,), all TeTpandall F e Fr,

1
h: Ivall 2¢ry < Crllvall 21y

where Cy only depends on p, d, and k.
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Inverse and trace inequalities

e Proof. Let v, € [P’f,(Th), let T € Ty, F € Fr. First assume that 75 is @ matching simplicial
mesh.

Let T be the unit simplex in R?, and let F7 be the bijective map such that F7(T) = T.

Let F be any face of T. Since the unit sphere in P (T) for the L2(T)-norm is a compact set
(PX is finite dimensional), there is a Cq (), only depending on d, k and F s.t. ¥V e PX(T)

”VHLZ(’F‘) < 6(1,!((7_=) ”V”LZ(?)- (8)
Applying inequality (8) now to the function V = v4|7 o F7', which is in ]P”;(T'), gives

_1 —~ _1
IFla2, Vel 2 ry < Cad Tl IVl 2.
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Inverse and trace inequalities

Note,

|F|g-1 - Area(F) -

v

T Vol(T h 1 1
He WD _ o pifr, ©

where hr ¢ denotes the distance of the vertex opposite to F to that face, and rr is the radius of
the largest ball inscribed in T. Hence,

-1 — -1
IFlg21vall2cry < Cakl Tlg? IVall 27y

is equal to

1
ITla )2 _
() 1ok < Coxtmlizery

and finally using (9) we obtain

1
h72— I VhHLZ(F) < Crr sl VhHL2(7')7

1
1 2 Cq,x only depending on p, d and k.

with s = d2p
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Inverse and trace inequalities

e General mesh.
For each F’ € ZF, let T’ denote the simplex in 6 of which F’ is a face.

Since the restriction vp|7: € ]P’(;( T'), the discrete trace inequality yields
1
h2, IVall 21y < Cir,slIVall 277y < Cur,sllVall 27

This gives

1

2 1
(3 hrlvelZee)? < Cus(card(F))E Vil 2 )
FleZge

since hyr > ppht and card(ZF) < (d + 1)card(%7) is uniformly bounded.
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L2-norm transformation rules for tetrahedron

« A. Consider a tetrahedron K c R3 with vertices {xg, -, X3 }.

Define the mapping F7(T) = T, with T the reference tetrahedron with vertices
{(0,0,0),(1,0,0),(0,1,0),(0,0,1)}, and for x ¢ T, X ¢ T, we have the relation

with Jacobian matrix

and

X=B7")?+X07
9x X1 —Xp Xo—Xo
Br=—n=| ¥1-% y2-Jo
X Z1 -2y 22— 29
Vol(T
det By = 21D

Vol(T)

X3 — Xo

¥Y3s—Yo
Z3 - 2p
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L2-norm transformation rules for tetrahedron

« Consider the L?(T)-norm:

Wieer = ([ Mo0Rax)*

- ( f? [V(%)[? | det Br|a®X)?
() oo

- (V°1(P ) ey
Vol(T)

or equivalently

7l (L(T)) vl
M =\ vol(T) B

(with V(X) = v(Fr(X)))

since det By is constant
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L2-norm transformation rules for tetrahedron

o B. Given a tetrahedron T c R3. Consider a face F c 8T with vertices {X0, X1, X2}.

Define the mapping Fr(F) = F, with F the reference triangle with vertices
{(0,0),(1,0),(0,1)}, and for x € F, X ¢ F, we have the relation

X = (X1 — X)X+ (X2 — X0)¥ + Xo-
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L2-norm transformation rules for tetrahedron

o Consider the L2(F)-norm:

ol

IWlizgey = (L IvC0PdS)
(o 2wy
[0 = 10) % (e =) (L PRE 0%ey)

~ (Area(F) ); [l 20e
- Area(F) L)

since

|(X1 - X0) x (x2 —Xo)| = irr::((;_))-

70/86



L2-norm transformation rules for tetrahedron

e The estimate

”VhHL2(’F) < Ccli,k”Vh”LZ(?)
is thus equal to

[SE

Vol(T)
Vol(T)

(Area(F) )_

1
T2
— Vi
B (F) ) H h”lz(l)

IValie ey < Ca i (F) (
or equivalently,

~1 —~ _1
IFlaZivhll 2y < CoklTly® IVall 27y -
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Continuous trace inequality

e Lemma. (Continuous trace inequality) Let 73, be a shape- and contact-regular mesh
sequence.

Thenforall he #, all v e H! (Tp) and all T € Tp, and all F € Fr,
IVIZ2 , < Cot(RIVVI2(rye + 07 IVI2(r) V]2,

L2(F) =

with Cgj = p~' if T, is a matching simplicial mesh and Cg; = (1 + d)(p1p2)~" otherwise.
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Continuous trace inequality

o Proof. Let v e H'(T;) and F e Fr. First, assume T is a simplex with vertices {xg, -, X3} and
consider the R%-valued function

|Flg-1
aTly

OF = (XiaF)’

where ar is the vertex xg of T opposite to face F, which has vertices {x;, xo, x3}.

Note, o7 is proportional to the lowest order Raviart-Thomas-Nédélec shape function in T.

At face F we have the normal vector

(x1 = X3) x (X2 — X3)

nr = ’
[(X1 = X3) x (X2 = X3)|
which gives
Areagg( xs)x(Xz—Xs)‘:,i:%()“_XS) (X2 = x3)-
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Continuous trace inequality

With ar = xg we have that for x — xg € F,

X—ar=X-X0=(X{ —X3)X+ (X2 — X3)¥Y + X3 — Xo.

Then
Fla-1 |Fla- _ _
nr-of = Flat |Fla—s (4 =x3) x (x2=x3)) - (X1 = X3)Y + (X2 = X3)V + X3 — X0)

[Fla—1 dITlg
Fla-

= |d||;1'|; (OB =x1) x (x3=x2)) - (X3 = %)
|Flo-1

= det|x3 — Xo, X3 = X1, X3 — Xo|
d|Tlg

_|Flg-1|Tlg
dTla [Tlg

— 1 = 1
=1 since |Flg-1 = =, |T|g= = ford = 3.
Flo-t = 5 1Tla = &

Note, for the other faces F’ of T, we have nr - o = 0 since of: is parallel to the face F’ # F.
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Continuous trace inequality

e Using the divergence theorem we obtain

2 2 2 :
HvHLz(F):fF\v\ =f@TM (or-n7) (since of -ny=1at Fand
ch~nT=0at8T\F)
_ . 2
SAARS
:fT(2VUF.vv+\v\2v.aF).

Hence

112 gy <21Vl lor - 9Vli2gry + 19 -0l (ry V122 -
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Continuous trace inequality

Since
|Fla—1hr . .
lorliLee (1y)e < ATy because ar is the vertex opposite to F,

d
|Flg-1

V-.of= ;
ITa

|Flg-1h7
lor- Vi < loflieryal VVIpzme < WHVVH[LZ(T)]L

we obtain the estimate

HVHiz(,:) <2|Vlecryllor - Vvl + V'UF”V”fa(T)

|Fla-1h7 1
< W(znvvnm(md + a7 V]2 oy ) IVl g2y

1 _ - |Fla-1 d
< —(219Vigzrye + 7 IVI2 ) ) IVIg2(ry,  using <

o1 ( [2(T)] P IVl )Vl Tlg ~ pihr
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Continuous trace inequality

o If T, is a general mesh use the subdivision into a matching simplicial mesh.
For each F’ € ZF, let T' denote the simplex in %+ of which F’ is a face.

Applying the continuous trace inequality for F and T’ yields,
1
IVIZ2 oy < (2uvvn 2y + T V]2 ) IV 2y -

From the mesh regularity we have hy > pohr and po < 1, which gives ,%T, < and

PZhT

1

(@9l + I IVLiz ) Wl oy

V122 g, <

Hence, after summing F’ € ZF and using the fact that T’ € 61 appears at most (d + 1)-times
gives

d+1 i
IvIZ2(ry < TZ(ZHV"“[LZ(TW+dhr1”VHLZ(U)”V“B(T)-
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Comparison of | - || o(y- and || - | La(7y-norms

e Lemma. (Comparison of | - ||p(7y- @and | - || a(ry-norms). Let 73, be a shape- and
contact-regular mesh sequence with parameter p.

Let 1 < p, g, < oo be two real numbers. Then for all he H, all vy, € IP‘(;(T,,) andall T € Tp,

d(

11
IVallo(ry < Cinv,p,ghy © ¢

)
l VhHLq(T)

where Cjny p,q Only depends on p,d, k, p and gq.
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Comparison of | - || o(y- and || - | La(7y-norms

e Proof. Since vy € ]P”;(ﬁ), we can use that all norms are equivalent in a finite dimensional

space,

”VhHLp(T) < a“7h||1_q(T)

=( /T|vh<x)|ﬁ’det15rdx)l” <C( [ w0l

1 1
Vol(T) \P —~ [ Vol(T)\49
‘i’( ( )) [Vhllo(y < C( ( )) IvhllLacTy

Vol(T) Vol(T)
Vol(T)\#~
— (o) p q
<= <C — vV,
[Vall o1y (Vol(T)) [Vallcacry
-
=|Valo(ry < Cinv.p.ghy Ivallacry-
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Discrete trace inequality in LP(F)

e Lemma. (Discrete trace inequality in LP(F)). Let T3, be a shape- and contact-regular mesh
sequence with parameter p.

Let1 < p,q,< oo be two real numbers. Then for all he H, all vy, € IP’(;(T,,) and all T € 7, and
all FeTr,

1
h2allo(ry < Cor pll Vil ocTy,s

where Cy p only depends on p, d, k and p.
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Discrete trace inequality in LP(F)

o Proof. Combine the discrete trace inequality with the relation between LPand L9-norms, then

@-14-1)

1 1
h2\Vallo(Fy < Cinv,p,2h? o5 Ivall 2y (use relation between L” and L7 norms

with g = 2 for a face F with dim(F) =d - 1)

1.1 (g-1)y(1-1
< Cinv,p,2Crrh3 26,(: ' 2)|| Vall ¢y (use discrete trace inequality)
1_1 1_1 1_1
1-3 (-D(3-1) d(3-1)
< Cinvp2CirCinv,2.ph%? 26 P 27h %P7 vh| ot
(use relation between LPand L9-norms)
< CrrpllValle(ry using o = hr.
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Polynomial approximation

Since up € Vj, we obtain from the error bound for the variational equation the relation
inf [llu=ynlll < lllu=uplll < C inf [llu=ynll-, (10)
YneVh YneVh

hence we need a bound for the approximation error on the righthand side of (10).

The optimality of the error estimate is classified as:
o (Optimality, quasi-optimality and suboptimality of the error estimate).

i) Optimal, if {[| - I = [|l - [I[+-

ii) Quasi-optimal, if the norms ||| - ||| and ||| - |||+ are different, but the lower and upper
bounds in (10) converge for smooth u at the same rate as h — 0.

i) Suboptimal, if the upper bound in (10) converges at a slower rate than the lower bound.
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Polynomial approximation

e (Optimal polynomial approximation). The mesh sequence 74, has optimal polynomial
approximation properties if for all h € H, all T € T, and all polynomial degrees k, there is a
linear interpolation operator /5 : L2(T) - PX(T) st. ¥se {0, k+1} and all v e HS(T)
there holds

v~ BVlym(ry < Capph§ M VIws(ry ~ Yme{0,..., s},

where Cgpp is independent of both T and h.

o (Admissible mesh sequences). A mesh sequence Ty is admissible if it is shape- and
contact-regular, and if it has optimal polynomial approximation properties.
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Polynomial approximation

o Lemma. (Optimality of L2-orthogonal projection). Let T3, be an admissible mesh sequence.

Let 7, be the L2-orthogonal projection onto PX. Then Vs e {0, -,k +1} and all v e H5(T),
we have

‘V*7‘(‘hV|Hm(T) < Cépph§—_m|V|Hs(T) VYme {0,"',3}.

where Capp is independent of both T and h.
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-
Polynomial approximation

Proof. For m = 0, we have since wj, : L2(T) — IP’"; is the L2-orthogonal projection that

Iv=mnVli2ery < IV = B5Vili2(q) < Capph$|Vis(ry
For m > 1, use m-times the inverse inequality, together with the triangle inequality

[V —mpvlgmery < v - /’7‘-v|Hm(T) + |/'7‘-v = ThV|Hm(T) (triangle inequality)
<|v = 5Vlumcry + C'h7" |15V = 7Vl 2y (use m-times inverse inequality)
<|V=IVlum(ry + C'h |V = 15v] 27y + C' g™ [V = 7] 27
<|lv- I'}V|Hm(7> +2C'h{"|v - l’}v||L2(T) (using m = 0 case)

< Capph¥ TIVIks (1) (use optimal polynomial approximation error).
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Polynomial approximation

e Lemma. (Polynomial approximation on mesh faces). Let 73; be an admissible mesh
sequence.

Let 7, be the [2-orthogonal projection onto P’g. Thenforall se {1, k+1} and all
v e H5(T), we have

[v- 7rhV”L2(F)<CapphT |V|H5(T)7
andif s > 2,

I9(v = m0)lr - nrl2ey < Clpohts 2 1VIns(ry,

C//

where C; 20p

20D are independent of both T and h.
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