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— General introduction to the modern theory
of critical phenomena

— Scaling behavior of critical systems with a
fixed number of vacancies or magnetic spins




Introductions

e Examples
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The liquid-gas critical The ferromagnetic
point of HO: T, = 647K, point of Fe: h, =0,

p. = 218 atm. T.= 1044K.
T heoretical Treatments
— Write out Hamiltonian H

— Calculate partition function Z = ¥ e~ /R T
or free energy FF= —1InZ

— Derive quantities of interest
First derivative: pg,0, m
Second derivative: C, x



* nth-order transition: nth derivative is singular,

but (n — 1)th derivative is analytic.
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e Critical phenomena

Specific-heat : C o |T —T¢|™®
Susceptibility : x o< |T' — T¢|™
Magnetization: m o |T — T¢|?

At T,., correlation: g(r) oc r—2%
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Specific heat C of the critical Ising model.
* Universality: critical exponents, «a,~, -,

take same values in different systems.



e [ heoretical models

(1) Ising model with vacancies:

H/keT = —K Y sisj—puy, si(s=0,£1)
K— interaction strengths; u— chemical potential

(2) lattice gas:
H/kgT = K Y 05,0,(1 — 60,0) — 05,1 (07 = 1,0)
(3) dilute g-state Potts model

H/kBT =K Z 50i70j(1 _5Ui,0) +:u50'i,0 (Ji — O, 17 e ,Q)

e Fractal geometry at 1.

Scale invariance: clusters of all possible sizes occur

U

Renormalization group technique

U

Various fixed points are for various universalities



Grand and Canonical ensembles

Grand (7T, u): particle number Np fluctuates.

Canonical (T,p): p is conserved

e Phase diagrams
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Question: Is there any difference in critical phenomena
in different ensembles?

e Simulation
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e [Experiment

Experiments Models
Ferro- and
antiferromagnets | <O 0.11
Binary fluids
Hes and Hey
mixture —-0.9 1/2
CONVERGENT
Explanation (K, pv) (K, D)

Exponent o of specific heat C' o« t™¢

Analytical calculations
I Mean field calculations for tricritical Ising model

Vacancy density p, fixed at tricriticality:

= mean-field critical Ising-like.

II Fisher's renormalization

T A
- D=Dr(T) Constraint = Path of

constrained systems is

singular near the

critical point

T=T (D) "

S
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Singularity of C arises from both singular and analytical
parts of free energy




Results: a >0 = o = —a/(1 —a) ;
a=0=C=1/In|T —T| .
I C is convergent

Finite-size interpretation:

Free energy: | f(t,1) = I79f,(¢t1%) | (unconstrained)

= | f'(t,1) = I74fI(t1%%) | (constrained)

At criticality: C o« L2V~ = C' « L%2v

IIT Generalization of Fisher's renormalization

Including subleading thermal field =

f/(tla to, l) — l_df; (tlld_ytla tQLth)

I Leading behavior of C depends on relative magnitude
of d — yu1 and yo.

I Renormalization for magnetic constraint is similar to
the above formula.
IV General understanding
Equivalence of F':
FO(T,p, L) = FO(T, p(T, p, L), L) (L — o0)
Nonequivalence of E = 0F/0T:

EON(T, u, L) = EO(T, )T, u, L), L) + 352



Numerical Investigation

I ONLY geometric cluster algorithm can EFFICIENTLY
simulate large constrained systems.

I Quantity sampled
(a) Specific heat C oc LY:

Yo =2y1 —2 = |Y! =2 —2y;1| (thermal)

or Y = 2y;p — 2

Susceptibility x oc LYx:
Yy = 2yp1 — 2 = | Y] = 2yp2 — 2| (magnetic)

(b) Long-distance correlation functions g. and g,

No modification is expected

(b) Others, e.g., Binder-ratio, structure factors of C'---
II Thermal constraint (2D q = 3 Potts model)
Unconstrained systems Constrained systems
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*x ok ok Kk ok ok ok ok Kk Kk ok Kk ok Xk Kk Kk Kk %k

Y, of C < LY
Model Theory Numerical Mean-field
crit. 2D Ising | 1/InL 1/In?L
hard-hexagon —2/5 —0.796(5)
crit. 2D ¢=3 | —2/5 —0.802(4)
crit. 3D Ising —0.174(2) —0.35(2)
2D anti Ising 1/InL 1/InL
crit. 2D g=4 | —1 —1.50(6)
tricr. 2D Ising | —2/5 —0.398(4)
tricr. 2D ¢ =3 | —6/7 —0.840(8)
tricr. 3D Ising | —1 —0.987(8) In L

I Long-range correlations are NOT affected.

I NEW finite-size corrections are induced.
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Binder ratio for critical 2D Ising model




III Magnetic constraint (2D tricritical Ising model)

Unconstrained systems Constrained systems
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' x can be |divergent| under constraint.

I WE ASSUME

— (+2)(10—yg)
89

Xno =2 —yno

g — coupling constant for Coulomb gas particles.

*x ok ok Kk ok ok ok ok Kk ok ok ok ok ok Kk Kk Kk %k

Y, of x < L¥

Model Theory Numerical

Yn2 Yy Yy
crit. 2D Ising | 13/24 —11/12 —1.01(2)
crit. 2D ¢g=3 | 2/3 —2/3 —0.77(4)
crit. 2D ¢g=4 | 7/8 —1/4 —0.224(8)
tricr. 2D ¢=3 | 12/21 2/21 0.126(2)
tricr. 2D Ising | 9/8 1/4 0.253(2)




CONCLUSIONS

Geometric algorithm enables EFFICIENT
simulations of constrained systems

Constrained critical phenomena are NOT
completely understood

Constrained tricritical 3D Ising systems are
NOT explained mean-field calculations.

Fisher’'s renormalization is generalized.

An approach is provided to numerically ob-
serve subleading scaling fields.



