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Ab initio theory of moiré superlattice bands in layered two-dimensional materials
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When atomically thin two-dimensional (2D) materials are layered, they often form incommensurate
noncrystalline structures that exhibit long-period moiré patterns when examined by scanning probes. In this paper,
we present an approach that uses information obtained from ab initio calculations performed on short-period
crystalline structures to derive effective Hamiltonians that are able to efficiently describe the influence of the
moiré pattern superlattices on electronic properties. We apply our approach to the cases of graphene on graphene
(G/G) and graphene on hexagonal boron nitride (G/BN), deriving explicit effective Hamiltonians that have the
periodicity of the moiré pattern and can be used to calculate electronic properties of interest for arbitrary twist
angles and lattice constants.
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I. INTRODUCTION

Since shortly after it was first isolated for electronic
property studies in 2004 [1], the graphene family of two-
dimensional electron systems has attracted great interest.
Recently, attention has expanded [2] to include other extremely
anisotropic materials, including hexagonal boron nitride [3]
(hBN) and transition metal dichalcogenides [4], and to
structures in which combinations of these materials are stacked
in various different ways. All these materials share hexagonal
lattice structures, and have low-energy electronic states located
at momenta near the two-dimensional lattice’s Brillouin-zone
corners.

Because the lattice constants of these 2D materials differ,
and because the hexagonal lattice orientations of different
layers are not always identical, multilayer systems usually
do not form two-dimensional crystals. For example, the lattice
constant of hBN is approximately 1.7% larger than that of
graphene. Differences in lattice constant or orientation produce
moiré patterns [5] that are apparent in scanning probe studies
of electronic properties [6–9] when graphene is placed on a
graphite or hBN substrate. The moiré pattern is responsible for
Hofstadter [10] gaps [11–14] that occur within Landau levels
when samples are placed in a perpendicular magnetic field.

The period of the moiré pattern is unrelated to true two-
dimensional crystallinity, which for a given lattice constant
difference is present only at discrete relative orientations, and
appears to have little relevance for observed properties. The
absence of crystallinity nevertheless complicates theoretical
descriptions of electronic properties because it removes the
simplifications which would otherwise be afforded by Bloch’s
theorem. This obstacle has forced researchers to proceed
either by using simplified tight-binding models [15–19], or by

performing ab initio or tight-binding calculations [14,20,21]
for long-period crystal approximants to real structures. An
alternative approach [22–30] is based on the assumption that
interlayer tunneling amplitudes in 2D materials vary slowly
on an atomic scale with changes in either initial or final
two-dimensional position. When this assumption is valid, it
is possible to formulate an effective theory of low-energy
electronic structure in which the Hamiltonian is periodic with
the periodicity of the moiré pattern, and therefore to employ
Bloch’s theorem. We refer to models of this type, which seek
mainly to describe electronic properties in systems with long
moiré period structures over a limited energy range, as moiré
band models.

In this paper, we extend the moiré band approach, explain-
ing how moiré band models can be systematically obtained
from ab initio electronic structure calculations performed
only on short-period commensurate multilayer structures. The
moiré band Hamiltonian is position dependent and acts on real
spin and on orbital, sublattice and layer pseudospin degrees
of freedom. A moiré band Hamiltonian does not account for
the presence or absence of commensurability between the
underlying lattices. Moiré band Hamiltonians are particularly
advantageous for theories of electronic properties in the pres-
ence of an external magnetic field for which other more direct
approaches are usually not practical. We illustrate our method
of deriving moiré band Hamiltonians by applying it to the case
of two graphene layers, and to the case of graphene on hBN.

Our paper is organized as follows. In Sec. II, we explain our
approach, which can be applied to any system of layered 2D
materials in which the local interlayer stacking arrangement
varies slowly on an atomic scale. The parameters of the
model can be extracted from ab initio electronic structure
calculations by examining the dependence of electronic states
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on relative displacements between layers in crystalline stacked
structures. In Sec. III, we discuss the 2D band structures of
crystalline graphene on graphene (G/G) [16–30] and graphene
on hexagonal boron nitride (G/BN) [31–38]. We extract
the quantitative values of the small number of parameters
which characterize the corresponding moiré band models
from these calculations. (As experimental results emerge, the
model parameters could instead be fit to observed properties
if deemed more reliable than ab initio electronic structure
calculations.) In Secs. III B and III C, we describe applications
to G/G and G/BN. For G/BN, it is possible to derive a two-band
moiré band model which describes only the graphene layer π

bands. We expect that this simplified model, which is explained
in Sec. III D, will be widely applicable to evaluate many
physical properties of graphene on BN substrates. Finally, in
Sec. IV, we summarize our results and briefly discuss some
issues which may arise in applying our approach to other 2D
material stacks, and in accounting many-body effects that are
important for theories of some physical properties.

II. MOIRÉ BAND MODEL DERIVATION

Our method applies to stacks of two-dimensional crystals
with the same lattice structure, similar lattice constants, and
relative orientation angles that are not too large. It is ideally
suited to stacks composed of graphene and hBN layers in
arbitrary order with arbitrary orientations, or to group VIB
transition-metal dichalcogenide stacks. The basic idea is that
the lattice representation Hamiltonian,

Hlat = 〈ls �L|H |l′s ′ �L′〉, (1)

depends mainly on the local coordination between layers l and
l′, and that this dependence can be characterized performing
calculations for crystalline structures in which the layers are
displaced arbitrarily but share the same lattice constant and
orientation. In Eq. (1), l labels the layers, each of which is
assumed to form a 2D crystal, s labels sites within the 2D
crystal unit cell, and �L labels lattice vectors. If more than
one atomic orbital were relevant at each lattice site, as would

be the case for transition metal dichalcogenides, for example,
s would label both site and relevant orbitals on that site. For
graphene and hBN, we will restrict our attention to the π bands
so we will consider only one orbital per atom.

The moiré band model is defined by matrix elements of Hlat

calculated in the representation of the 2D Bloch states of the
individual layers. Below, we first explain the approximation
we use for Hlat, and then explain how we use it to evaluate
Bloch state matrix elements. We will focus on the case of 2D
honeycomb lattices so that our discussion applies specifically
to the graphene and hBN cases of primary interest. In this
paper, we focus on the two layer case, and comment on the
more general case only in the discussion section.

When the individual layer 2D lattices have the same ori-
entation and identical lattice constants, the overall material is
crystalline. In that case we can exploit translational symmetry
and solve the electronic structure problem using Bloch’s
theorem. Using Bloch state completeness properties it is easy
to show that

〈ls �L|H ( �d)|l′s ′ �L′〉 = 1

N

∑
�k∈BZ

exp[i�k · ( �L + �τs)] Hls,l′s ′ (�k : �d)

× exp[−i�k · ( �L′ + �τ ′
s)]. (2)

Here, Hls,l′s ′ (�k : �d) is the Wannier representation Bloch-band
Hamiltonian; we have explicitly indicated that it is a nontrivial
function of any rigid displacement �d of the top layer with
respect to the bottom layer. (We include the displacement in
the site positions so that �τs ′ → �τs ′ + �d in the top layer when it
is displaced. �d is defined to be zero for AA stacking.) Note that
〈ls �L|H ( �d)|l′s ′ �L′〉 is a function only of �L′ − �L and not of �L
and �L′ separately, and that Hls,l′s ′ (�k : �d) = Hls,l′s ′ (�k : �d + �L).
The geometry of two stacked honeycomb lattices is illustrated
in Fig. 1.

The moiré band model is intended to provide a low-energy
effective model of electronic states for the case in which
the top layer lattice is expanded by a factor α and rotated
counterclockwise by rotation rotation angle θ with respect

FIG. 1. (Color online) (Left) Schematic representation of two commensurate honeycomb layers with bottom layer sites indicated by light
grey circles and top layer sites indicated by dark grey circles. The unit cell of the bilayer contains four sites, A and B for bottom layer and A′

and B ′ for the top layer. The shaded region represents the primitive cell area A0 used for the Fourier integrals described in the text. (Middle)
The relative displacement between the honeycombs is specified by the displacement vector �d . We choose �d = 0 for AA stacking in which the
two honeycombs have no lateral displacement. For �d = (0,a/

√
3), we have the AB stacking where the top layer A′ site is directly above the

bottom layer B site. The bilayer lattice is a periodic function of �d and the primitive cell for this periodic dependence is shaded grey in the left
figure. It is convenient to use the rectangular a × √

3a area enclosed by a dotted line in the left figure to illustrate the dependence of the bilayer
Bloch bands on �d. (Right) This panel specifically indicates the points within the rectangular area at which the high symmetry AA, BA, and
AB stacking arrangements occur and is helpful for the interpretation of later figures.
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to the bottom layer lattice. Note that rigid displacements
of incommensurate layers lead only to a spatial shift in the
moiré pattern and otherwise have no effect on the electronic
structure [22]. When we wish to retain the dependence on
initial translation, we denote it by �τ . For simplicity, we
first discuss the case in which �τ = 0, and later restore the
matrix-element phase factor changes introduced by this initial
translation. The shift in lattice positions of the top layer with
respect to the original positions can then be expressed in terms
of α and the rotation operator R(θ ):

�d( �L) ≡ αR(θ ) �L − �L = {[α cos(θ ) − 1]Lx − α sin(θ )Ly,

× [α cos(θ ) − 1]Ly + α sin(θ )Lx}. (3)

We obtain our moiré band model by approximating the lattice
matrix elements of the scaled and rotated structure using
Eq. (2) with �d replaced by �d( �L) in Eq. (3). In using this
approximation, we are assuming that �d( �L) varies slowly on
an atomic length scale, i.e., θ and α − 1 ≡ ε are small. In this
limit,

�d( �L) = ε �L + θ ẑ × �L. (4)

[The distinction between �d( �L) and �d( �L′) is second order in
the small parameters ε and θ and therefore neglected. The
moiré pattern formed by rotation and scaling is discussed
further in Appendix A.] Once this substitution is made,
〈ls �L|H ( �d)|l′s ′ �L′〉 depends on both �L and �L′ and not just on
�L′ − �L. It follows that the Hamiltonian is no longer Bloch
diagonal in a momentum space representation. Our local
displacement approximation is obviously exact for ε = θ = 0,
and we believe that it is accurate over useful ranges of α and
θ as discussed further below. We defer further comment on
the accuracy of the approximation until we discuss the two
explicit examples explored in this paper, G/G and G/BN.

In order to use this approximation conveniently, we note that
Hls,l′s ′ (�k : �d) is a periodic function of �d with lattice periodicity,
i.e., Hls,l′s ′ (�k : �d) = Hls,l′s ′ (�k : �d + �L). It can therefore be
expanded in terms of reciprocal lattice vectors

Hls,l′s ′ (�k : �d) =
∑

�G
Hls,l′s ′ (�k : �G) exp(−i �G · �d)

× exp[−i �G(�τs ′ − �τs )̃δll′]. (5)

The phase factor exp[−i �G(�τs ′ − �τs )̃δll′] is included in the
definition of the Fourier expansion coefficients in order to
make their symmetry properties more apparent, and δ̃ll′ =
(1 − δll′), where l and l′ are layer indices. We show below that
for G/G and G/BN only a few terms in this Fourier expansion
are large. As we explain there, we expect this to be a general
property of 2D material stacks.

Hls,l′s ′ (�k : �d) can be calculated relatively easily by perform-
ing ab initio supercell density-functional theory (DFT). The
number of atoms per unit cell in these calculations is modest,
four, for example, in the cases with two crystal layers with two
atoms per cell considered explicitly in this paper. The Fourier
coefficients which describe the dependence of Hls,l′s ′ (�k : �d)
on �d are obtained by evaluating the inverse Fourier transform

numerically:

Hls,l′s ′ (�k : �G) = 1

A0

∫
A0

d �d Hls,l′s ′ (�k : �d) exp(i �G · �d)

× exp[i �G(�τs ′ − �τs )̃δll′], (6)

where A0 is the integration area of a commensurate configu-
ration primitive cell shown in Fig. 1.

We are now in a position to derive our low-energy model.
First of all, we use Eqs. (3) and (5) to construct the momentum
space matrix elements of our model. We assume that each layer
is still accurately crystalline and for each layer evaluate matrix
elements using Bloch states defined using the two-dimensional
crystal structure of that layer. Summing independently over
the lattice vectors �L′ of layer l′ and �L of layer l and using
Eqs. (2), (3), and (5) leads after an elementary calculation to

〈ls�k|H |l′s ′ �k′〉 =
∑
G

Hls,l′s ′ (�k : �G) exp[i �G · (�τs − �τs ′ )̃δll′]

×�( �k′ − �k − G̃), (7)

where �(�k) = 1 when �k is a reciprocal lattice vector and is
zero otherwise and

G̃ = ε �G − θ ẑ × �G. (8)

In applying this formula, we wish to describe electronic
states derived from Bloch orbitals close to a particular or
several particular points in momentum space. For graphene
and hBN, we wish to describe states close to the Dirac
points �K and �K ′. (Below we consider the �K Dirac point for
definiteness.) We further assume that the interlayer coupling
processes responsible for l 
= l′ and �G 
= 0 terms in Eq. (7)
are small compared to the l = l′, �G = 0 term, but that they
vary with momentum �k on the same reciprocal lattice vector
scale. These assumptions allow us to replace Hls,l′s ′ (�k : �G) by
its value at the Dirac point when l′ 
= l or �G 
= 0 to obtain

〈ls�k|H |l′s ′ �k′〉 = δl,l′

[
Hls,l′s ′ (�k : �G = 0)δ�k,�k′

+
∑
�G 
=0

Hls,l′s ′ ( �K : �G) �( �k′ − �k − G̃)

]

+ δ̃l,l′
∑

�G
Hls,l′s ′ ( �K : �G) exp[i �G · (�τs − �τs ′ )]

×�( �k′ − �k − G̃), (9)

where the first and second lines are, respectively, the intralayer
and interlayer terms.

As we see in Eq. (9), the Hamiltonian is constructed
as the sum of several contributions: (i) an isolated layer
two-dimensional band structure obtained by averaging over
displacements �d , (ii) a sublattice pseudospin dependent term,
which acts within layers and accounts for the influence of
nearby layers on-site-energies and hopping within layers,
and (iii) an interlayer tunneling term, which is also strongly
dependent on the local stacking arrangement. The first term
in this equation reduces to the isolated layer Hamiltonian
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when interlayer coupling is absent. In fact, according to our
numerical calculations, the difference between this term and
the isolated layer Hamiltonian is negligible for both G/G and
G/BN cases. The second and third terms are off diagonal in
momentum and therefore account for the moiré pattern which
breaks translational symmetry. As we illustrate below, using
G/G and G/BN as examples, useful models can be obtained
with a small number of independent Hls,l′s ′ ( �K : �G) parameters,
partly because of symmetry. The values of the parameters can
be evaluated by using ab initio electronic structure calculations
(the approach we follow in this paper) to examine the relative
displacement �d dependence of the electronic structure of
two-dimensional layers that have a common Bravais lattice.
Since the basic premises of DFT theory are reasonably reliable
for graphene and hBN, the resulting model is expected to
capture all qualitative electronic structure features associated
with the moiré pattern. More accurate simple models might
eventually be achievable by using this approach to construct
similar phenomenological models with parameters derived
from experimental observations. We illustrate the power of
this simple formula below by applying it to the G/G and G/BN
cases.

III. AB INITIO MOIRÉ BAND MODELS

A. Electronic structure calculations

We calculate our moiré band parameters starting from
Wannier-function lattice representations of bilayer perfect
crystal Hamiltonians. In this section, we present a brief
summary of the first-principles methods employed to obtain
the Wannier-function representation Hamiltonian matrices,

and discuss some qualitative aspects of the perfect crystal
bands of G/G and G/BN that hint at important moiré band
properties. Our microscopic calculations were performed for
two-layer systems with four atoms per unit cell. We used the
software package QUANTUM ESPRESSO [39] that is interfaced
with the package WANNIER90 [40,41]. The calculations were
performed using a 42 × 42 k-point sampling density, an energy
cutoff of 60 Ry, vonBarth-Car norm conserving pseudopoten-
tials, and the Perdew-Zunger LDA parametrization (C,B,N.pz-
vbc.UPF). We chose the z-axis repeating cell dimension
to be ten times the in-plane lattice constant to suppress
the vertical coupling between the repeating cells. The same
k-point sampling density was maintained for the Wannier
representation construction of the Hamiltonian projected to ten
localized orbitals, six corresponding to the σ bonds and four
to pz orbitals centered on the four atoms. The convergence
criteria used for self-consistent total energy in the DFT
calculations was 10−9 eV per unit cell.

Although mirror symmetry is broken in bilayers for general
�d , the coupling between π and σ bands is always weak
because their energy separation near the Dirac point is ∼10 eV,
and large compared to coupling matrix elements that are
always smaller than 0.1 eV [43]. We therefore retain only
the π -electron degrees of freedom in our moiré band models.
Because there is only one pz orbital per carbon atom, the
Wannier-representation Hamiltonians discussed below are
4 × 4 matrices with row and column indices that can be labeled
by the four sites in a two-layer crystal. We characterized the
dependence on the relative displacement between the layers
by performing calculations on a �d-sampling grid with 21 × 36
points in the a × √

3a area plotted in Fig. 2.

FIG. 2. (Color online) Energy and Dirac point gap landscape as a function of stacking. When the variations are smooth the whole map can
be accurately interpolated from the values at the three symmetric stacking points at AA, AB, and BA using Eq. (21) expanded in the first shell
of �G vectors or first harmonic approximation. (Left) Total energy per unit cell relative to AA stacking as a function of displacement �d . These
results are for G/G with constant in-plane lattice constant and vertical separation c = 3.35 Å. The highest energy configuration corresponds
to AA stacking and the lowest to AB or BA stacking. Gap refers to the separation between conduction and valence bands at the Dirac point,
which vanishes at AB and BA points. (Right) The same plots for G/BN with both sheets constrained to have the in-plane self-consistent LDA
lattice constant of graphene and vertical separation c = 3.35 Å. The lowest-energy stacking configuration corresponds to BA stacking with
one of the two carbon atoms in the graphene unit cell sitting on top of boron. The highest-energy stacking configuration corresponds to the
AA arrangement in which the two carbon atoms in the unit cell sit on top of B and N. The AB configuration, which has C on top of N, has an
intermediate energy. The scale of the dependence of total energy on �d is similar in the graphene and hBN cases. Note that the Dirac point gap
in the G/hBN case does not vanish at any value of �d , but that the typical gap scale is larger in the G/G case. This later property reflects stronger
interlayer coupling.
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We have chosen a coordinate system in which graphene’s
triangular Bravais lattice has primitive lattice vectors

�a1 = a(1,0), �a2 = a

(
−1

2
,

√
3

2

)
, (10)

where a = 2.46 Å is the lattice constant of graphene. The
corresponding primitive reciprocal lattice vectors are

�b1 = 2π

a

(
1,

1√
3

)
, �b2 = 2π

a

(
0,

2√
3

)
. (11)

The A and B sublattice positions in the bottom layer are

�τA = (0,0,0), �τB =
(

0,
a√
3
,0

)
, (12)

and the A′ and B ′ positions in the second layer are

�τA′ = (dx,dy,c), �τB ′ =
(

dx,
a√
3

+ dy,c

)
. (13)

In Eq. (13), c is the layer separation that we assume to be
constant that we normally assume to be 3.35 Å. Results for
geometries where the out of plane z direction coordinate is
relaxed as function of �d are discussed in Appendix B.

In Fig. 2, we plot results for the dependence of total energy
and the band gap at the Dirac point on displacement �d for
both G/G and G/BN. In the G/BN case, the difference in
lattice constant between graphene and hBN layers will play
an essential role. The bulk lattice constant of graphite is
aG = 2.461 Å whereas ahBN = 2.504 Å, implying a difference
of about 1.7%. For the commensurate calculations summarized
in Fig. 2 we used the self-consistent LDA lattice constant of
single layer graphene aG = 2.439 Å for both graphene and
boron nitride sheets. Notice that for G/BN there is a gap at the
Dirac point at any value of �d .

B. Graphene on graphene

1. Moiré band model

In Fig. 3, we illustrate the dependence on �d of both
interlayer and intralayer values of Hls,l′s ′ ( �K : �d) for the case
of two-coupled graphene layers. The intralayer parameters are
typically ∼5 meV in the graphene case and do not play an
essential role in the moiré bands; we will see later that their
role is much more essential in the graphene on boron nitride
case. The interlayer coupling at the Dirac point is larger and
more strongly dependent on �d. As we now explain, a single
real parameter is sufficient to accurately describe the full �d
dependence of the four complex interlayer coupling matrix
elements. The vast simplification is related to the smooth
variation of interlayer coupling on �d, which is related [22]
in turn to the fact that the distance between layers of these van
der Waals coupled two-dimensional materials is substantially
larger than the separation between atoms within a layer.

Figure 4 illustrates typical results of a moiré band parameter
calculation performed by using Eq. (6) and integrating over
�d . We find that for graphene on graphene the only large
corrections to the isolated layer Hamiltonian are for interlayer
tunneling, and that these are large at �G = 0 and at two nonzero
values of �G, that they are real, and that they are identical in

FIG. 3. (Color online) Dirac-point π -band Wannier-
representation Hamiltonian matrix elements as a function of
sliding vector �d for graphene/graphene. (Top) Left to right real and
then imaginary parts of the AA′ and then AB ′ interlayer matrix
elements as a function of position �d in the rectangular cell of Fig. 1.
The BA′ matrix element is closely related to the AB ′ matrix element
as shown in Eq. (20) and the BB ′ matrix element is identical to the
AA′ matrix element. Interlayer coupling matrix elements have a
typical magnitude ∼300 meV. We show later that the dependence of
these four complex numbers on �d is accurately described by a single
real number. The color scales show energies in units of eV. (Bottom)
Intralayer Wannier-representation Hamiltonian matrix elements. Left
to right the real parts of the AA and BB matrix elements followed
by the real then imaginary parts of the AB matrix element. Typical
matrix element values are ∼5 meV. For graphene on graphene,
the spatial variation of intralayer matrix elements has a negligible
influence on electronic properties. The color scale shows energy in
units of meV.

the three cases. The interlayer parameters do not have the
symmetry of the reciprocal lattice because they are evaluated
at the Brillouin-zone corner Dirac point, rather than at the zone
center. The three �G’s, which yield large parameters, share the
minimum value of | �K + �G|. The entire interlayer coupling
part of the Hamiltonian is accurately captured by a single real
parameter with the value 0.113 ± 0.001 eV. We now explain
the physics behind this seemingly surprising simplification.
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FIG. 4. (Color online) Real part of the Fourier transform of
HAA′ ( �K : �d) evaluated at �K = (4π/3a,0). In Fourier space, interlayer
coupling is strong only for three reciprocal lattice vectors, �G = 0 and
the two nonzero reciprocal lattice vectors for which | �K + �G| = | �K|.
The imaginary part of HAA′ ( �K : �d) vanishes. At these values of �G,
HAA′ ( �K : �G) is real with identical values of 0.113 ± 0.001 eV.
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0

FIG. 5. (Color online) (Left) Representation of the first shell of
�G reciprocal lattice vectors with their corresponding numeral labels
used in the main text. The three circles in red correspond to the �G0, �G±
vectors with large interlayer tunneling coefficients. The three vectors
�Kj = �K + �Gj j = 0,± have the same magnitude. (Right) First

shell moiré reciprocal lattice vectors G̃ = −θ ẑ × �G for graphene on
graphene result differ from the honeycomb reciprocal lattice vectors
by a clockwise 90◦ rotation and a reduction in size by a factor
proportional to θ . The solid black arrows represent the �Qj vectors
that connect a �q vector in the bottom layer to one in the top layer and
the red hexagon encloses the moiré pattern Brillouin zone.

Our low energy model is naturally employed in combination
with a continuum model in which wave vectors are measured
from the Dirac point. The condition that �k′ = �k + G̃ then
translates into the condition

�q ′ = �q + �K − �K ′ + G̃ = �q + �Qj, (14)

where j = 0,± and the indices correspond to the three �G’s for
which Hls,l′s ′ ( �K : �G) is large: �G = (0,0) and

G± = 4π√
3a

(
−

√
3

2
,±1

2

)
= K

(
−3

2
,±

√
3

2

)
. (15)

Here, K is the magnitude of the Dirac wave vector. Taking
account of the difference between the rotated and unrotated
system reciprocal lattices, we find that to first order in ε and θ

�Qj = ε �Kj − θ ẑ × �Kj, (16)

where �Kj = �K + �Gj . Note that, independent of the values
of θ and ε, the three vectors �Qj have the same magnitude
K

√
ε2 + θ2 and that they are related by 120◦ rotations. In the

graphene case, the parameter ε that accounts for the difference
in lattice constant between the layers is equal to zero, but we
retain it here because of the close similarity between the G/G
interlayer hopping terms and the G/BN cases discussed below.
When momenta are measured from the Dirac point, a state in
one-layer is coupled to states in the same layer separated in
momentum space by moiré pattern reciprocal lattice vectors,
and to states in the opposite layers separated by moiré pattern
reciprocal lattice vectors ± �Qj (see Fig. 5).

For G/G, the intralayer contribution to the Hamiltonian is
negligible for �G 
= (0,0), and for �G = (0,0) and �k = �K , its
dependence on site labels is proportional to a unit matrix.
It follows that the �G = (0,0), �k = �K Hamiltonian can be
set to zero by choosing the zero of energy appropriately.

The dependence of the �G = (0,0) interlayer Hamiltonian on
�k satisfies the same symmetry requirements as the isolated
layer Hamiltonian. We have found that for both G/G and
G/BN cases, the difference between the �G = (0,0) interlayer
Hamiltonian and the isolated layer Hamiltonian is negligible.

When only the largest nonzero interlayer coupling terms
are retained, the Hamiltonian is the sum of three terms, each
a product of a coupling constant tbt = 113 meV, a momentum
boost factor δ�q ′,�q+ �Qj

and a sublattice dependent factor

T
j

s,s ′ = tbt exp[i �Gj · (�τs − �τs ′ − �τ )], (17)

where we have restored the phase change due to the translation
�τ prior to rotation. When the momentum boost operator
is written in real space, it is local and has a plane-wave
spatial dependence. We therefore obtain a Hamiltonian with
a space-dependent interlayer coupling Hamiltonian that has a
sub lattice pseudospin dependence:

Hbt(�r) =
∑

j

exp(−i �Qj · �r) T
j

s,s ′ , (18)

where

T j = tbt exp(−i �Gj �τ )

(
1 exp(−ijφ)

exp(ijφ) 1

)
(19)

and φ = 2π/3. A similar formula was derived previously start-
ing from ad hoc π -band tight-binding models [15,22]. (Note
that in Ref. [22] the initial displacement τ was defined relative
to AB stacking.) This position-dependent interlayer tunneling
can be understood in terms of local interlayer coordination
which varies with the moiré periodicity between AA, AB, and
intermediate arrangements. Here we demonstrate by explicit
first-principles calculations that this model for twisted layer
electronic structure is quite accurate. Our ab initio calculations
give rise to a coupling constant of tbt = 113 meV, nearly
identical to the value tbt = 110 meV estimated previously by
fitting tight-binding models to the experimentally known Dirac
point spectrum of bilayer graphene. In the phenomenological
tight-binding model context, the applicability of this model
was justified on the basis of the argument [19] that any
reasonable interlayer tunneling ansatz yields a dependence on
two-dimensional position that is smooth at atomic scale. Our
microscopic calculations free us from an ad hoc tight-binding
model and confirm the expected smoothness. The success
of the ad hoc tight-binding model in describing interlayer
tunneling effects may be traced to the property that only one
number, namely tbt, is important for the low-energy electronic
structure. Any microscopic model, which is adjusted so that it
gives an appropriate value for tbt, will yield similar predictions.

The explicit form of the �d-dependent interlayer Hamilto-
nian, which retains only the single strong moiré band model
parameter follows from Eq. (5):

HAA′( �K : �d) = HBB ′( �K : �d)

= tbt[1 + exp(−i �G+ · �d) + exp(−i �G− · �d)],

HAB ′( �K : �d) = tbt[1 + exp(−iφ) exp(−i �G+ · �d)

+ exp(iφ) exp(−i �G− · �d)], (20)

HBA′( �K : �d) = tbt[1 + exp(iφ) exp(−i �G+ · �d)

+ exp(−iφ) exp(−i �G− · �d)].
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Although they are relatively weak in the G/G case, for
completeness, we specify the leading intralayer terms as well.
The Fourier transforms of the intralayer matrix elements
have the same magnitude within a shell of reciprocal lattice
vectors. Including the first shell only, we obtain the following
parametrization of the �d-dependent intralayer Hamiltonian
matrix elements:

Hii( �K : �d) = C0ii + 2Cii Re[f ( �d) exp(iϕii)],
(21)

Hij ( �K : �d) = g(Cij ,ϕij ) (i 
= j ),

where

f ( �d) = exp[−iG1dy] + 2 exp

(
i
G1dy

2

)
cos

(√
3

2
G1dx

)
,

(22)

G1 = 4π/
√

3a. The matrix elements labeled by ii = AA,BB,

A′A′,B ′B ′, are the �d-dependent site energies. The matrix
elements labeled by AB and A′B ′ describe intersublattice
tunneling at the Dirac point within the layers. In Eq. (21),

g(C,ϕ) = 2C cos

(√
3G1

2
dx

)
cos

(
G1

2
dy − ϕ

)
− 2C cos

(
G1dy + ϕ

)
− i2

√
3C sin

(√
3G1

2
dx

)
sin

(
G1

2
dy − ϕ

)
. (23)

Using the numerical labels for the �G vectors in Fig. 5,

Hii, �G1
= Hii, �G3

= Hii, �G5
= Cii exp(iϕii),

Hii, �G2
= Hii, �G4

= Hii, �G6
= Cii exp(−iϕii) (24)
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FIG. 6. (Color online) Real and imaginary parts of the Fourier
transforms of the intralayer AA site diagonal Hamiltonian matrix
element. Because of the symmetries of the honeycomb lattice the
�G-dependent site potentials satisfy HAA, �G = H ∗

BB, �G = H ∗
A′A′, �G =

HB ′B ′, �G. These contributions to the twisted layer Hamiltonian for
G/G are small and can often be neglected.
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FIG. 7. (Color online) Real and imaginary parts of the Fourier
transform of the intralayer, intersubband Hamiltonian matrix element
HAB, �G. It follows from symmetry that HAB, �G = HA′B ′, �G. These matrix
elements are also small.

for the diagonal terms represented in Fig. 6, and

HA(′)B(′), �G1
= H ∗

A(′)B(′), �G4
= CA(′)B(′) exp[i(−ϕAB − π )],

HA(′)B(′), �G3
= H ∗

A(′)B(′), �G2
= CA(′)B(′) exp[i(−ϕAB + π/3)],

HA(′)B(′), �G5
= H ∗

A(′)B(′), �G6
= CA(′)B(′) exp[i(−ϕAB − π/3)]

(25)

for the off-diagonal terms represented in Fig. 7. For graphene
on graphene, the expansion coefficients satisfy the symmetry
properties HAA, �G = H ∗

BB, �G = H ∗
A′A′, �G = HB ′B ′, �G for the diag-

onal terms and HAB, �G = HA′B ′, �G for the off diagonal terms,
C0AA = C0BB , and ϕAB = ϕA′B ′ = 0. The numerical values of
the nonzero parameters that define the model for G/G are

CAA = CB ′B ′ = 1.10 meV, ϕAA = ϕB ′B ′ = 82.54◦,

CBB = CA′A′ = CAA, ϕBB = ϕA′A′ = −ϕAA, (26)

CAB = 2.235 meV.

The sublattice site-energy difference 2Hz( �K : �d) =
HAA( �K : �d) − HBB( �K : �d) vanishes for AA stacking
and reaches its maximum value ∼12 meV for the AB
stacking configuration. This value is in reasonable agreement
with the ∼15 meV site-energy difference estimated
elsewhere for AB stacked bilayer graphene [43]. It will
be interesting to see if these relatively small terms, which
are normally neglected in two-layer graphene systems
have any observable consequences. Equation (26) also
implies spatial variations of the average site-energy
H0( �K : �d) = (HAA( �K : �d) + HBB( �K : �d))/2 that are smaller
than 1 meV. These variations will tend to drive small charge
transfers between different parts of the moiré pattern, but their
role is not especially important because of their small value.

205414-7



JUNG, RAOUX, QIAO, AND MACDONALD PHYSICAL REVIEW B 89, 205414 (2014)

2. First shell approximation for commensurate AB, AA limits

In the following, we test the single-parameter moiré
band model in which the interlayer Hamiltonian is trun-
cated at the first shell of its Fourier expansion by applying
it to the crystalline AA and AB stacking limits. In the
crystalline limit, �d is independent of position and �Qj = (0,0)
for j = 0,±. In the AA stacking configuration, interlayer
coupling is maximized because carbon atoms in different
layers sit exactly on top of each other. Mirror symmetry
leads to layer-symmetric and layer-antisymmetric copies of
the single-layer Dirac spectrum. With our conventions, AA
stacking corresponds to �d = (0,0) independent of �L, and to
Direct evaluation of the AA Wannier matrix elements yields
HAA′[ �K : �d = (0,0)] = HBB ′ [ �K : �d = (0,0)] = 355 meV and
HAB ′[ �K : �d = (0,0)] = HBA′[ �K : �d = (0,0)] = 0. The matrix
element from the Fourier expansion model truncated at the
first shell is 3tbt = 339 meV. For the case of AB stacking
�d = (0,a/

√
3), a direct evaluation of the Wannier matrix

elements yields HBA′[ �K : �d = (0,a/
√

3)] = 354 meV, with
all other interlayer coupling elements vanishing. (The small
difference of 7 meV with respect to the calculation for
AB bilayer graphene presented in Ref. [43] is due to the
slightly smaller in-plane lattice constants used here.) These
comparisons demonstrate that the truncated Fourier expansion
single-parameter model yields matrix elements that are are
typically inaccurate by ∼15 meV, or by around 5% in relative
terms. We emphasize that the truncation at the first shell in
the Fourier expansions is not essential to our approach, but is
attractive because it yields a model that is specified by a single
parameter. The approximate band structures obtained using
the above interlayer coupling matrices are compared against
the first-principles LDA bands in Fig. 8.

FIG. 8. (Color online) Comparison of LDA G/G band structures
(solid lines) and the one-parameter moiré band model (blue dashed
lines), which retains only the first shell Fourier-expansion of interlayer
coupling. Results are shown for commensurate G/G with AA, AB,
and �τbr = (0,a/2

√
3) bridge stacking. The electronic structure for

BA stacking is identical to AB stacking. We find excellent agreement
between the direct and approximate calculations, demonstrating the
accuracy of the first shell approximation for interlayer coupling. The
intralayer tight-binding Hamiltonian uses the models in Refs. [42,43]
with the experimental lattice constants of a = 2.46 Å, whereas the
interlayer coupling is given by the first shell approximation as
parametrized in Eq. (20). The small differences can be attributed
mainly to the approximations involved in the first shell approximation
for describing the interlayer coupling.

3. Application to twisted bilayer graphene

For G/G, we have ε = 0 so that the moiré pattern reciprocal
lattice vectors are related to the honeycomb reciprocal lattice
vectors by

G̃ = −θ ẑ × �G. (27)

The Hamiltonian matrix for a given wave vector �k in the
moiré Brillouin zone (MBZ) can be constructed using Eq. (9).
The momentum boost operators in the interlayer Hamiltonian
terms connect states whose momenta differ by �Qj , while
those in the intralayer Hamiltonian terms connect states whose
momenta differ by G̃. From Eq. (16) the explicit expression
for the �Qj ’s is

�Q0 = θK(0,−1),

�Q+ = θK

(
−

√
3

2
,
1

2

)
, (28)

�Q− = θK

(√
3

2
,
1

2

)
.

For every �k in the MBZ we can construct matrices with
2 × 2 sublattice blocks. The isolated layer Dirac Hamiltonian
contributes blocks that are diagonal in wave vector and layer.
The blocks that account for tunneling from bottom to top
layers involve momentum boosts by �Qj , whereas those that
connect the same layer involve momentum boosts by a moiré
pattern reciprocal lattice vector. Since the �Qj ’s change sign
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FIG. 9. (Color online) Moiré band structure and density of states
of two graphene layers for four different relative orientation angles.
Our results are similar to those obtained in Refs. [22,23]. We plot
the band structure as a function of momentum along the straight
lines in k-space connecting points A, B, C, and A in Fig. 5.
The accompanying density-of-states plots demonstrate the complex
influence of interlayer coupling, which is responsible for many van
Hove singularities.
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FIG. 10. (Color online) Schematic Brillouin zones of graphene
in black lines, of hBN in blue, and the moiré Brillouin zone (MBZ)
in red for incommensurate G/BN. The difference between the lattice
constants has been exaggerated to aid visualization. Both the size and
orientation of the MBZ change continuously with twist angle due to
the lattice constant mismatch. The three �Qj vectors given in Eq. (16)
connect the K points of graphene to those of hBN. The moiré pattern
reciprocal lattice vectors can be constructed by summing pairs of �Qj

vectors.

with tunneling direction, and the difference between any pair
of �Qj ’s is a moiré pattern reciprocal lattice vector (see Fig. 5),
the crystal momentum defined by the moiré pattern periodicity
is a good quantum number. For every �k in the moiré pattern
Brillouin zone, a finite matrix can be constructed by cutting
off the plane-wave expansion.

The moiré bands obtained by diagonalizing the matrix
constructed in this way are plotted in Fig. 9. We find bands that
are similar to those described in Refs. [22,23] in which moiré
bands were derived from phenomenological tight-binding
models rather than form ab initio DFT calculations. The
close agreement is expected since both models are accurately
approximated by a model with a single interlayer tunneling

parameter, as explained above. We now turn to the G/BN case
in which the layer coupling effects are more complex. There we
will see that our approach, which provides a route to build an
effective model based on DFT bands, has distinct advantages
over a purely phenomenological approach.

C. Graphene on boron nitride

1. Moiré band model

The crystalline lattices we used to derive the moiré band
model parameters for G/BN were identical to those used for
the G/G case, except that the bottom layer was changed from
graphene to hBN. Because hBN has a slightly larger lattice
constant than graphene, the moiré pattern reciprocal lattice
vectors are in this case given by the more general expression
[Eq. (8)], which accounts for both dilation and twist. The moiré
pattern Brillouin zone therefore continuously changes its ori-
entation as a function of twist angle θ as we illustrate in Fig. 10.

In order to capture the local coordination dependence of the
electronic structure, we have evaluated Wannier-representation
bands over the complete range of interlayer displacement �d
values. The dependence on �d of Dirac point matrix elements is
summarized in Fig. 11. As in the G/G case, these ab initio
results provide the chemical information that we use to
construct a moiré-band model that can account for the lattice
constant difference between graphene and hBN, and for the
layer orientation difference of particular bilayers. Because
these tight-binding model parameters are smooth functions of
�d , we can represent them in the moiré band model by a small
number of parameters. In Figs. 12–14, we plot moiré band
parameters obtained from the information in Fig. 11 using
Eq. (6). We find that the �k dependence of the Hamiltonian
(retained only in the �G = (0,0) moiré band Hamiltonian
term calculated by averaging the Wannier representation
Hamiltonian over �d) is accurately captured by the Dirac form
in both graphene and BN layers.

FIG. 11. (Color online) Displacement vector �d dependence of Wannier representation interlayer Hamiltonian matrix elements for G/BN.
(Top) Matrix elements AA′, AB ′ connecting boron with carbon, and matrix elements BA′, BB ′ connecting nitrogen with carbon. The interlayer
coupling matrix elements vary over a large range ∼600 meV. (Bottom) Displacement vector �d dependence of intralayer Wannier representation
Hamiltonian matrix elements for G/BN. On-site energies in the graphene layers vary by ∼60 meV. In these plots the site energies are plotted
relative to their spatial averages C0ii . [See Eq. (31).] The BN layer AB intersublattice terms vary over a range of ∼35 meV, whereas the
graphene layer A′B ′ terms vary by ∼15 meV.
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FIG. 12. (Color online) G/BN interlayer moiré band model pa-
rameters obtained by evaluating Fourier expansion coefficients for the
layer separation dependence of Dirac point Wannier representation
Hamiltonian matrix elements. As in the G/G case, three Fourier
coefficients dominate interlayer coupling.

The interlayer hopping physics is quite similar in the G/G
and G/BN cases. By examining Fig. 11 and comparing with the
previous G/G discussion, we conclude that as for G/BN three
Fourier coefficients dominate and yield a simple transparent
model. Including only these coefficients, we obtain for G/BN,

H bt
s,s ′ (�r) =

∑
j

exp(−i �Qj · �r) T
j

s,s ′ , (29)

where

T j = exp(−i �Gj �τ )

(
tBC tBC exp(−ijφ)

tNC exp(ijφ) tNC

)
. (30)

In this case, there are two distinct interlayer tunneling
parameters, which have the values tBC = 144 meV and
tNC = 97 meV. The notation is suggested by comparing these

moiré band matrix elements with those constructed from
ad hoc microscopic tight-binding models [35]. The difference
between the boron to carbon and nitrogen to carbon hopping
parameters, tBC and tNC, is not unexpected since pz orbitals
centered on the boron sites should have larger atomic radii
than pz orbitals centered on the larger Z nitrogen sites. The
remaining large contributions to the G/BN moiré band model
are absent for G/G and are discussed below.

In the G/BN case, coupling between layers is responsible
not only for interlayer tunneling but also for substantial
changes within the individual layers. From our microscopic
calculations, we find that the carbon site energy parameter
is large for the first shell of reciprocal lattice vectors. The
momentum space pattern is clearly quite different from that of
the interlayer hopping processes. The intralayer Hamiltonian
matrix elements can be presented using the same formulas as
in Eq. (21) used earlier for the G/G case. What is different
in the G/BN case is that our moiré band model is specified
by two interlayer tunneling parameters and by 12 intralayer
parameters. The values of the 12 intralayer coefficients are
listed below:

C0 AA = 3.332 eV, C0 BB = −1.493 eV,

C0 A′A′ = 0, C0 B ′B ′ = 0,

CAA = 5.733 meV, ϕAA = 90◦,

CBB = 4.826 meV, ϕBB = 65.49◦, (31)

CA′A′ = −5.703 meV, ϕA′A′ = 87.51◦,

CB ′B ′ = −3.596 meV, ϕB ′B ′ = 65.06◦,

CAB = 4.418 meV, ϕAB = 26.10◦,

CA′B ′ = 1.987 meV, ϕA′B ′ = 3.50◦.

FIG. 13. (Color online) Fourier expansion of the Wannier-representation matrix elements HAA( �K : �d), HBB ( �K : �d), HA′A′ ( �K : �d), and
HB ′B ′ ( �K : �d) that describe the interlayer displacement dependence of site-energies in the hBN and graphene layers. These numerical results
demonstrate that the site energies are accurately approximated by the model that includes only the first shell of reciprocal lattice vectors.
The parameters of this model are listed in the main text. We have chosen the average energy on the carbon sites as the zero of energy. With
this choice, the elements corresponding to �G = 0 are HAA( �K : �G = 0) = 3.332 eV for boron, HBB ( �K : �G = 0) = −1.493 eV for nitrogen,
HA′A′ ( �K : �G = 0) = 0 eV, and HB ′B ′ ( �K : �G = 0) = 0 eV.
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FIG. 14. (Color online) Fourier expansion of the Wannier-representation matrix element HAB ( �K : �d), which describes intersublattice
tunneling within the hBN layer, and HA′B ′ ( �K : �d), which describes intersublattice tunneling within the graphene layer. These numerical results
demonstrate that the local coordination dependence of interlayer hopping processes is accurately approximated by the model that includes only
the first shell of reciprocal lattice vectors. The parameters of this model are listed in the main text.

The Fourier expansion coefficients of the Hamiltonian can be
related with the above set of parameters through the same
Eqs. (24) and (25) used in the graphene on graphene case.

2. First shell approximation for commensurate
AA, AB, and BA limits

In the following, we apply our model Hamiltonian to
crystalline AA, AB, and BA stacking limits using the same
lattice constant for both graphene and hBN. We proceed with
our analysis in a manner similar to the G/G case. The first
shell approximation for the commensurate interlayer coupling
Hamiltonian closely follows the G/G case, except that it is
necessary to distinguish the parameters for tunneling from
the boron site and the nitrogen atom site. From Eq. (30)
for the AA [�τAA = (0,0)], AB [�τAB = (0,a/

√
3)], and BA

[�τBA = (0,2a/
√

3)] stacking configurations, we obtain

Hbt( �K : �τAA) = 3

(
tBC 0

0 tNC

)
,

Hbt( �K : �τAB) = 3

(
0 0

tNC 0

)
, (32)

Hbt( �K : �τBA) = 3

(
0 tBC

0 0

)
.

In the first shell approximation, the tunneling amplitudes are
3tBC = 432 meV and 3tNC = 291 meV respectively. In com-
parison, direct calculations for these stacking configurations
give HAA′( �K : �τAA) = 437 meV, HBB ′ ( �K : �τAA) = 294 meV,
HBA′( �K : �τAB) = 296 meV, and HAB ′( �K : �τBA) = 439 meV.
The deviations from 3tBC and 3tNC are in the order of a few
meV, which imply relative differences smaller than 2% for the
main tunneling terms.

D. Effective low-energy model for G/BN

Our model for the electronic structure of graphene on hBN
can be further simplified by formulating a version, which acts
only on the low-energy degrees of freedom within the carbon
layers. We expect that this version of our model will be broadly
applicable to describe electronic properties of graphene sheets
that are weakly influenced by a hBN substrate. As we see, the
influence will tend to be stronger when the orientation angle
difference between graphene and hBN layers is small. In this
approach, we integrate out the boron nitride layer degrees-of-
freedom to obtain a two-band model for graphene.

When written in terms of 2 × 2 blocks, the four-band model
is given for each �d by

Hfull =
(

HBN TBN,G

TG,BN HG

)
, (33)

where the entries in this matrix are 2 × 2 matrices that map
sub lattices to sub lattices. We choose the zero of energy at
the carbon site energies of the graphene layer. The effective
Hamiltonian for graphene obtained by integrating out the
boron nitride orbitals is

H = HG − TG, BN H−1
BNTBN, G. (34)

This expression is valid to leading order in an expansion in
powers of the ratio of interlayer tunneling amplitudes to the
hBN gap ∼tBN/(C0AA − C0BB).

In this two-band model, we can identify four different
physical effects of the hBN substrate: (i) there is a �d-
dependent difference between the two carbon site energies
in the honeycomb unit cell that is absent for an isolated
layer. When viewed as a substrate contribution to graphene’s
two-dimensional Dirac equation Hz = (HA′A′ − HB ′B ′)/2 can
be viewed as a �d-dependent mass. Note that the effective mass
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FIG. 15. (Color online) Relative displacement �d-dependence of the matrix elements of the two-band low-energy effective model for
graphene on a hBN substrate. In the effective model map the H0 = (HAA + HBB )/2 term represents a sublattice independent potential and
Hz = (HAA − HBB )/2 acts as a mass term in the Dirac equation. The off-diagonal matrix-elements HAB accounts for changes in the bonding
pattern within the graphene layer. Here, A,B refer to the sublattice sites of graphene.

is sometimes positive and sometimes negative. The A site
energy is maximized at AB points, where the carbon A site is
on top of a boron atom and far from nitrogen atoms. Similarly,
the B site energy is minimized at BA points, where the carbon
B site is on top of a nitrogen atom and far from boron atoms.
(ii) H0 = (HA′A′ + HB ′B ′)/2 can be viewed as a �d-dependent
potential term. (iii) HA′B ′ = H ∗

B ′A′ captures the influence of the
substrate on hopping between carbon sublattices. This quantity
vanishes by symmetry at the Dirac point for an isolated sheet.
Our calculations demonstrate that the reduction in symmetry
due to the substrate yields a �d-dependent contribution to
the Hamiltonian that is roughly of the same size as the
mass and potential terms. When the operators that act on
sub lattice degrees of freedom are described using Pauli
spin matrices, the real part of HA′B ′ is proportional to the
coefficient of σx , while the imaginary part is proportional
to the coefficient of σy . (iv) The final contribution to the
effective model is due to virtual occupation of hBN sites and
captured by the second term on the right-hand side of Eq. (34).
The full effective Hamiltonian can be expanded in terms
of Pauli matrices to yield an intuitive representation of the
Hamiltonian’s sublattice dependence. The term proportional
to the identity matrix can be viewed as a potential term,
the term proportional to σz as a mass term, and the terms
proportional to σx and σy as gauge potentials which account
for substrate-induced bonding distortions. Virtual processes
contribute to all the effective-model matrix elements discussed
above.

The microscopic origin of the mass term can be traced
to the difference in electronegativity between nitrogen and
boron, which both leads to differences in charging, and
modifies the in-plane sigma bonds. Both effects lead to
a mass term in the Hamiltonian that is proportional to
σz. The nitrogen (boron) is negatively (positively) charged.
Because the interlayer distance is large, one can crudely
approximate the resulting Hartree potential by a Coulomb
potential with an effective charge Ze (−Ze) with 0,Z < 1
acting on the carbon atom just on top of it. This picture has
been explored from a phenomenological point of view [35]
and gives rise to a mass contribution to the Hamiltonian
which is qualitatively similar to the one derived here from first
principles.

We construct the moiré band Hamiltonian by letting
�d → �d( �L) as explained in Sec. II. The moiré band model
is particularly simple when constructed from the two-band
effective model:

Hss ′ = H 0
ss ′ + HMB

ss ′ , (35)

where H 0
ss ′ is the nonlocal Hamiltonian which describes the

Dirac cones,

H 0
ss ′ = Hs,s ′ (�k : �G = 0)δ�k, �k′ (36)

and HMB
ss ′ is the term which captures the moiré band modula-

tion:

HMB
ss ′ =

∑
�G
=0

Hs,s ′ ( �K : �G) �( �k′ − �k − G̃). (37)

This model can be viewed as the Hamiltonian of graphene
subject to external periodic pseudospin-dependent potentials
represented in a Fourier expanded form as a sum in the G̃

lattice vectors of the moiré reciprocal lattice. The form of
the Hamiltonian is informed by first-principles calculations
that account not only for the variation in carbon layer site-
energies with local coordination, but also for variations in
intercarbon hopping and for virtual hopping between graphene
and boron nitride layers. As we will show shortly, thanks to the
smooth displacement dependence of the �d-dependent effective
Hamiltonian, the moiré patterns of the pseudospin fields are
accurately captured by three pairs of parameters, one pair for
each pseudospin effective field component. These generalized
superlattice potentials determine the quasiparticle velocity and
gaps in the moiré superlattice band structure [44]. Our model
provides a simple and accurate starting point from which we
can calculate the electronic structure of graphene superlattices
subject to moiré patterns of the pseudospin fields shown in
Figs. 15 and 16.

Our numerical results for the Fourier expansion coefficients
of the effective model matrix elements are summarized in
Figs. 17 and 18. Once again the expansion coefficients are
dominated by the first shell of �G’s, and the number of
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independent coefficients is reduced by symmetry. We find that

H0( �K : �d) = 2C0Re[f ( �d) exp(iϕ0)], Hz( �K : �d) = 2CzRe[f ( �d) exp(iϕz)],

HAB( �K : �d) = 2CAB cos

(√
3

2
G1dx

) [
cos

(
G1dy

2
− ϕAB

)
+ sin

(
G1dy

2
− ϕAB − π

6

)]
+ 2CAB sin

(
G1dy + ϕAB − π

6

)

+ i 2CAB sin

(√
3

2
G1dx

) [
cos

(
G1dy

2
− ϕAB

)
− sin

(
G1dy

2
− ϕAB − π

6

)]
. (38)

The site-independent term H0 gives rise to an overall potential
shift in the graphene layer depending on the local stacking
order. The pseudospin in-plane terms Hx and Hy together
with and the mass term Hz, are the coefficients of σx , σy , and
σz in the local 2 × 2 moiré band Hamiltonian. The in-plane
pseudospin terms Hx and Hy can be viewed as a gauge fields
�A [45] that shift the Dirac cone band edges away from the

original position. Together these coefficients determine the
local Dirac point gap through the relation

�̃(�r) = 2
√

H 2
x (�r) + H 2

y (�r) + H 2
z (�r). (39)

This local Dirac point gap is not directly related to the overall
gap of the moiré pattern because of the nonlocality of the
momentum-dependent isolated layer Dirac Hamiltonian. (We
also expect that the gap will be strongly influenced by many-
body effects.) We see in Fig. 16 that the Dirac point gap is
everywhere at least 30 meV because Hx , Hy , and Hz do not
vanish simultaneously.

Our effective model is completely specified by six numbers:

C0 = −10.13 meV, ϕ0 = 86.53◦,

Cz = −9.01 meV, ϕz = 8.43◦, (40)

CAB = 11.34 meV, ϕAB = 19.60◦.

As described in detail for the G/G case, wave vector reduced
to the moiré Brillouin-zone is a good quantum number for
this model, and band eigenstates may be obtained by making
plane-wave expansions. The graphene layer Dirac Hamiltonian
contributes to diagonal blocks in the plane-wave representation
of the moiré band Hamiltonian. The Fourier expansion of
the Hamiltonian in �G vectors can be related to the above

FIG. 16. (Color online) Mass and pseudospin field terms in the
effective Hamiltonian as a function of displacement �d . The Hz term is
due to sublattice potential difference and vanishes along lines of this
two-dimensional plot. The simultaneous presence of finite Hx and Hy

and Hz terms in the effective Hamiltonian implies that the Dirac-point
gap [Eq. (39)] does not vanish at any relative displacement.

parameters through Eq. (24) for the diagonal terms, either
in the pseudospin or sublattice basis, and for the off-diagonal
terms shown in Fig. 18, we have the following form:

HAB, �G1
= H ∗

AB, �G4
= CAB exp[i(2π/3 − ϕAB)],

HAB, �G3
= H ∗

AB, �G2
= CAB exp(−iϕAB), (41)

HAB, �G5
= H ∗

AB, �G6
= CAB exp[i(−2π/3 − ϕAB)].

The applicability of the effective model is evidenced by its
accuracy in describing the band structure for the commensurate
stacking arrangements shown in Fig. 19. In these plots, local
potential fluctuations due to H0 are manifested by a small offset
between the graphene and hBN bands. In the presence of a
finite twist angle, the H0 term leads to an effective potential that
varies in space as shown in Fig. 20. These potential variations
on the Moire pattern scale leads to the local density-of-state
variations seen experimentally [9] and will lead in general to
contrasting local density of states at the different vertices of
the triangular superlattices.
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FIG. 17. (Color online) (Top) Fourier expansion coefficients for
the effective model matrix element H0( �K : �d). This term captures the
variation of the site-averaged potential across the moiré pattern. The
first shell of reciprocal lattice vectors dominates. (Bottom) Fourier
expansion coefficients for the mass term in the effective model,
Hz( �K : �d) = [HAA( �K : �d) − HBB ( �K : �d)]/2.

205414-13



JUNG, RAOUX, QIAO, AND MACDONALD PHYSICAL REVIEW B 89, 205414 (2014)

Gy (2π/a)

Gx (2π/a)

(eV )

Gy (2π/a)

G
y

(2
π
/a

)

G
y

(2
π
/a

)

Gx (2π/a)

R
e[

h
α

β
,G

]
(e

V
)

Im
[h

α
β

,G
]

(e
V

)

(eV )Re[HAB,G] Im[HAB,G]

−2 0 2

−2

0

2

−5

0

5

10
x 10

−6 −4 −2 0 2 4 6

−0.01

−0.005

0

0.005

0.01

0.015
G =−2

G =−1

G =0

G =1

G =2

−2 0 2

−2

0

2

−0.01

−0.005

0

0.005

0.01

−6 −4 −2 0 2 4 6

−0.01

−0.005

0

0.005

0.01

0.015
G =−2

G =−1

G =0

G =1

G =2

FIG. 18. (Color online) Fourier expansion coefficients for the off
diagonal effective model matrix element HAB ( �K : �d). The first shell
of reciprocal lattice vectors dominates.

K ΓM K ΓM

AA = (0, 0)

AA
AA

AB = (0, a/
√

3)

AB
AB

K ΓM K ΓM

E
(e

V
)

br = (0, a/2
√

3) BA = (0, 2a/
√

3)

K ΓM K ΓM K ΓM K ΓM

E
(e

V
)

BA BAbr br

0.3

0.2

0.1

0

0.1

0.2

0.3

2

1

0

1

2

3

2

1

0

1

2

3

0.3

0.2

0.1

0

0.1

0.2

0.3

2

1

0

1

2

3

0.3

0.2

0.1

0

0.1

0.2

0.3

0.3

0.2

0.1

0

0.1

0.2

0.3

2

1

0

1

2

3

FIG. 19. (Color online) Comparison of the LDA band structure
(solid black), the four-band moiré band model (dashed blue lines)
and the low energy two-band model (dashed red lines) with the first
shell used for the superlattice potentials. The commensurate G/BN
arrangements plotted are AA, AB, BA, and a bridge stacking with
�τbr = (0,a/2

√
3). Note that he electronic structures of AB and BA

stacking are different in the G/B case. For the intermediate bridge
stacking we see a substantial reduction of the band gap due to a
shifting in the Dirac cone momentum space location caused by in-
plane pseudospin terms. The intralayer Hamiltonian of graphene is
approximated using the massless Dirac model with the LDA Fermi
velocity [42] while the boron nitride Hamiltonian is modeled with
the same Dirac model with a mass term compatible with the LDA
gaps. The interlayer coupling is given by the first shell approximation
using the parametrizations of Eq. (20), with tunneling from boron
and carbon sites distinguished as in Eq. (30) and the parameter set in
Eq. (31). In these plots, the energy origin of the represented bands
has been adjusted so that zero is in the middle of the band gap.

FIG. 20. (Color online) Modulation of the local potential fluc-
tuations H0(�r) in real space for different twist angles. These plots
illustrate the rotation of the moire pattern when |ε| ∼ θ , and the
property that the Moire periodicity LM ∼ a/

√
ε2 + θ2 becomes

shorter with increasing twist angle. The other pseudospin components
of the local Hamiltonian illustrated Fig. 15 produce similar spatial
superlattice patterns.

Even when a graphene sheet on a hBN substrate is globally
neutral the charge density will vary locally. The regions
within the moiré pattern in which positive and negative charge
densities are expected can be identified by neglecting the
nonlocal Dirac Hamiltonian (which vanishes at the Dirac
point) and the Hx and Hy sublattice coupling terms. In
this limit, charge puddles should be expected wherever the
chemical potential, set by imposing global charge neutrality,
lies below the lower sublattice site energy or above the upper
sub lattice site energy. Since the chemical potential at neutrality
is very close to the average site energy, which we have chosen
as the energy zero, this condition for the formation of charge
puddles is equivalent to |H0(�r)| > |Hz(�r)|, with the carrier type
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FIG. 21. (Color online) (Left) Schematic illustration of potential
variations and local band edges as a function of dy for fixed
dx = 0. The approximate conditions for local electron/hole charging
discussed in the main text are satisfied over the segments identified
by bold black lines. The difference between the Dirac point gap �̃

and the absolute value of the mass |Hz| reflects the influence of the
in-plane pseudospin fields terms. (Right) Sliding vector �d dependent
map of electron and hole puddles.
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being electrons if H0 > Hz and holes if H0 < Hz. In Fig. 21,
we apply this criterion to obtain a map of electron and hole
puddles from the parametrization for H0 and Hz presented in
Eq. (38). To obtain a more quantitatively accurate map it will
be necessary to restore the Hx and Hy and to take into account
other effects such as the electrostatic screening and many-body
corrections. Lattice relaxations, whose influence is discussed
in the Appendix, will also play a role.

IV. SUMMARY AND DISCUSSION

We have presented a method which can be used to derive
approximate electronic structure models for layered semicon-
ductors, semimetals, and gapless semiconductors containing
a finite number of two-dimensional crystals with different
lattice constants and/or different crystal orientations. The
method is intended to be useful for multilayer graphene
systems, multilayer transition metal dichalcogenide systems,
and for multi-layer systems containing both graphene and
boron nitride. When several layers are present simultaneously,
structures of this type are not in general two-dimensional crys-
tals, and electronic structure theory can therefore be awkward
to apply directly because Bloch’s theorem is not valid.

Our approach focuses on the influence on the electronic
structure of slowly varying relative displacements �d( �L) be-
tween individual crystalline layers due to a small difference
in lattice constants or crystal orientations. The dependence
of electronic structure on �d can be calculated without ex-
perimental input using density-functional theory. Our analysis
produces a moiré band model that is periodic under translations
�R for which

�d( �L + �R) = �d( �L) + �L′ (42)

for some two-dimensional lattice vector �L′. The system is
microscopically crystalline only if the vectors �R for which
Eq. (42) is satisfied are lattice vectors of the two-dimensional
crystal. The vectors �R are the lattice vectors of the moiré
pattern. Like the moiré pattern itself [7], our moiré band models
have a periodicity defined by spatially varying layer alignment,
and can therefore be analyzed using Bloch’s theorem for
a superlattice Hamiltonian that has the periodicity of the
moiré pattern. The models consists of massless or massive
Dirac models for each two-dimensional layer, combined with
a spatially local effective potential which acts on sublattice
degrees of freedom.

Our approach to coupled bilayer systems has three main
limitations. First of all, it does not apply to cases in which
differences in lattice constants or rotation angles between
adjacent layers are large. This limitation can be overcome,
however, by building a theory that is based on larger unit cells
with more sublattice sites and lattice constant ratios between
neighboring layers closer to one. For example, for G/G, one
could, for example, build models that are similar to the ones
discussed here which would apply at rotation angles close
to the short-period commensurate rotation angles. Secondly,
because it attempts to describe bands over a relatively small
part of the Brillouin zone, it is valid over a limited energy
range. Finally, it assumes that the individual layers are indeed
crystalline whereas we should in fact expect that the moiré
pattern will induce small structural distortions within each

layer. For the van der Waals epitaxial systems of interest,
however, it seems reasonable to expect these distortions to
be small and to neglect them, at least as a first approximation.

We have applied our moiré band method to two different
two-layer systems, one with two graphene layers and one
with a graphene layer and a hexagonal boron nitride layer.
For the case of graphene on boron nitride, which has a large
energy gap, we have also derived a simpler model, specified
by Eqs. (35) and (40), in which the boron nitride degrees of
freedom are treated perturbatively to obtain an explicit model
for graphene on a boron nitride substrate which retains only
the graphene π -electron degrees of freedom. In the case of
graphene on graphene, our calculations explain why the depen-
dence on relative orientation angle of G/G electronic structure
is accurately described by a model with a single-interlayer tun-
neling parameter. For the case of graphene on boron nitride, the
models we produce are more complicated because of the need
to account for the dependence on �d of graphene-layer site ener-
gies and interlayer tunneling amplitudes, but still have a small
number of parameters. Nevertheless, the graphene only model
for G/BN is able to accurately describe the dependence of low-
energy bands on rotation angle using six parameters, which we
have calculated from the �d dependence of ab initio bands.

The models derived in this paper can be used as a starting
point to account for the influence of either graphene or hBN
substrates on the electronic structure of a graphene layer. We
expect that they will be applicable to examine a wide variety
of electronic properties. Because our models are derived from
LDA band structures, they do not account for the nonlocal
exchange and correlation effects which are known to be
responsible for large Fermi velocity enhancements in isolated
graphene systems [46]. The same effects are likely to be
important in multi-layer systems, possibly enhancing band
gaps produced by the moiré pattern potentials [47]. Our elec-
tronic structure models are sufficiently simple that important
many-body physics effects can be addressed separately where
they play an essential role.
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APPENDIX A: EXACT FORM OF THE DISPLACEMENT
VECTOR AND MOIRE RECIPROCAL LATTICES

In the main text, we used the small angle approximation
for the displacement vectors and the moire reciprocal lattices.
These approximations are accurate for rotations angles θ �
15◦. Here we present the exact form of the lattice vector scaling
and rotation transformation and the moire reciprocal lattice
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vectors. Let us consider the rotation operator

R(θ ) =
(

cos θ − sin θ

sin θ cos θ

)
(A1)

and write the local displacement vector as

�d( �L) = αR(θ ) �L − �L = (αR(θ ) − 1) �L = R̃(α,θ ) �L, (A2)

where we have defined a new transformation operator R̃(α,θ ),
α is the scaling ratio and θ is the twist angle of the top layer
with respect to bottom layer. The magnitude β is the scaling
factor associated to the transformation

|R̃(α,θ ) �L| = β| �L|, (A3)

where β = [ε2 + (1 + ε)(2 − 2 cos θ )]1/2 was approximated
in the main text as ∼(ε2 + θ2)1/2 when we neglected the
higher-order corrections.

The moire reciprocal lattice vectors G̃ can be obtained
applying the adjoint of the transformation operation R(α,θ )
on the �G vectors(

G̃x

G̃y

)
=

(
α cos θ − 1 α sin θ

−α sin θ α cos θ − 1

)(
Gx

Gy

)
(A4)

= β

(
cos θ̃ − sin θ̃

sin θ̃ cos θ̃

)(
Gx

Gy

)
. (A5)

We defined the rotation angle θ̃ of the moire reciprocal lattice
vectors with respect to the original �G vectors and they can be
obtained from the relations

θ̃ = cos−1[(α cos θ − 1)/β], (A6)

θ̃ = sin−1(−α sin θ/β). (A7)

APPENDIX B: INFLUENCE OF VERTICAL LATTICE
CONSTANT RELAXATION

In this Appendix, we present another set of model param-
eters obtained allowing lattice relaxation for the interlayer
distance in the self-consistent LDA calculations, instead of
fixing the vertical atomic separations at the experimental
interlayer spacing c = 3.35 Å of graphite. Even though the
LDA approximation does not accurately capture the nonlocal
van der Waals type interlayer interactions that are important
in these systems, its tendency to over-bind covalent bonds
allows it to hold the weakly interacting layers together, and
describe the interlayer lattice constants and the forces between
van der Waals layered materials reasonably well. LDA results
tend to have reasonable agreement with sophisticated RPA
and beyond total energy calculations for thin jellium metal
slabs [48], hexagonal boron nitride [49], and graphite [50]
and other layered materials [51]. We allowed relaxation of
the atomic positions in the out of plane z direction using the
same 42×42 k-point grid and using a slightly coarser threshold
of total energy convergence in the geometry relaxation of
10−8 a.u. per unit cell and total force of 10−7 a.u. In both
G/G and G/BN cases, the overall effect of the relaxation is
to increase the interlayer separation by ∼0.2 Å with respect
to the closest interlayer separation. These changes leads to
a weakening of the interlayer coupling strength in the first

FIG. 22. (Color online) Changes in total energy, Dirac point
gaps, average layer separation distance, and Fermi energy resulting
from allowing self-consistent LDA relaxation in the out of plane z

axis for G/G.

shell approximation by about 7%, which implies that farther
�G vectors in the Fourier expansion become more important.
The changes in the position of the Fermi energy with respect to
the unrelaxed geometry are in the order of ∼10 meV for G/G
and ∼30 meV for G/BN providing a measure of changes in the
shifts in the site potential offsets between the layers near the
AA stacking configurations that are incorporated in the relaxed
parameter set. Because the pseudopotentials are referenced to
vacuum this information gives an estimate of the modulation in
the work function of the graphene sheet due to its coupling with
the hBN layer. The above observations suggest that geometry
relaxation can introduce small but non-negligible changes in
the potential map and details of valence-conduction bands
overlap in the G/BN case whose band structure near the Fermi
energy is determined simultaneously by in-plane xy and z

pseudospin terms of comparable magnitudes. This and other
details of the electronic structure in a G/BN heterostructure
will be presented elsewhere.

1. Relaxed geometry parameters for G/G

The �d-vector dependent maps of the Hamiltonian matrix
elements are changed only quantitatively relative to the
unrelaxed case, see Fig. 22. The numerical values of the
parameters that define the intralayer model for G/G in Eq. (21)
for relaxed geometries are

CAA = 2.3 meV, ϕAA = 27.5◦,

CBB = CAA, ϕBB = −ϕAA, (B1)

CAB = 2.08 meV,

whereas the interlayer tunneling constants are tbt = 98 meV.
The average interlayer separation distance lies between the

FIG. 23. (Color online) Changes in total energy, Dirac point
gaps, average layer separation distance measured from the minimum
separation distance, and Fermi energy resulting from allowing self-
consistent LDA relaxation in the out of plane z axis for G/BN.
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minimum 3.347 Å and the maximum of 3.563 Å for AA
stacking.

2. Relaxed geometry parameters for G/BN

For G/BN, we have kept the coordinates fixed for the BN
sheet, while we allowed the carbon atoms to relax in the out of
plane direction as a function of �d . T The �d-vector dependent
map of the Hamiltonian matrix elements for G/BN for relaxed
geometries also has some quantitative changes relative to the
unrelaxed calculations, see Fig. 23. The numerical values of the
parameters that define the intralayer model for G/BN together
with the Eqs. (21) for relaxed geometries are

C0AA = 3.334 eV, C0BB = −1.494 eV,

C0A′A′ = 0, C0B ′B ′ = 0,

CAA = 5.643 meV, ϕAA = 56.37◦,

CBB = 4.216 meV, ϕBB = 59.98◦,

CA′A′ = −7.402 meV, ϕA′A′ = 77.71◦,

CB ′B ′ = −4.574 meV, ϕB ′B ′ = 85.78◦,

CAB = 4.01 meV, ϕAB = 22.2◦,

CA′B ′ = 1.90 meV, ϕA′B ′ = 1.30◦, (B2)

whereas the interlayer tunneling constants are tBC = 130
meV and tNC = 87 meV. The average interlayer separation
distance lies between 3.256 Å and the maximum of 3.466
Å for AA stacking. The parameters of the effective model of

G/BN for the relaxed geometries in the sublattice basis are
given by

CAA = −13.3 meV, ϕAA = 63.63◦,

CBB = 14.0 meV, ϕBB = −51.27◦, (B3)

CAB = 9.53 meV, ϕAB = 21.82◦.

The parameters in the sublattice basis and in the pseudospin
basis can be related through

CAA = −
√

C2
0 + C2

z − 2C0Cz cos(ϕ0 − ϕz),

ϕAA = tan−1

[
C0 sin(ϕ0) − Cz sin(ϕz)

C0 cos(ϕ0) − Cz cos(ϕz)

]
,

CBB =
√

C2
0 + C2

z + 2C0Cz cos(ϕ0 − ϕz),

ϕBB = tan−1

[
C0 sin(ϕ0) + Cz sin(ϕz)

(C0 cos(ϕ0) + Cz cos(ϕz)

]
. (B4)

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,
666 (2004).

[2] K. S. Novoselov, Rev. Mod. Phys. 83, 837 (2011).
[3] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei,

K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone,
Nat. Nanotechnol. 5, 722 (2010).

[4] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim,
G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010); K. F. Mak,
C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105,
136805 (2010).

[5] M. Kuwabara, D. R. Clarke, and D. A. Smith, Appl. Phys. Lett.
56, 2396 (1990).

[6] W. Pong and C. Durkan, J. Phys.: Appl. Phys. 38, R329
(2005).

[7] I. Amidror, The Theory of the Moiré Phenomenon, Vol. 1
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