扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 王纺翔 ( 副研究员 )

    的个人主页 http://faculty.ustc.edu.cn/wangfangxiang/zh_CN/index.htm

  •   副研究员   硕士生导师
  • 主要任职:中国密码学会量子密码专业委员会委员兼秘书
研究方向 当前位置: 中文主页 >>研究方向
集成化量子保密通信网络及光场调控技术

(1)利用集成高性能量子编解码芯片实现高安全等级的大规模量子网络技术。量子保密通信利用量子力学基本原理实现不依赖于计算复杂度的安全通信,是保障国家信息安全的战略技术。集成化量子芯片在实现大规模、高性能量子编解码、缩小设备体积和降低成本方面具有显著优势,因此集成化量子芯片是实现量子保密通信技术大规模实用化的重要基础。我们致力于自主开发量子编解码芯片,发展实用化光电封装技术,并构建光电一体化集成量子保密通信系统和大规模量子网络。主要进展:基于集成光频梳技术实现了大规模广播式量子密钥分发(quantum key distribution, QKD)[Laser & Photonics Reviews 14, 1900190 (2020)],发展集成克尔光频梳的独立锁定技术并实现了百通道级大规模双光子干涉(Hong-Ou Mandel Interference)[Science Advances 11, eadq8982 (2025)]

(2)利用量子技术实现量子增强的安全时频传递。时频是现代科学和国计民生的基础,时频传递是实现异地时钟协同的关键技术。因此时频传递的安全关乎国家安全,是重要的战略前沿。我们的目标是基于量子安全技术实现高精度时频传递,构建可认证的量子安全时频传递。

(3)基于大规模集成光子学技术发展高性能光场调控器件。光场调控是光学及其广袤应用的基础技术,已经成为多个科学领域的的基础性技术,如光镊(量子计算、生物医学)、光学成像、光学雷达等。我们的远景蓝图是发展高速光场调控技术,将基于该技术的科学研究推向全新层面。


已发表论文:

[1]    L. Huang*, W. Wang*, F.-X. Wang*, Y. Wang, C. Zou, L. Tang, B. E. Little, W. Zhao, Z. Han, J. Yang, G. Wang#, W. Chen#, W. Zhang#, Massively parallel Hong-Ou-Mandel interference based on independent soliton microcombs. Science Advances11, eadq8982 (2025).

[2]    J. Wu, X. Zhan, F.-X. Wang#, Z. Zhong, S. Wang, W. Chen, Z.-Q. Yin, Z.-F. Han, Optical information encryption using general temporal ghost imaging with practical experimental condition. arXiv 2501.08136 (2025) (available at http://arxiv.org/abs/2501.08136).

[3]    张国威 Zhang Guowei, 黄冠中 Huang Guanzhong, 王纺翔 Wang Fangxiang#, 陈巍 Chen Wei#, 集成量子密钥分发研究进展(特邀)Laser & Optoelectronics Progress62, 1127012 (2025).

[4]    王纺翔 Wang Fangxiang仲振秋 Zhong Zhenqiu, 王双 Wang Shuang, 陈巍 Chen Wei, 韩正甫 Han Zhengfu, 高维量子密钥分发进展(特邀)Acta Optica Sinica45, 1306019 (2025).

[5]    H. Fu, F.-X. Wang#, W. Chen#, S. Wang#, D. He, Z. Yin, Z. Han, Atmospheric turbulence time-evolving modeling using spatio-temporal fractal nature [Invited]. Chinese Optics Letters23, 020101 (2025).

[6]    Q.-H. Lu, F.-X. Wang#, W. Chen#, H. Fu, Y. Lu, S. Wang, D. He, Z. Yin, G.-C. Guo, Z.-F. Han#, Quantum key distribution over a mimicked dynamic-scattering channel. Science China Information Sciences67, 142503 (2024).

[7]    P. Ye, W. Chen#, G.-W. Zhang, F.-Y. Lu, F.-X. Wang, G.-Z. Huang, S. Wang, D.-Y. He, Z.-Q. Yin, G.-C. Guo, Z.-F. Han, Induced-Photorefraction Attack against Quantum Key Distribution. Physical Review Applied19, 054052 (2023).

[8]    J. Wu, F.-X. Wang#, W. Chen, Z.-Q. Yin, S. Wang, Z.-G. Wang, S.-H. Lan, Z.-F. Han, General temporal ghost imaging model with detection resolution and noise. Applied Optics62, 1175 (2023).

[9]    F.-X. Wang, Q.-H. Lu, W. Chen#, S. Wang, H. Fu, Y. Lu, P. Hao, J. Chen, W. Ding, J. Ma, D. He, Z. Yin, Z. Zhou, G.-C. Guo, Z.-F. Han, Hybrid High-Dimensional Quantum Key Distribution for a Composable Quantum Network. Physical Review Applied19, 054060 (2023).

[10] G.-W. Zhang, W. Chen#, G.-J. Fan-Yuan, L. Zhang, F.-X. Wang, S. Wang, Z.-Q. Yin, D.-Y. He, W. Liu, J.-M. An, G.-C. Guo, Z.-F. Han, Polarization-insensitive quantum key distribution using planar lightwave circuit chips. Science China Information Sciences65, 200506 (2022).

[11] Q.-H. Lu, F.-X. Wang#, K. Huang, X. Wu, Z.-H. Wang, S. Wang, D.-Y. He, Z.-Q. Yin, G.-C. Guo, W. Chen#, Z.-F. Han#, Quantum Key Distribution Over a Channel with Scattering. Physical Review Applied17, 034045 (2022).

[12] F.-X. Wang, W. Chen#, High-dimensional quantum key distribution based on orbital angular momentum photons: A review. Chinese Journal of Quantum Electronics39, 64–80 (2022).

[13] S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P. Ye, Y. Zhou, G.-J. Fan-Yuan, F.-X. Wang, W. Chen, Y.-G. Zhu, P. V Morozov, A. V Divochiy, Z. Zhou, G.-C. Guo, Z.-F. Han, Twin-field quantum key distribution over 830-km fibre. Nature Photonics16, 154–161 (2022).

[14] X.-M. Hu, C. Zhang, Y. Guo, F.-X. Wang, W.-B. Xing, C.-X. Huang, B.-H. Liu, Y.-F. Huang, C.-F. Li, G.-C. Guo, X. Gao, M. Pivoluska, M. Huber, Pathways for Entanglement-Based Quantum Communication in the Face of High Noise. Physical Review Letters127, 110505 (2021).

[15] F.-X. Wang*, J. Wu*, W. Chen#, S. Wang, D.-Y. He, Z.-Q. Yin, C.-L. Zou, G.-C. Guo, Z.-F. Han, Perceiving Quantum Hacking for Quantum Key Distribution Using Temporal Ghost Imaging. Physical Review Applied15, 034051 (2021).

[16] G.-W. Zhang, Y.-Y. Ding, W. Chen#, F.-X. Wang, P. Ye, G.-Z. Huang, S. Wang, Z.-Q. Yin, J.-M. An, G.-C. Guo, Z.-F. Han, Polarization-insensitive interferometer based on a hybrid integrated planar light-wave circuit. Photonics Research9, 2176 (2021).

[17] Q.-K. Wang, F.-X. Wang#, J. Liu, W. Chen, Z.-F. Han, A. Forbes, J. Wang#, High-Dimensional Quantum Cryptography with Hybrid Orbital-Angular-Momentum States through 25 km of Ring-Core Fiber: A Proof-of-Concept Demonstration. Physical Review Applied15, 064034 (2021).

[18] F.-X. Wang, W. Wang#, R. Niu, X. Wang, C. Zou, C. Dong#, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z. Yin, D. He, W. Zhang#, W. Zhao, Z. Han, G. Guo, W. Chen#, Quantum Key Distribution with On‐Chip Dissipative Kerr Soliton. Laser & Photonics Reviews14, 1900190 (2020).

[19] Y.-P. Li, W. Chen#, F.-X. Wang, Z.-Q. Yin, L. Zhang, H. Liu, S. Wang, D.-Y. He, Z. Zhou, G.-C. Guo, Z.-F. Han, Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer. Optics Letters44, 4523 (2019).

[20] J. Wu, F.-X. Wang#, W. Chen#, S. Wang, D.-Y. He, Z.-Q. Yin, G.-C. Guo, Z.-F. Han, Temporal ghost imaging for quantum device evaluation. Optics Letters44, 2522–2525 (2019).

[21] F.-X. Wang, W. Chen#, Z.-Q. Yin, S. Wang, G.-C. Guo, Z.-F. Han, Characterizing High-Quality High-Dimensional Quantum Key Distribution by State Mapping Between Different Degrees of Freedom. Physical Review Applied11, 024070 (2019).

[22] Y.-P. Li, F.-X. Wang, W. Chen#, G.-W. Zhang, Z.-Q. Yin, D.-Y. He, S. Wang, G.-C. Guo, Z.-F. Han, Experimental realization of a resource-saving polarization-independent orbital-angular-momentum-preserving tunable beam splitter. Optics Letters44, 755 (2019).

[23] F.-X. Wang, W. Wang#, R. Niu, X. Wang, C.-L. Zou, C.-H. Dong#, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Zhang#, W. Zhao, Z.-F. Han, G.-C. Guo, W. Chen#, Quantum key distribution with dissipative Kerr soliton generated by on-chip microresonators. arXiv:1812.11415 (2018), doi:10.1002/lpor.201900190.

[24] J. Wu, X.-B. An, Z.-Q. Yin, F.-X. Wang, W. Chen, S. Wang, G.-C. Guo, Z.-F. Han, Proof of principle implementation of phase-flip error rejection quantum key distribution. Optics Letters43, 4707 (2018).

[25] F.-X. Wang, J. Wu, W. Chen#, Z.-Q. Yin, S. Wang, G.-C. Guo, Z.-F. Han, Controlled-phase manipulation module for orbital-angular-momentum photon states. Optics Letters43, 349 (2018).

[26] C. Wang, F.-X. Wang, H. Chen, S. Wang, W. Chen, Z.-Q. Yin, D.-Y. He, G.-C. Guo, Z.-F. Han, Realistic Device Imperfections Affect the Performance of Hong-Ou-Mandel Interference With Weak Coherent States. Journal of Lightwave Technology35, 4996–5002 (2017).

[27] F.-X. Wang, W. Chen#, Y.-P. Li, G.-W. Zhang, Z.-Q. Yin, S. Wang, G.-C. Guo, Z.-F. Han, Single-path Sagnac interferometer with Dove prism for orbital-angular-momentum photon manipulation. Optics Express25, 24946 (2017).

[28] F. X. Wang, W. Chen#, Y. P. Li, D. Y. He, C. Wang, Y. G. Han, S. Wang, Z. Q. Yin, Z. F. Han, Non-Markovian Property of Afterpulsing Effect in Single-Photon Avalanche Detector. Journal of Lightwave Technology34, 3610–3615 (2016).

[29] F.-X. Wang, W. Chen#, Z.-Q. Yin#, S. Wang, G.-C. Guo, Z.-F. Han, Scalable orbital-angular-momentum sorting without destroying photon states. Physical Review A94, 033847 (2016).

[30] F. X. Wang*, C. Wang*, W. Chen#, S. Wang#, F. S. Lv, D. Y. He, Z. Q. Yin, H. W. Li, G. C. Guo, Z. F. Han, Robust Quantum Random Number Generator Based on Avalanche Photodiodes. Journal of Lightwave Technology33, 3319–3326 (2015).


版权所有 ©2020 中国科学技术大学
地址:安徽省合肥市金寨路 96 号,邮政编码:230026