

Critical behavior in the grand and the canonical ensemble

Youjin Deng ¹, Henk W.J. Blöte ^{1,2}, Jouke R. Heringa ¹

¹ Delft University, ² Leiden University

The Netherlands

- General introduction to the modern theory of critical phenomena
- Scaling behavior of critical systems with a fixed number of vacancies or magnetic spins

Introductions

Examples

The liquid-gas critical point of H_2O : $T_c = 647K$, point of Fe: $h_c = 0$, $p_c = 218 \text{ atm.}$

The ferromagnetic $T_c = 1044K$.

Theoretical Treatments

- Write out Hamiltonian H.
- Calculate partition function $Z = \sum e^{-\mathcal{H}/k_bT}$ or free energy $F = -\ln Z$
- Derive quantities of interest

First derivative: ρ_{H_2O} , m

Second derivative: C, χ

 \star *n*th-order transition: *n*th derivative is singular, but (n-1)th derivative is analytic.

• Critical phenomena

Specific-heat : $C \propto |T-T_c|^{-lpha}$ Susceptibility : $\chi \propto |T-T_c|^{-\gamma}$

Magnetization: $m \propto |T-T_c|^{eta}$

At T_c , correlation: $g(r) \propto r^{-2X}$

Specific heat C of the critical Ising model.

***** Universality: critical exponents, α, γ, \cdots , take same values in different systems.

Theoretical models

(1) Ising model with vacancies:

$$\mathcal{H}/k_{\rm B}T = -K\sum s_i s_j - \mu \sum s_k^2 (s=0,\pm 1)$$

K- interaction strengths; $\mu-$ chemical potential

(2) lattice gas:

$$\mathcal{H}/k_{\mathsf{B}}T = K \sum \delta_{\sigma_i,\sigma_i}(1 - \delta_{\sigma_i,0}) - \mu \delta_{\sigma_i,1} \ (\sigma_i = 1,0)$$

(3) dilute q-state Potts model

$$\mathcal{H}/k_{\mathsf{B}}T = K \sum \delta_{\sigma_i,\sigma_i}(1-\delta_{\sigma_i,0}) + \mu \delta_{\sigma_i,0} \ (\sigma_i = 0, 1, \cdots, q)$$

ullet Fractal geometry at T_c

Scale invariance: clusters of all possible sizes occur

Renormalization group technique

Various fixed points are for various universalities

Grand and Canonical ensembles

Grand (T, μ) : particle number $N\rho$ fluctuates.

Canonical (T, ρ) : ρ is conserved

Phase diagrams

Question: *Is there any difference in critical phenomena in different ensembles?*

Simulation

Experiment

	Experiments	Models
Ferro- and antiferromagnets Binary fluids	< 0	0.11
He ₃ and He ₄ mixture	-0.9	1/2
Explanation	CONVERGENT (K, ρ_v)	(K,D)

Exponent α of specific heat $C \propto t^{-\alpha}$

Analytical calculations

I Mean field calculations for tricritical Ising model Vacancy density ρ_v fixed at tricriticality:

II Fisher's renormalization

Singularity of ${\cal C}$ arises from both $\underline{\it singular}$ and $\underline{\it analytical}$ parts of free energy

Results:
$$\alpha>0 \Rightarrow \alpha'=-\alpha/(1-\alpha)$$
 ;
$$\alpha=0 \Rightarrow C'=1/\ln|T-T_c| \ .$$

! C is convergent

Finite-size interpretation:

Free energy: $f(t,l) = l^{-d}f_s(tl^{y_t})$ (unconstrained)

$$\Rightarrow f'(t,l) = l^{-d}f'_s(tl^{d-y_t})$$
 (constrained)

At criticality: $C \propto L^{2y_t-d} \Rightarrow C' \propto L^{d-2y_t}$

III Generalization of Fisher's renormalization

Including subleading thermal field \Rightarrow

$$f'(t_1,t_2,l) = l^{-d}f'_s(t_1l^{d-y_{t_1}},t_2L^{y_{t_2}})$$

- ! Leading behavior of C depends on relative magnitude of $d-y_{t1}$ and y_{t2} .
- ! Renormalization for magnetic constraint is similar to the above formula.

IV General understanding

Equivalence of F:

$$F^{(g)}(T,\mu,L) = F^{(c)}(T,\rho^{(g)}(T,\mu,L),L) \quad (L \to \infty)$$

Nonequivalence of $E \equiv \partial F/\partial T$:

$$E^{(g)}(T,\mu,L) = E^{(c)}(T,\rho^{(g)}(T,\mu,L),L) + \frac{\partial F}{\partial \rho} \frac{\partial \rho}{\partial T}$$

Numerical Investigation

! ONLY geometric cluster algorithm can EFFICIENTLY simulate large constrained systems.

I Quantity sampled

(a) Specific heat $C \propto L^{Y_c}$:

$$Y_c=2y_{t1}$$
 -2 \Rightarrow $Y_c'=2-2y_{t1}$ (thermal) or
$$Y_c'=2y_{t2}-2$$

Susceptibility $\chi \propto L^{Y_\chi}$:

$$Y_\chi = 2y_{h1} - 2 \Rightarrow \boxed{Y_\chi' = 2y_{h2} - 2}$$
 (magnetic)

(b) Long-distance correlation functions g_e and g_m

No modification is expected

- (b) Others, e.g., Binder-ratio, structure factors of $C\cdots$
- II Thermal constraint (2D q = 3 Potts model)

$$Y_c$$
 of $C \propto L^{Y_c}$

Model	Theory	Numerical	Mean-field
crit. 2D Ising	$1/\ln L$	$1/\ln^2 L$	
hard-hexagon	-2/5	-0.796(5)	
crit. 2D $q = 3$	-2/5	-0.802(4)	
crit. 3D Ising	-0.174(2)	-0.35(2)	
2D anti Ising	$1/\ln L$	$1/\ln L$	
crit. 2D $q = 4$	-1	-1.50(6)	
tricr. 2D Ising	-2/5	-0.398(4)	
tricr. 2D $q = 3$	-6/7	-0.840(8)	
tricr. 3D Ising	-1	-0.987(8)	In L

- ! Long-range correlations are NOT affected.
- ! NEW finite-size corrections are induced.

Binder ratio for critical 2D Ising model

III Magnetic constraint (2D tricritical Ising model) Unconstrained systems Constrained systems

! χ can be **divergent** under constraint.

! WE ASSUME

$$X_{h2} = 2 - y_{h2} = \frac{(g+2)(10-g)}{8g}$$

g — coupling constant for Coulomb gas particles.

*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
							Y	χ 0	$f \chi$	$\propto I$	$\sum Y_{\chi}$						
	N	10d	el					Т	hec	ry			Nu	me	rica	al	
							y_{h2}		Y	χ					Y	χ	
			0	т .	-		10	10 4			110	. —	_	01	(0)		

	y_{h2}	Y_χ	Y_χ
crit. 2D Ising	13/24	-11/12	-1.01(2)
crit. 2D $q = 3$	2/3	-2/3	-0.77(4)
crit. 2D $q = 4$	7/8	-1/4	-0.224(8)
tricr. 2D $q = 3$	12/21	2/21	0.126(2)
tricr. 2D Ising	9/8	1/4	0.253(2)

CONCLUSIONS

- Geometric algorithm enables *EFFICIENT* simulations of constrained systems
- Constrained critical phenomena are NOT completely understood
- Constrained tricritical 3D Ising systems are NOT explained mean-field calculations.
- Fisher's renormalization is generalized.
- An approach is provided to numerically observe subleading scaling fields.