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We report theoretical investigations of the quantized spin-Hall conductance fluctuation of graphene in
the presence of disorder. Two graphene models that exhibit the quantized spin-Hall effect (QSHE) are
analyzed. Model I is with unitary symmetry under an external magnetic field B � 0 but with a zero spin-
orbit interaction, tSO � 0. Model II is with symplectic symmetry where B � 0 but tSO � 0. The two
models give exactly the same universal QSHE conductance fluctuation value 0:285� 0:005e=4�
regardless of symmetry. We also examined a third model that exhibits QSHE but with quadratic dispersion
and obtained the same results. Finally, all three models of QSHE have a one-sided log-normal distribution
for spin-Hall conductance. Our results strongly suggest that the quantized spin-Hall conductance
fluctuation belongs to a new universality class.
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One of the most important transport features of meso-
scopic conductors is the universal conductance fluctuation
(UCF) in the diffusive regime caused by disorder scattering
and quantum coherence [1]. The universality characterized
by the value of UCF only depends on the dimensionality
and symmetry of the system. According to random matrix
theory (RMT) [2], there are three ensembles or universal-
ities due to symmetry: (1) When time-reversal and spin-
rotation symmetries are present, i.e., when the magnetic
field B � 0 and spin-orbit interaction (SOI) tSO � 0, the
Hamiltonian H of the system is an orthogonal matrix and
one has circular orthogonal ensemble (COE). COE is
characterized by a symmetry index � � 1. (2) If time-
reversal symmetry is broken by B � 0, H is unitary and
one has the circular unitary ensemble (CUE) characterized
by� � 2. (3) If spin-rotation symmetry is broken by tSO �

0 while time-reversal symmetry is maintained, one has the
circular symplectic ensemble (CSE) for which � � 4.
While different ensembles have different values of UCF,
it is amazing that the multitude of possibilities of electron
dynamics in nature can be classified by only a few ensem-
bles [3]. For instance, in one dimension (1D) the UCF
value is given by [2] �rms�G��2 � 2=�15��.

Recently, universal fluctuation was also found to occur
in 2D mesoscopic spin-Hall effect (SHE) [4]. SHE can be
induced by spin-orbit interaction, for instance Rashba SOI
in 2D, such that chemical potentials of the spin-up or -
down channels become different at the two boundaries of a
mesoscopic sample [5,6]. With disorder, numerical calcu-
lations showed [4] that the spin-Hall conductance GSH of a
2D mesoscopic system fluctuates from sample to sample
with a value rms�GSH� � 0:18e=4�: this is independent of
system details thus universal, and the phenomenon is
termed universal spin-Hall conductance fluctuation
(USCF). The numerical value of USCF has been quantita-
tively confirmed by RMT [7]. For most situations, GSH

itself may have any value in units of e=4� depending on
system details. On the other hand, several authors have ad-
vanced the notion of quantized SHE (QSHE) for situations
where electronic edge states exist: in QSHE GSH takes
integer multiples of e=4�. In particular, QSHE is shown
to occur in 2D graphene due to SOI plus the peculiarity of
graphene electronic structure [8]. QSHE is also predicted
to occur in graphene without SOI but with an external
magnetic field [9]. Therefore, using the language of RMT
[2], QSHE occurs in graphene with CUE where B � 0 but
tSO � 0, and with CSE where B � 0 but tSO � 0.

Several important and interesting questions therefore
arise concerning the universality of QSHE: is it still clas-
sifiable by the RMT ensembles? As the disorder is in-
creased, is there a USCF for QSHE and if there is, is the
value different from the USCF for SHE that is 0:18e=4�?
What is the distribution of GSH in QSHE? Indeed, all these
questions are related to the curiosity, i.e., whether or not
the Dirac dispersion relation of graphene brings new phys-
ics to the spin-Hall conductance fluctuation in the quan-
tized SHE. It is the purpose of this work to investigate these
issues.

To be more specific, we investigate the two graphene
models that exhibit QSHE [8,9] as mentioned above. In the
first model, model I [9], SOI is neglected in the graphene
but a magnetic field is applied causing a Zeeman splitting.
Model I has unitary symmetry and importantly is in the
quantum Hall regime where edge states are present.
Because of the Zeeman splitting and graphene energy
spectrum both electronlike and holelike edge states exist
near the Fermi level forming countercirculating edge states
in graphene that has been confirmed experimentally [10]. It
is these countercirculating edge states that lead to QSHE
[9]. The second model, model II, is the one proposed by
Kane and Mele [8] where intrinsic SOI gives rise to ‘‘spin
filtered’’ edge states that cause QSHE based on an idea
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discussed by Haldane [11]. Clearly, model II has symplec-
tic symmetry. Although the value of SOI parameter tSO for
graphene is small [12], model II is nevertheless very useful
for our purpose, namely to investigate the universality class
of QSHE. As we show later, the value of tSO —as long as it
is nonzero—turns out to be irrelevant as far as universality
is concerned. From the symmetry point of view, one would
expect these two models to belong to different universality
classes. To our surprise, extensive numerical results indi-
cate that in the presence of edge states, the QSHE domi-
nates the physics and these two models give exactly the
same universal value for USCF � 0:285e=4� regardless of
symmetry. The distribution of GSH in the QSHE regime is
found to obey a one-sided log-normal distribution: this is
qualitatively different from the conventional UCF for
charge and USCF for SHE where it is a Gaussian distribu-
tion. To find out whether the universal feature is solely due
to graphene structures or not, we have studied the spin-Hall
fluctuations in a third model that has symplectic symmetry
on a square lattice with a quadratic dispersion relation [13].
The quantized spin-Hall effect in this model can be real-
ized in Te based materials [13]. Our results show that the
same universal value for USCF is obtained with the one-
sided log-normal distribution.

In a tight-binding representation, the Hamiltonian for
2D honeycomb lattice of graphene can be written as

 H1 � H0 �
X
hiji

tei2��ijcyi�cj� 	 gs
X
i�

cyi��� 
B�ci�

for model I, and

 H2 � H0 �
X
hiji

tcyi�cj� 	
2i���

3
p tSO

X
hhijii

cyi � 
 �dkj � dik�cj

for model II, where H0 �
P
i��ic

y
i�ci� and cyi� (ci�) is the

creation (annihilation) operator for an electron with spin �
on site i. H0 is the on-site single particle energy where
diagonal disorder is introduced by drawing �i randomly
from a uniform distribution in the interval ��W=2; W=2�.
Here W measures strength of disorder. The second term in
H1 is due to nearest neighbor hopping and the presence of a
magnetic field, the last term inH1 is due to Zeeman energy.
Here gs � �1=2�g�B (with g � 4) is the Lande g factor,
phase �ij �

R
A 
 dl=�0, �0 � h=e is the quantum of

flux, and the spin-Hall conductance and its fluctuation
are in units of e=4�. In H2 the last term is the SOI that
involves next nearest sites of indices i; j with k the com-
mon nearest neighbor of i and j, and dik describes a vector
pointing from k to i.

We use the four-probe device schematically shown in the
inset of Fig. 1 to investigate USCF in QSHE. The four
probes are exact extensions from the central scattering
region; i.e., the probes are graphene nanoribbons. The
number of sites in the scattering region is denoted as N �
nx � ny, where there are nx � 8� n	 1 sites on ny �
4� n chains. We apply external bias voltages Vi with i �

1; 2; 3; 4 at the four different probes as Vi �
�v=2; 0;�v=2; 0�. The spin-Hall conductance GSH can be
calculated from the multiprobe Landauer-Buttiker formula
[4] GSH � �e=8����T2";1 � T2#;1� � �T2";3 � T2#;3��, where
the transmission coefficient is given by T2�;1 �
Tr��2�Gr�1Ga� with Gr;a being the retarded and the ad-
vanced Green functions of the central disordered region
which can be evaluated numerically. The quantities �i� are
the linewidth functions describing coupling of the probes
and the scattering region and are obtained by calculating
self-energies �r of the semi-infinite leads using a transfer
matrices method [14]. The spin-Hall conductance fluctua-

tion is defined as rms�GSH� �
���������������������������������
hG2

SHi � hGSHi
2

q
, where

h
 
 
i denotes averaging over an ensemble of samples
with different configurations of the same disorder strength
W. In the following, our numerical data are mainly col-
lected on a system with n � 8, i.e., with 32� 65 sites in
the graphene. In the rest of the Letter, we fix units by
setting energy E, disorder strength W, SOI coupling tSO

in terms of the hopping parameter t, and the magnetic field
in terms of magnetic flux �.

We first examine model I which has unitary symmetry.
In the absence of disorder, countercirculating edge states
are formed [9,10]. A transverse flow of spin current be-
tween probes 2 and 4 is generated when the bias voltage is
applied across probes 1 to 3 leading to the QSHE. In the
regime of QSHE, we now increase disorder strength W.
This causes a breakdown of the integer value of GSH and
induces sample-to-sample fluctuations of GSH. Figure 1(a)
plots the averageGSH by calculating 5000 samples for each
point on the figure; Fig. 1(b) plots the corresponding
fluctuation rms�GSH�, as a function of W. When W is
increased, GSH decreases from its quantized value GSH �
1 and rms�GSH� increases. The breakdown of quantized
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FIG. 1 (color online). (a)–(c) Spin-Hall conductance and its
fluctuation versus disorder strength at different energies and
magnetic fluxes for the first model. (d) Schematic plot of the
four-terminal graphene device.
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GSH is due to W that causes a direct transmission from
probe 1 to 3; this is shown in Fig. 3(c) where the direct
transmission T31 is plotted against W. From T31 we con-
clude that the graphene device is in an insulating regime at
small W, i.e., zero or very small T31; it is in a diffusive
regime for intermediate W and finally reentrant to the
insulating regime for large W. We note that for a different
set of system parameters, the diffusive regime corresponds
to a different range of W. For a given E or �, rms�GSH�
develops a ‘‘plateau’’ region, e.g., in the range W � �3; 7�
in Fig. 1(b). This plateau is at rms�GSH� � 0:285 in unit of
e=4�. Although the plateau range of W depends on spe-
cific values of E or �, our results show that it is always
inside the diffusive regime. From Fig. 3 we found that
rms�GSH� � 0:285 is always true if there is a plateau,
i.e., if the diffusive transport regime is established. We
therefore identify rms�GSH� � 0:285 as a ‘‘universal’’
value. This USCF value is different from that of the con-
ventional SHE situation [4,7] where the universal value is
0.18. Therefore QSHE and SHE belong to different uni-
versality classes due to these different statistical properties.

Next, we investigate model II that has a symplectic
symmetry. For such a graphene device there is an energy
gap between �1<E< 1, within which edge states exist
[8]. Figure 2 plots averaged GSH and rms�GSH� versus W
for a given set of E, tSO parameter values. Five thousand
samples were calculated for the disorder averaging. Similar
behavior is found as that of model I. For different values of
tSO, rms�GSH� reaches a plateau at a different range of W
[see Fig. 2(b)]. Amazingly, all plateaus have the same
value and this value is precisely rms�GSH� � 0:285. To
further confirm this finding, Fig. 2(c) plots rms�GSH� ver-
sus W for a fixed tSO � 0:7 but several different values of
energy E. Again, the same conclusion is obtained. This
indicates that there exists a transport regime where the
QSHE conductance fluctuation has a universal behavior

independent of disorder (albeit in a region roughly 2t

5 eV), energy, and SOI.

Now we examine the third model that has a symplectic
symmetry but on the square lattice with four probes. The
Hamiltonian is given in Ref. [13]. Note that the quadratic
dispersion relation of this model is different from the Dirac
dispersion relation in graphene. Figure 3 shows the aver-
aged GSH and rms�GSH� versus W for different energies E.
The plateau values of rms�GSH� are, again,
0:285. Results
of Figs. 1–3 strongly suggest that there is a universal spin-
Hall conductance fluctuation in the quantized spin-Hall
regime with USCF � 0:285� 0:005 in units of e=4�.
This is different from the conventional SOI induced SHE
where USCF � 0:18 [4].

Very importantly, it appears that symmetry does not play
a role in the QSHE regime at least for the CUE and CSE
cases we have examined: both give rms�GSH� � 0:285. To
further support this finding, we calculated the distribution
function of GSH, P�GSH�, in the QSHE regime. Such a
distribution is a Gaussian for conventional SHE in the
diffusive regime [4]. For QSHE, Figs. 4(a)–4(d) plot
P�GSH� for four different values of W in the universal
regime for model II, which has CSE symmetry. Data
were collected by calculating 84 000 samples for each W.
The distributions are completely different from a Gaussian.
We found that by using ln�GSH� as a variable and plotting
P� ln�GSH��, all the distributions become one-sided log-
normal [see Figs. 4(e)–4(h)]. For model I, which has
CUE symmetry, and the third model, our results give the
same conclusion; i.e., the distribution of quantum spin-Hall
conductance is a one-sided log-normal. Therefore, for the
three models we investigated, not only is USCF
rms�GSH� � 0:285 the same, but also the distribution func-
tion is the same. This strongly indicates that in the presence

FIG. 3 (color online). (a),(b) Spin-Hall conductance and its
fluctuation versus disorder strength at different energies for the
third model for a 40� 40 square lattice with 5000 configurations
for each data. (c) The transmission coefficient T31 versus dis-
orders for the first model [Fig. 1(c)].
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FIG. 2 (color online). (a)–(c) Spin-Hall conductance and its
fluctuation versus disorder strength at different energies and
magnetic fluxes for the second model. The parameters and
symbols used in (a) and (b) are the same.
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of edge states (i.e., QSHE), systems with unitary symmetry
and symplectic symmetry belong to the same universality
class that is different from the conventional SHE.

Finally, as a further confirmation of the QSHE universal-
ity class, we have carried out extensive calculation on spin-
Hall conductance fluctuation for the same four-probe gra-
phene device with additional Rashba SOI tR [15]. For
nonzero tR, three cases are of interest. (1) B � 0 and tSO �
0. For this situation it is obvious that there is no edge state
and therefore the spin-Hall effect caused by tR is not
quantized. Indeed, here we did not obtain the USCF for
QSHE but obtained a value of 0.18 for all energies, i.e., the
same as the conventional USCF found before [4,7]. As
expected, for this case the distribution ofGSH was found to
be a Gaussian. (2) When jEj< 1, for both model I and
model II our numerical results show that USCF � 0:285
remains the same as long as tR does not destroy the edge
states. (3) When jEj> 1, there is no edge state in model II
[8]; our results show that USCF � 0:18 for any tSO.
Therefore, edge states dominate the quantized spin-Hall
physics and tR is an irrelevant parameter (for both model I
and model II). On the other hand, if edge states are ab-
sent tSO becomes an irrelevant parameter (for model II).
This clearly shows the landscape of the universality class
and it is the edge state that drives the system from the
universality of USCF � 0:18 to the new universality we
have discussed.

In summary, we have investigated quantized spin-Hall
conductance fluctuation for three models with unitary and

symplectic symmetry, respectively. Our numerical results
show that three models exhibit the same universal quan-
tized spin-Hall conductance fluctuation with the value
USCF � 0:285� 0:005e=4�. The fact that both Dirac
dispersion relation and quadratic dispersion relation give
rise to the same USCF indicates that the edge states domi-
nate the physics in the QSHE regime. Because of the
presence of edge states, the distribution of quantum spin-
Hall conductance obeys one-sided log-normal distribution
for three models. This strongly suggests that the quantized
spin-Hall conductance fluctuation for systems with both
unitary symmetry and symplectic symmetry belongs to the
same universality class that is different from the usual spin-
Hall conductance fluctuation in the absence of edge states.
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FIG. 4 (color online). (a)–(d) The distribution of spin-Hall
conductance at different disorder strengths for the second model.
(e)–(h) The distribution of ln�GSH�.
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