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Summary

“A new Kempe invarianand the(non)-ergodicityof the
Wang-Swendsen-Koteclalgorithm” [for theg-state
antiferromagnetic Potisodel]

1. Theg-state Potts model

2. Markov Chain Monte Carlo methodErgodicity

3. The Wang-Swendsen-Kotecky algorittar the ¢g-state Potts
antiferromagnet

4. The proof of non-ergodicity of WSK(= 4) at
zero temperaturtor the triangular lattice on a torus

e Kempe changes
e Algebraic topology(Fisk)
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The standard g-state Potts model

e (G = Finite subset of aegular latticewith someboundary
conditions

X 4 x 4 triangular lattice
with toroidal bc’s

NN
e ViceV, o,€{l,...,q} qg=2,3,... € Z,

o |H(o)=—J > 050, Ovs0; =

(ij)€E 0  0i#0j

t [aY) Z
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The standard g-state Potts model (2)

~\

Za(q, J) =3 e )

(o2

e Partition function

e Free Energy [f(;(q; J) = W

lOg ZG(Q: J)

V' = # spins (“Volume”)

e Main goal To obtain an explicit expression fof; (¢, J) or
fa(q; J) for finite G, or ...

e To obtain an explicit expression for th&inite-volume free
energy

faw(q; J) = lim

n—oo |V,

log Z¢, (q; J)
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The standard g-state Potts model (3)

The Infinite-volume free energy is important

1

fa (q;J) = JLH;OW log Z¢, (q; J)

e Phase transition= singularities in the free energy) cannot
occur forfinite systemsf J € R

JY 800,
Zo(q,J) = Y e @ > 0

o

e fo.(q;J) exists and is continuoun J for J € R
e The limit /] — +o0o is not problematicy ordered states.
e What about/ — —o0???[71" = 0 limit in the AF regime]
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The J — —oc limit on a triangular lattice

e If ¢ = 2: Theallowedspin configurationgground states)
have on every triangle the following configuration

Al

Frustration many ground states and the energgas
minimized
e If ¢ > 3: Theallowedspin configurations correspond to
proper coloring®f G: o, # o, if i ~ 5
e ¢ = 3: 3! ground states~ ferromagnet af’ = 0)

e ¢ > 4: Manyground states witho frustration
e The system igritical if ¢ = 4
e The system islisorderedf ¢ > 5
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Triangular-lattice Potts-model phase diagram

v— el —1 Ordered (F) Solutions ofv3 + 302 = ¢

1 + T ———=—-0 UFE
VR.G. flow Disordered
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ve = —0.796927(20)
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Markov-chain Monte Carlo simulations (1)

e We can usdMonte Carlosimulations when we don’t know
how to obtain an explicit expression for the partition
function/free energy.

e Important warning This isEquilibrium Statistical
Mechanics=- | No time!!!

e |dea Invent a stochastic process such that it converges to the
probability measure of the Potts model

1
e—'H(a)

e = Tt

e Problem WeignoreZ;(q; J)M!
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Markov-chain Monte Carlo simulations (2)

Goal We want to obtain aiscrete-timeéMarkov chain
Xo, X1,...,Xs,...,such that:

e Each.l; takes values on the finite configuration space
S={1,...,q}V >0
¢ |Is defined by an inventegrobability transition matrix®:
Poo = Plo —0') = Pr(Xyy1 =0 | Xy = 0)
The k-steptransition probabilities are
Py = (PHoor = Pr(Xiyp =o' | Xy = o)
e Has the rightuniquestationary distribution limit:
tlim pg,, = 7Tgq.0(0")

Markov-chain Monte Carlo simulations (3)

Probability transition matrix’:

Poo = Plo —0') = Pr(Xyy1 =0 | Xy =0)

(A) P is stationary w.r.trg , s

N 76.4.0(0) Poor = Tag5(0")
g

(A) Detailed balance:
WG,q,J(U)pa,of = WG,q,J(UI)pa/,a
(B) P isirreducible (orergodio:
For all o, ¢, there exists a € N such thatoffg, > 0
(C) P is aperiodic (period ond) = 1):
P has periodD if D = ged({k > 1| P 0})
P is ergodic ang, , > 0 for somes = P aperiodic
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Markov-chain Monte Carlo simulations (4)

Theorem 1 Consider an aperiodic irrducible Markov chain with finite

state space S. Then, for every o, 0’ € S, the limit

exists and it is independent of . In addition,

Z?T(O‘) =1, and ZW(J)pJ,G/ = 7w(o’') forallo’ €S,

Moreover, v = 7 is the only solution of
> 0(0)pae = v(0’),  w(0) 20, Y u(o) =1
g g
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Markov-chain Monte Carlo simulations (5)

e 7(0) ~ Pr(X, = o) fort > 1, and independently oX,.
e The system is essentially in equilibrium afteg, MC steps

e Once in equilibriumsamples areorrelatedbecauseX,, ;
depends onk;

e \We obtain twostatistically independersamples after;,;
MC steps

e The bad newsClose to a second-order phase transition

Texp A MIN(L, &))", Time A~ MIN(L, &)5n .
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The Wang—Swendsen—Kotecky algorithm, 1989 (1)

Antiferromagnetig;—state Potts model

Step 1 Pick up uniformly at random two distinct colors
pFve{l,2 ... q}
Step 2 Freeze all spins; taking colors# p, v.

Step 3 Allow the remaining spins to take the values~
Y

We induce aAF Ising modeland simulate it using the
Anti-Swendsen-Wang algoritifASW)

Non-eraodicity of WSK — p. 13/31

The Wang—Swendsen—Kotecky algorithm, 1989 (2)

ZG(Q; J) — Z He_u'&ai’aj — Z H [(1 _p) +p(1 o 501‘703')]
o (ij) o (i)

p = 1—eV e 0,1] forJ <0

1

1eqr(0) = Zola J)H[(l—p)+p(1—5ai,aj)}
T (i)

We augment the state space by adding a variaple- 0, 1 on
every edge:

1
Za(q; J)

H [(1 — p)énij,o + p<1 _ 501703')671@'3‘,1}
(i5)

plo,n) =

n;; =1 = edge(ij) is occupied
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The Wang—-Swendsen—Kotecky algorithm, 1989 (3)

1
1 —p)o,. . 1 —0u 5.)00..
ZG(q, J) g [( p) ZJ,O +p< 19 g) Z]’1i|
Step 4 SimulatePyong = p(n | o)
Independently for each eddg)), taken,;; = 0 if o; = 03,
and taken;; = 0, 1 with probabilities(1 — p), p if o; # 0.

plo,n) =

Step 5 Identify the clusters of sites connected with bongs= 1.

Step 6 SimulatePspin = p(o | n)
Independently for each connected cluster, either keep the
original spin value or flip it { < ) with probability 1/2.
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The Wang—Swendsen—Kotecky algorithm, 1989 (4)

e The transition probability matri¥ = Pyonds- Pspin l€aVES
invariantuc 4 .

e Itis ergodic foranyl’ # 0: J € (—o0,0)
e At T = 0 the ergodicity is a non-trivial question:

e Forbipartitelattices it is always ergodic far > 2
[Burton-Henley, Ferreira-Sokal, Mohar]

e Forplanar three-colorablattices it is always ergodic for
g > 3 [Mohar]
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A practical situation

e Lattices arenon-planar we useperiodic boundary
conditionsto minimize finite-size-effectSlorus)

e There are interesting models’at= 0 in the AF regime:

e ¢ = 4 on the triangular latticé€Non-bipartite)

e \We want to consider @iangular lattice of linear size
(3L) x (3N) with fully periodic boundary conditions

= Regqular triangulation of the torus

F(3L,3N)

e Linear sizes multiples df to ensure 3-colorability, and

tripartiteness (physically important)
e Regular graph with degree
e In most applications., = N

Autocorrelation time for g = 4
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Non-eraodicitv of WSK — p. 18/31



Kempe changes = Basic WSK moves & = 0

e S is the space of propercolorings ofG

® /i 4 - IS the uniform measure ofi
Algorithm:

Step 1 Pick up twodistinctcolorsy # v € {1,2,...q}

Step 2 Occupyall bonds(ij) with o; = p ando; = v. ldentify
connected clusters of sites joined by occupied bonds.

Step 3 For each connected cluster, either flip it or leave it
unchanged with = 1/2.

Note: Kempe moves contaisingle-spin-flipmoves (Metropolis)
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Degree of a 4—coloring (1)

Vector representation of the spin states

gl e RITL a = 1,2,...,q
#@ @ _ ap—1
qg—1

Forg = 4.
We have the surface of a tetrahedromRih

= 0A3 = Triangulation of the spherg?
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Degree of a 4—coloring (2)

A properd—coloring f of a triangulatioril’ is anon-degenerate
simplicial map

f: T — OA°

SiT is aclosed orientablsurface inR?3, we can define an
integer-valuedunctiondeg( f) (unique up to a sign)
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Degree of a 4—coloring (3)

e We first choose orientations f@t andoA?® (e.qg. clockwise)

e Given any triangular faceof 0A®

Al

we compute the number(resp. n) of triangular faces @t
mappring tot which have their orientation preserved (resp.

reversed) byf
A A

p—p+1 n—n-t+1

o deg(f) = p—n
e deg(f) does NOT depend on the choicetdt
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Properties of the degree of a 4—coloring

e Tutte’'slemmadeg(f) = >  d, (mod 2) for
f(z)=a
a=123,4

e Corollary: The parity of a 4—coloring is a Kempe invariant

Tutte’s lemma implies that any 4-coloring @i{3L,3N) has
even degree!!=- The invariant is useless

e Fisk’'s lemma: IfT" admits a 3—coloringthendeg(f) = 0
(mod 6) for any 4-coloringf

o deg(f) =0,+6,+12, +18, etc
e If g is a 3—coloring off’, deg(g) = 0.
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A new Kempe invariant

Theorem 2 Let 1" be a 3—colorable triangulation of a closed orientable
surface. If f and g are two 4—colorings of I’ related by a Kempe

change, then

deg(g) = deg(f) (mod 12).

This is ausefulKempe invariant: there might kde/o ergodicity
classes:

e Class #1deg(f) =0 (mod 12), which contains the
3—coloring ofT’

e Class #2deg(f) =6 (mod 12), which may be empty!!!

Note: T'(3L,3N) is 3-colorable, and the torus is a closed and
orientable surface

Non-eraodicitv of WSK — p. 24/31



A new Kempe invariant (2)

Theorem 3 (Fisk) Suppose the 7' is a triangulation of the sphere or
torus. If 7" has a 3—coloring, then all 4—colorings with degree divisible by

12 are Kempe equivalent.

Corollary 4 Suppose the T’ is a triangulation of a 3—colorable torus.
Then WSK for ¢ = 4 is non-ergodic if and only of there exists a
4—coloring f with deg(f) =6 (mod 12).

But how can we prove that such 4—coloring exists for any
triangulationT'(3L, 3N )????
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Existence of degree= 6 (mod 12) 4-colorings

Theorem 5 For any triangulation 7'(3L, 3L) with L. > 2, there exists
a 4—coloring f with deg(f) = 6 (mod 12). Hence, the WSK
dynamics for ¢ = 4 on T'(3L, 3L) is non-ergodic.

PROOF.
e Technically involved

e We have four cased; =4k — 2, L =4k — 1, L. = 4k, and
L=4k+1withk > 1

e Easiest case i = 4k — 2: the sought 4-coloring is “trivial”

e For the other cases, we have an algorithmic proof that
explicitly builds the 4—coloring.
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CaseL =4k — 2

Smallest exampl&'(6,6): | deg(f)| = 18 =6 (mod 12)

ForT'(3(4k — 2),3(4k — 2)) =T(6(2k — 1),6(2k — 1)), the
periodical extension of the above 4-coloring has degree

deg(fextended = (2k —1)*deg(f) = 6 (mod 12) W
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What happens withT'(3,3INV)?

Proposition 6 The degree of any 4—coloring on any triangulation

T(3,3L) or T'(3L,3) with L > 1 is zero.
Proor. Look fort = 123. Focus on sites colored 3:

The 9 different and compatible 4-colorings have zero degme
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Existence of degree= 6 (mod 12) 4-colorings (2)

Theorem 7 For any triangulation 7'(3L, 3N ) with L. > 3and N > L
there exists a 4—coloring f with deg(f) = 6 (mod 12). Hence, the
WSK dynamics for ¢ = 4 on T'(3L, 3N ) is non-ergodic.

PROOF.

e By induction onN > L.
e The base case corresponddi1@L,3L)

e Given a“degree-6"4-coloring on7'(3L,3N) we can build a
“degree-6"4-coloring onT'(3L, 3(N + 1)) by gluing a
“degree-0"4-coloring on7'(3L, 3) with the same top-row
coloring

e The 4-coloring ori’(3L, 3) is obtained algoritmically
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Existence of degree= 6 (mod 12) 4-colorings (3)

What happens fof'(6, 3/V) with N > 2?2??

Proposition 8 For any triangulation 7°(6, 6k) with odd k& > 1 there
exists a 4—coloring f with deg(f) = 6 (mod 12). Hence, the WSK
dynamics for ¢ = 4 on T'(6, 6k) is non-ergodic.

Proposition 9 For the triangulation 7°(6, 9) all 4-colorings have zero

degree. Hence, the WSK dynamics for ¢ = 4 on T(6, 9) is ergodic.
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Conclusions

e Monte Carlo simulations are a great tool to investigate
Statistical Mechanical systems; but one has to ensure its
applicability.

e The WSK algorithm for the 4—state Potts antiferromagnet is
not ergodic af” = 0 on most triangulation¥’(3L, 3N) of
the torus
e Open problems
1. Find a procedure to test non-ergodicity in practice
2. Invent a legal (and hopefully efficient) algorithm
3. What happens far = 5, 6 on the triangular lattice???
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