扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 朱银波 ( 副教授 )

    的个人主页 http://faculty.ustc.edu.cn/zhuyinbo/zh_CN/index.htm

  •   副教授   硕士生导师
论文列表 当前位置: 中文主页 >> 科学研究 >> 论文列表

Publications:

(#Contributing equally; *Corresponding author; Update time: 2024/1/1)

(http://staff.ustc.edu.cn/~zhuyinbo/)

Representative Publications: ACS Nano 2015.Nat. Commun. 2016.J. Mech. Phys. Solids 2019.ACS Nano 2021.Nano Lett. 2021.J. Mech. Phys. Solids 2022.Science 2023.Nano Lett. 2024.Sci. Adv. 2024.

Full List:

97. ()

96. ()

95. ()

94. Chen, S.M.#; G.Z. Wang#; Y.Z. Hou#; X.N. Yang; S.C. Zhang; H.L. Gao*; Y.B. Zhu*; H.A. Wu & S.H. Yu*; ***. Science Advances, 2024. **(): ***. ()

93. Zhou, N.; Y.B. Zhu* & H.A. Wu*; Effect of the sonic shock wave on void evolution in materials under irradiation. Mechanics of Materials, 2024. **: 104907. (https://doi.org/10.1016/j.mechmat.2023.104907)

92. Zhang, Z.T.#; Z.Y. Fang#; H.A. Wu & Y.B. Zhu*; Temperature-Dependent Paracrystalline Nucleation in Atomically Disordered Diamonds. Nano Letters, 2024. **(): **-**. (https://doi.org/10.1021/acs.nanolett.3c04037)

91. Qin, J.; J. Li; K. Chu; G. Yang; L. Zhang; X. Xia; P. Xuan; X. Chen; B. Weng; H. Huang; Y. Chen; W. Fan; Y.B. Zhu; H.A. Wu; F. Lai* & T. Liu*; Biomimetic Solar Photocatalytic Reactor for Selective Oxidation of Aromatic Alcohols with Enhanced Solar-Energy Utilization. Advanced Functional Materials, 2024. 34(): 2311214. (https://doi.org/10.1002/adfm.202311214)

90. Chen, C.#; X.L. Li#; S. Zhao#; Y. Song; Y.B. Zhu; Q. Wang; C. Zhong; R. Chen; E. Li; Z. Li* & J.W. Liu*; A biomimetic e-whisker sensor with multimodal perception and stimuli discrimination. Device, 2023. 1(5): 100148. (https://doi.org/10.1016/j.device.2023.100148)

89. Liu, X.Y.; Y. Xu; J. Shi; Y.B. Zhu; S. Zhang* & H.A. Wu*; Anti-fatigue nanomechanics in the pre-cracked graphene-copper artificial nacre under cyclic tension. Carbon, 2023. 215: 118505. (https://doi.org/10.1016/j.carbon.2023.118505)

88. Sun, Y.; H. Zhang; Y. Zhao; J. Wu; Y.B. Zhu; M. Li* & L. Wang*; Locally Reprogrammable Magnetic Micropillars with On-Demand Reconfiguration and Multi-Functionality. Advanced Materials Technologies, 2023. 8(22): 2300773. (https://doi.org/10.1002/admt.202300773)

87. Zhu, C.; Q. Wang; Y.B. Zhu; Y. Liu; J. Wei; H. Ping*; K. Wang; Z. Zou; J. Xie; H. Xie; H. Wang; W. Wang & Z. Fu*; Nacre-inspired boron nitride/sodium alginate composite with enhanced mechanical properties by prestress. Composites Part A: Applied Science and Manufacturing, 2023. 175: 107796. (https://doi.org/10.1016/j.compositesa.2023.107796)

86. Zhu, M.#; J. Zhou#; Z.Z. He#; Y. Zhang; H. Wu; J. Chen; Y.B. Zhu; Y. Hou*; H.A. Wu & Y. Lu*; Ductile amorphous boron nitride microribbons. Materials Horizons, 2023. 10(11): 4914-4921. (https://doi.org/10.1039/D3MH00845B)

85. Kong, Z.#; Y.Z. Hou#; J. Gu; F. Li; Y.B. Zhu; X. Ji; H.A. Wu & J. Liang*; Biomimetic Ultratough, Strong, and Ductile Artificial Polymer Fiber Based on Immovable and Slidable Cross-links. Nano Letters, 2023. 23(13): 6216-6225. (https://doi.org/10.1021/acs.nanolett.3c01786)

84. Wu, B.; X.X. Wang; Y.B. Zhu; H.W. Wu; A.M. He; H.A. Wu* & P. Wang*; Atomic Insight into Oxidation Mechanism of Core-Shell Aluminum Nanoparticle: Atomic Diffusion or Micro-Explosion? Journal of Physical Chemistry C, 2023. 127(34): 16781-16791. (https://doi.org/10.1021/acs.jpcc.3c02577)

83. Hu, Z.#; F. Li#; H. Wu#; J. Liao#; Q. Wang#; G. Chen; Z. Shi; Y. Zhu; S. Bu; Y. Zhao; M. Shang; Q. Lu; K. Jia; Q. Xie; G. Wang; X. Zhang; Y.B. Zhu; H.A. Wu*; H. Peng*; L. Lin* & Z. Liu*; Rapid and Scalable Transfer of Large-area Graphene Wafers. Advanced Materials, 2023. 35(29): 2300621. (https://doi.org/10.1002/adma.202300621)

82. Gu, J.#; F. Li#; Y.B. Zhu#; D. Li; X. Liu; B. Wu; H.A. Wu*; X. Fan; X. Ji; Y. Chen & J. Liang*; Extremely Robust and Multifunctional Nanocomposite Fibers for Strain-Unperturbed Textile Electronics. Advanced Materials, 2023. 35(15): 2209527. (https://doi.org/10.1002/adma.202209527)

81. Meng, X.S.#; L.C. Zhou#; L. Liu#; Y.B. Zhu; Y.F. Meng; D.C. Zheng; B. Yang; Q.Z. Rao; L.B. Mao*; H.A. Wu* & S.H. Yu*; Deformable hard tissue with high fatigue resistance in the hinge of bivalve Cristaria plicata. Science, 2023. 380(6651): 1252-1257. (Related PERSPECTIVE) (https://www.science.org/doi/10.1126/science.ade2038)

80. Sun, Y.; L. Wang*; Y. Ni; H. Zhang; X. Cui; J.H. Li; Y.B. Zhu; J. Liu; S. Zhang; Y. Chen* & M. Li*; 3D printing of thermosets with diverse rheological and functional applicabilities. Nature Communications, 2023. 14: 245. (https://www.nature.com/articles/s41467-023-35929-y)

79. Yuan, G.#; Y. Liu#; J. Xia#; Y. Su; W. Wei; Y.B. Zhu; Y. An; H.A. Wu; Q. Xu & H. Pang*; Two-Dimensional CuO Nanosheets-Induced MOF Composites and Derivatives for Dendrite-Free Zinc-Ion Batteries. Nano Research, 2023. 16(5): 6881-6889. (https://doi.org/10.1007/s12274-023-5424-x)

78. Zhou, L.C.; Z.Z. He; Z.T. Zhang; Y.B. Zhu* & H.A. Wu*; Maximum utilization of nacre-mimetic composites by architecture manipulation and interface modification towards critical damage state. Composites Science and Technology, 2023. 233: 109893. (https://doi.org/10.1016/j.compscitech.2022.109893)

77. He, Z.Z.*; H.A. Wu; J. Xia; Y.Z. Hou & Y.B. Zhu*; How weak hydration interfaces simultaneously strengthen and toughen nanocellulose materials. Extreme Mechanics Letters, 2023. 58: 101947. (https://doi.org/10.1016/j.eml.2022.101947)

76. Pan, X.F.#; Z.W. Bao#; W.L. Xu#; H.L. Gao*; B. Wu; Y.B. Zhu; G.H. Yu; J. Chen; S.C. Zhang; H.A. Wu; X.G. Li* & S.H. Yu*; Recyclable nacre-like aramid-mica nanopapers with enhanced mechanical and electrical insulating properties. Advanced Functional Materials, 2023. **(): 2210901. (https://doi.org/10.1002/adfm.202210901)

75. Huang, Z.C.#; Z.Z. He#*; Y.B. Zhu & H.A. Wu*; A general theory for the bending of multilayer van der Waals materials. Journal of the Mechanics and Physics of Solids, 2023. 117: 105144. (https://doi.org/10.1016/j.jmps.2022.105144)

74. Hou, Y.Z.; J. Xia*; Z.Z. He; Y.B. Zhu & H.A. Wu*; Molecular levers enable anomalously enhanced strength and toughness of cellulose nanocrystal at cryogenic temperature. Nano Research, 2023. **(): **-***. (https://doi.org/10.1007/s12274-022-5293-3)

73. Zhang, Z.B.#; Z.Z. He#; X.F. Pan#; H.L. Gao*; S.M. Chen; Y.B. Zhu; S.S. Cao; C.Y. Zhao; S. Wu; X.L. Gong; H.A. Wu* & S.H. Yu*; Bioinspired Impact-Resistant and Self-Monitoring Nanofibrous Composites. Small, 2023. **(): 2205219. (https://doi.org/10.1002/smll.202205219)

72. Chen, S.M.; K. Wu; H.L. Gao*; X.H. Sun; S.C. Zhang; X.Y. Li; Z.B. Zhang; S.M. Wen; Y.B. Zhu; H.A. Wu; Y. Ni & S.H. Yu*; Biomimetic discontinuous Bouligand structural design enables high-performances nanocomposites. Matter, 2022. 5(5): 1563-1577. (https://doi.org/10.1016/j.matt.2022.02.023)

71. Shi, X.; X. Fan; Y.B. Zhu; Y. Liu; P. Wu; R. Jiang; B. Wu; H.A. Wu; H. Zheng; J. Wang; X. Ji; Y. Chen* & J. Liang*; Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nature Communications, 2022. 13: 1119. (https://doi.org/10.1038/s41467-022-28760-4)

70. Shi, X.#; Y.B. Zhu#; X. Fan#; H.A. Wu*; P. Wu; X. Ji; Y. Chen & J. Liang*; An auxetic cellular structure as a universal design for enhanced piezoresistive sensitivity. Matter, 2022. 5(5): 1547-1562. (https://doi.org/10.1016/j.matt.2022.02.022)

69. Zhang, R.G.; Y. Wang; Y.B. Zhu; J.D. Jin; H.A. Wu; P. Gu* & Y. Zhao*; Stress analysis of double-walled pipes undergone mechanical drawing process. The International Journal of Advanced Manufacturing Technology, 2022. 119: 2525-2535. (https://doi.org/10.1007/s00170-021-08283-w)

68. Meng, Y.F.#; Y.B. Zhu#; L.C. Zhou; X.S. Meng; Y.L. Yang; R. Zhao; J. Xia; B. Yang; Y.J. Lu; H.A. Wu; L.B. Mao* & S.H. Yu*; Artificial Nacre with High Toughness Amplification Factor: Residual Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms. Advanced Materials, 2022. 34(9): 2108267. (https://doi.org/10.1002/adma.202108267)

67. Pan, X.F.#; B. Wu#; H.L. Gao*; S.M. Chen, Y.B. Zhu; L.C. Zhou; H.A. Wu & S.H. Yu*; Double-Layer Nacre-Inspired Polyimide-Mica Nanocomposite Films with Excellent Mechanical Stability for LEO Environmental Conditions. Advanced Materials, 2022. 34(2): 2105299. (https://doi.org/10.1002/adma.202105299)

66. He, Z.Z.; Y.B. Zhu & H.A. Wu*; Multiscale Mechanics of Noncovalent Interface in Graphene Oxide Layered Nanocomposites. Theoretical and Applied Mechanics Letters, 2022. 12: 100304. (invited) (https://doi.org/10.1016/j.taml.2021.100304)

65. He, Z.Z.; Y.B. Zhu* & H.A. Wu*; A universal mechanical framework for noncovalent interface in laminated nanocomposites. Journal of the Mechanics and Physics of Solids, 2022. 158: 104560. (https://doi.org/10.1016/j.jmps.2021.104560)

C2. 宋戎妆, 侯远震, 何泽洲, 夏骏, 朱银波, 吴恒安. 纳米纤维素序构材料界面力学行为和设计的研究进展[J]. 中国科学技术大学学报, 2021, 51(10): 766-786. (综述邀稿) (PDF)

64. Zhu, Y.B.; Y.C. Wang; B. Wu; Z.Z. He; J. Xia & H.A. Wu*; Micromechanical Landscape of Three-Dimensional Disordered Graphene Networks. Nano Letters, 2021. 21(19): 8401-8408. (https://doi.org/10.1021/acs.nanolett.1c02985)

63. Deng, Y.; Z.J. Chen; Y.B. Zhu; H.A. Wu & P. Gu*; The Device Using a Polydimethylsiloxane Membrane and the Phase Transition of Water. Coatings, 2021. 11(9): 1102. (https://doi.org/10.3390/coatings11091102)

62. Hou, Y.Z.; Z.Z. He; Y.B. Zhu* & H.A. Wu; Intrinsic kink deformation in nanocellulose. Carbohydrate Polymers, 2021. 273: 118578. (https://doi.org/10.1016/j.carbpol.2021.118578)

61. Gao, H.L.#; Z.Y. Wang#; C. Cui#; J.Z. Bao; Y.B. Zhu; J. Xia; S.M. Wen; H.A. Wu & S.H. Yu*; A Highly Compressible and Stretchable Carbon Spring for Smart Vibration and Magnetism Sensors. Advanced Materials, 2021. 33(39): 2102724. (Frontispiece) (https://doi.org/10.1002/adma.202102724)

60. Li, J.C.; Y.B. Zhu; J. Xia; J.C. Fan; H.A. Wu* & F.C. Wang*; Anomalously low friction of confined monolayer water with a quadrilateral structure. Journal of Chemical Physics, 2021. 154(22): 224508. (https://doi.org/10.1063/5.0053361)

59. Zhang, S.; Y.B. Zhu; F.C. Wang; X.Y. Liu*; H.A. Wu & S.N. Luo; Theoretical analysis of high strength and anti-buckling of three-dimensional carbon honeycombs under shear loading. Composites Part B: Engineering, 2021. 219: 108967. (https://doi.org/10.1016/j.compositesb.2021.108967)

58. Wang, Y.C.; Y.B. Zhu* & H.A. Wu; Formation and topological structure of three-dimensional disordered graphene networks. Physical Chemistry Chemical Physics, 2021. 23(17): 10290-10302. (Hot Articles) (https://doi.org/10.1039/D1CP00617G)

57. Wang, Q.; W.J. Yin; H. Yu; Y.B. Zhu* & H.A. Wu*; Hyperbolic-like structure with negative Poisson's ratio: Deformation mechanism and structural design. Physica Status Solidi B: Basic Solid State Physics, 2021. 258(10): 2100011. (https://doi.org/10.1002/pssb.202100011)

56. Wang, Y.C.; Y.B. Zhu* & H.A. Wu; Porous Characteristics of Three-Dimensional Disordered Graphene Networks. Crystals, 2021. 11(2): 127. (https://doi.org/10.3390/cryst11020127)

55. Guan, Q.F.#; Z.M. Han#; Y.B. Zhu#; W.L. Xu; H.B. Yang; Z.C. Ling; B.B. Yan; K.P. Yang; C.H. Yin; H.A. Wu & S.H. Yu*; Bio-Inspired Lotus-Fiber-like Spiral Hydrogel Bacterial Cellulose Fibers. Nano Letters, 2021. 21(2): 952-958. (https://dx.doi.org/10.1021/acs.nanolett.0c03707)

54. Hou, Y.Z.#; Q.F. Guan#; J. Xia#; Z.C. Ling; Z.Z. He; Z.M. Han; H.B. Yang; P. Gu; Y.B. Zhu*; S.H. Yu* & H.A. Wu*; Strengthening and Toughening Hierarchical Nanocellulose via Humidity-Mediated Interface. ACS Nano, 2021. 15(1): 1310-1320. (https://dx.doi.org/10.1021/acsnano.0c08574)

53. Chen, Z.J.; G. Cheng; Y.B. Zhu; H.A. Wu; E.B. Dong; P. Gu* & Y. Zhao*; Biomimetic polydimethylsiloxane (PDMS)/carbon fiber lamellar adhesive composite in thermal vacuum environment. International Journal of Adhesion and Adhesives, 2021. 105: 102778. (https://doi.org/10.1016/j.ijadhadh.2020.102778)

52. Chen, X.F.; Y.B. Zhu; H. Yu; J.Z. Liu; C.D. Easton; Z.Y. Wang; Y.X. Hu; Z.L. Xie; H.A. Wu; X.W. Zhang; D. Li & H.T. Wang*; Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. Journal of Membrane Science, 2021. 621: 118934. (https://doi.org/10.1016/j.memsci.2020.118934)

51. Ullah, A.*; H.A. Wu; A. Rehman; Y.B. Zhu; T. Liu & K. Zhang; Influence of laser parameters and Ti content on the surface morphology of L-PBF fabricated Titania. Rapid Prototyping Journal, 2021. 27(1): 71-80. (https://doi.org/10.1108/RPJ-03-2020-0050)

50. Yu, H.#; H.Y. Xu#; J.C. Fan; Y.B. Zhu; F.C. Wang & H.A. Wu*; Transport of Shale Gas in Microporous/Nanoporous Media: Molecular to Pore-Scale Simulations. Energy & Fuels, 2021. 35(2): 911-943. (Cover Paper) (https://dx.doi.org/10.1021/acs.energyfuels.0c03276)

49. Zhou, L.C.; Y.B. Zhu; Z.Z. He; X. Jin* & H.A. Wu*; Multi-parameter structural optimization to reconcile mechanical conflicts in nacre-like composites. Composite Structures, 2021. 259: 113225. (https://doi.org/10.1016/j.compstruct.2020.113225)

B1. Zhu, Y.B.; Phase Behavior of Two-Dimensional Water Confined in Graphene Nanocapillaries. Springer Theses, 2020. (https://doi.org/10.1007/978-981-15-7957-8)

48. He, Z.Z.; Y.B. Zhu & H.A. Wu*; Edge effect on interlayer shear in multilayer two-dimensional material assemblies. International Journal of Solids and Structures, 2020. 204-205: 128-137. (https://doi.org/10.1016/j.ijsolstr.2020.08.021)

47. Hou, Y.; X. Ren; J.C. Fan; G. Wang; Z. Dai; C. Jin; W. Wang; Y.B. Zhu; S. Zhang; L. Liu* & Z. Zhang*; Preparation of Twisted Bilayer Graphene via Wetting Transfer Method. ACS Applied Materials & Interfaces, 2020. 12(36): 40958-40967. (https://doi.org/10.1021/acsami.0c12000)

46. Wang, Y.C.; Y.B. Zhu*; Z.Z. He & H.A. Wu; Multiscale investigations into the fracture toughness of SiC/graphene composites: Atomistic simulations and crack-bridging model. Ceramics International, 2020. 46(18): 29101-29110. (https://doi.org/10.1016/j.ceramint.2020.08.082)

45. Xia, J.; Y.B. Zhu; X. Jin & H.A. Wu*; Unravelling the bindings between organic molecule and reduced graphene oxide in aqueous environment. Carbon, 2020. 167: 345-350. (https://doi.org/10.1016/j.carbon.2020.06.034)

44. Li, X.Y.#; H.C. Zhang#*; H. Yu#; J. Xia; Y.B. Zhu; H.A. Wu*; J. Hou; J. Lu; R.W. Ou; C.D. Easton; C. Selomulya; M.R. Hill; L. Jiang & H.T. Wang*; Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. Advanced Materials, 2020. 32(24): 2001777. (https://doi.org/10.1002/adma.202001777)

43. Xu, H.Y.; H. Yu*; J.C. Fan; Y.B. Zhu; F.C. Wang & H.A. Wu*; Two-Phase Transport Characteristic of Shale Gas and Water through Hydrophilic and Hydrophobic Nanopores. Energy & Fuels, 2020. 34(4): 4407-4420. (https://doi.org/10.1021/acs.energyfuels.0c00212)

42. Ma, Z.Y.#; Z.L. Yu#; Z.L. Xu#; L.F. Bu; H.R. Liu; Y.B. Zhu; B. Qin; T. Ma; H.J. Zhan; H.A. Wu; H. Ding* & S.H. Yu*; Origin of Batch Hydrothermal Fluid Behavior and Its Influence on Nanomaterial Synthesis. Matter, 2020. 2(5): 1270-1282. (https://doi.org/10.1016/j.matt.2020.02.015)

41. Guan, Q.F.#; H.B. Yang#; Z.M. Han#; L.C. Zhou; Y.B. Zhu; Z.C. Ling; H.B. Jiang; P.F. Wang; T. Ma; H.A. Wu & S.H. Yu*; Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020. 6(18): eaaz1114. (http://dx.doi.org/10.1126/sciadv.aaz1114)

40. Gao, H.L.#; R. Zhao#; C. Cui; Y.B. Zhu; S.M. Chen; Z. Pan; S.M. Wen; Y.F. Meng; C. Liu; H.A. Wu & S.H. Yu*; Bioinspired cellulose-based hierarchical helical macrofibers. National Science Review, 2020. 7(1): 73-83. (Research Article) (https://doi.org/10.1093/nsr/nwz077)

39. Chen, M.W.#; B. Wu#; L.C. Zhou; Y.B. Zhu* & H.A. Wu; Micromechanical properties of pyrolytic carbon with interlayer crosslink. Carbon, 2020. 159: 549-560. (https://doi.org/10.1016/j.carbon.2019.12.096)

38. Wu, B.; F.C. Wu; Y.B. Zhu; A.M. He; P. Wang* & H.A. Wu*; Fast reaction of aluminum nanoparticles promoted by oxide shell. Journal of Applied Physics, 2019. 126(14): 144305. (https://doi.org/10.1063/1.5115545)

37. He, Z.Z.; Y.B. Zhu*; J. Xia & H.A. Wu; Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019. 133: 103706. (https://doi.org/10.1016/j.jmps.2019.103706)

36. Zhou, N.; F.C. Wu; Y.B. Zhu; X.Z. Li; Q. Wu* & H.A. Wu*; Defect production and segregation induced by collision cascades in U-10Zr alloy. Journal of Nuclear Materials, 2019. 526(2): 151769. (https://doi.org/10.1016/j.jnucmat.2019.151769)

35. Wang, W.B.#; Y.B. Zhu#; Q.L. Wen; Y.T. Wang; J. Xia; C.C. Li; M.W. Chen; Y.W. Liu*; H.Q. Li; H.A. Wu* & T.Y. Zhai*; Modulation of Molecular Spatial Distribution and Chemisorption with Perforated Nanosheets for Ethanol Electro-oxidation. Advanced Materials, 2019. 31(28): 1900528. (https://doi.org/10.1002/adma.201900528)

34. Wu, F.C.; Y.B. Zhu; X.Z. Li; P. Wang; Q. Wu* & H.A. Wu*; Peculiarities in breakup and transport process of shock-induced ejecta with surrounding gas. Journal of Applied Physics, 2019. 125(18): 185901. (https://doi.org/10.1063/1.5086542)

33. Xia, J.; Y.B. Zhu*; Z.Z. He; F.C. Wang & H.A. Wu*; Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS Applied Materials & Interfaces, 2019. 11(18): 17068-17078. (http://dx.doi.org/10.1021/acsami.9b02971)

32. Yu, Y.Z.; J.C. Fan; J. Xia; Y.B. Zhu; H.A. Wu & F.C. Wang*; Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits. Nanoscale, 2019. 11(17): 8449-8457. (http://dx.doi.org/10.1039/C9NR00317G)

31. Chen, M.W.; Y.B. Zhu*; J. Xia & H.A. Wu*; Molecular insights into the initial formation of pyrolytic carbon upon carbon fiber surface. Carbon, 2019. 148: 307-316. (https://doi.org/10.1016/j.carbon.2019.04.003)

30. Yu, Z.L.#; B. Qin#; Z.Y. Ma; J. Huang; S.C. Li; H.Y. Zhao; H. Li; Y.B. Zhu; H.A. Wu & S.H. Yu*; Superelastic Hard Carbon Nanofiber Aerogels. Advanced Materials, 2019. 31(23): 1900651. (Back Cover) (https://doi.org/10.1002/adma.201900651)

29. Chen, S.M.#; H.L. Gao#; X.H. Sun#; Z.Y. Ma; T. Ma; J. Xia; Y.B. Zhu; R. Zhao; H.B. Yao; H.A. Wu* & S.H. Yu*; Superior Biomimetic Nacreous Bulk Nanocomposites by a Multiscale Soft-Rigid Dual-Network Interfacial Design Strategy. Matter, 2019. 1(2): 412-427. (https://doi.org/10.1016/j.matt.2019.03.012)

28. Zhou, L.C.; X.H. Sun; M.W. Chen; Y.B. Zhu & H.A. Wu*; Multiscale modeling and theoretical prediction for the thermal conductivity of porous plain-woven carbonized silica/phenolic composites. Composite Structures, 2019. 215: 278-288. (https://doi.org/10.1016/j.compstruct.2019.02.053)

27. Yu, H.#; Y.B. Zhu#; X. Jin*; H. Liu & H.A. Wu*; Multiscale simulations of shale gas transport in micro/nano-porous shale matrix considering pore structure influence. Journal of Natural Gas Science and Engineering, 2019. 64: 28-40. (https://doi.org/10.1016/j.jngse.2019.01.016)

26. Yu, Y.Z.; J.C. Fan; A. Esfandiar; Y.B. Zhu; H.A. Wu & F.C. Wang*; Charge Asymmetry Effect in Ion Transport through Angstrom-Scale Channels. Journal of Physical Chemistry C, 2019. 123(2): 1462-1469. (http://dx.doi.org/10.1021/acs.jpcc.8b09742)

25. Wang, J.N.; F.C. Wu; Y.B. Zhu; A.M. He; P. Wang* & H.A. Wu*; Unsupported shock wave induced dynamic fragmentation of matrix in lead with surface grooves. Computational Materials Science, 2019. 156: 404-410. (https://doi.org/10.1016/j.commatsci.2018.10.018)

C1. 王奉超, 朱银波, 吴恒安. 纳米通道受限液体的结构和输运[J]. 中国科学:物理学 力学 天文学, 2018, 48(9): 094609. (约稿) (PDF)

24. Chen, S.M.#; H.L. Gao#; Y.B. Zhu#; H.B. Yao; L.B. Mao; Q.Y. Song; J. Xia; Z. Pan; Z. He; H.A. Wu & S.H. Yu*; Biomimetic twisted plywood structural materials. National Science Review, 2018. 5(5): 703-714. (Research Article) (https://doi.org/10.1093/nsr/nwy080)

23. Yu, Z.L.#; N. Yang#; L.C. Zhou; Z.Y. Ma; Y.B. Zhu; Y.Y. Lu; B. Qin; W.Y. Xing; T. Ma; S.C. Li; H.L. Gao; H.A. Wu & S.H. Yu*; Bioinspired polymeric woods. Science Advances, 2018. 4(8): eaat7223. (http://dx.doi.org/10.1126/sciadv.aat7223)

22. Fan, J.C.; F.C. Wang*; J. Chen; Y.B. Zhu; D.T. Lu; H. Liu & H.A. Wu*; Molecular mechanism of viscoelastic polymer enhanced oil recovery in nanopores. Royal Society Open Science, 2018. 5(6): 180076. (http://dx.doi.org/10.1098/rsos.180076)

21. He, Z.Z.; Y.B. Zhu & H.A. Wu*; Self-folding mechanics of graphene tearing and peeling from a substrate. Frontiers of Physics, 2018. 13(3): 138111. (https://doi.org/10.1007/s11467-018-0755-5)

20. Wu, B.; F.C. Wu; Y.B. Zhu; P. Wang; A.M. He* & H.A. Wu*; Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks. AIP Advances, 2018. 8(4): 045002. (https://doi.org/10.1063/1.5021671)

19. Yu, H.; J.C. Fan; J. Chen; Y.B. Zhu & H.A. Wu*; Pressure-dependent transport characteristic of methane gas in slit nanopores. International Journal of Heat and Mass Transfer, 2018. 123: 657-667. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.003)

18. Zhu, W.D.; Y.B. Zhu; L. Wang; Q. Zhu; W.H. Zhao; C.Q. Zhu; J. Bai; J.L. Yang; L.F. Yuan*; H.A. Wu* & X.C. Zeng*; Water Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and Associated Solid–Liquid–Solid Transition. Journal of Physical Chemistry C, 2018. 122(12): 6704-6712. (http://dx.doi.org/10.1021/acs.jpcc.8b00195)

17. Li, X.Z.; J.C. Fan; H. Yu; Y.B. Zhu* & H.A. Wu*; Lattice Boltzmann method simulations about shale gas flow in contracting nano-channels. International Journal of Heat and Mass Transfer, 2018. 122: 1210-1221. (https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.066)

16. Wu, F.C.; Y.B. Zhu; Q. Wu; X.Z. Li; P. Wang & H.A. Wu*; Helium bubbles aggravated defects production in self-irradiated copper. Journal of Nuclear Materials, 2017. 496: 265-273. (https://doi.org/10.1016/j.jnucmat.2017.09.042)

15. Hou, Y.; Y.B. Zhu; X.Y. Liu; Z.H. Dai; L.Q. Liu; H.A. Wu* & Z. Zhang*; Elastic–plastic properties of graphene engineered by oxygen functional groups. Journal of Physics D: Applied Physics, 2017. 50(38): 385305. (http://dx.doi.org/10.1088/1361-6463/aa7fd4)

14. Zhu, Y.B.#; F.C. Wang# & H.A. Wu*; Structural and dynamic characteristics in monolayer square ice. Journal of Chemical Physics, 2017. 147(4): 044706. (http://dx.doi.org/10.1063/1.4995432)

13. Xia, J.; Y.B. Zhu*; F.C. Wang & H.A. Wu*; Effect of grain boundaries on mechanical transverse wave propagations in graphene. Journal of Applied Physics, 2017. 121(21): 215105. (http://dx.doi.org/10.1063/1.4984763)

12. Ge, J.#; L.A. Shi#; Y.C. Wang#; H.Y. Zhao; H.B. Yao; Y.B. Zhu; Y. Zhang; H.W. Zhu; H.A. Wu & S.H. Yu*; Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nature Nanotechnology, 2017. 12(5): 434-440. (cover paper, nature highlight, highly cited paper) (http://dx.doi.org/10.1038/nnano.2017.33)

11. Chen, M.W.; H.F. Zhan*; Y.B. Zhu; H.A. Wu* & Y.T. Gu; Mechanical Properties of Penta-Graphene Nanotubes. Journal of Physical Chemistry C, 2017. 121(17): 9642-9647. (http://dx.doi.org/10.1021/acs.jpcc.7b02753)

10. Yu, H.; J. Chen; Y.B. Zhu*; F.C. Wang & H.A. Wu*; Multiscale transport mechanism of shale gas in micro/nano-pores. International Journal of Heat and Mass Transfer, 2017. 111: 1172-1180. (https://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.050)

9. Wang, Y.C.; Y.B. Zhu*; F.C. Wang; X.Y. Liu & H.A. Wu*; Super-elasticity and deformation mechanism of three-dimensional pillared graphene network structures. Carbon, 2017. 118: 588-596. (http://dx.doi.org/10.1016/j.carbon.2017.03.092)

8. Zhu, Y.B.; F.C. Wang* & H.A. Wu; Superheating of monolayer ice in graphene nanocapillaries. Journal of Chemical Physics, 2017. 146(13): 134703. (http://dx.doi.org/10.1063/1.4979478)

7. He, Z.Z.; F.C. Wang; Y.B. Zhu; H.A. Wu* & H.S. Park*; Mechanical properties of copper octet-truss nanolattices. Journal of the Mechanics and Physics of Solids, 2017. 101: 133-149. (http://dx.doi.org/10.1016/j.jmps.2017.01.019)

6. Gao, H.L.#; Y.B. Zhu#; L.B. Mao; F.C. Wang; X.S. Luo; Y.Y. Liu; Y. Lu; Z. Pan; J. Ge; W. Shen; Y.R. Zheng; L. Xu; L.J. Wang; W.H. Xu; H.A. Wu* & S.H. Yu*; Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature Communications, 2016. 7: 12920. (http://dx.doi.org/10.1038/ncomms12920)

5. Zhu, Y.B.; F.C. Wang; J. Bai; X.C. Zeng* & H.A. Wu*; AB-stacked square-like bilayer ice in graphene nanocapillaries. Physical Chemistry Chemical Physics, 2016. 18(32): 22039-22046. (http://dx.doi.org/10.1039/C6CP03061K)

4. Zhu, Y.B.; F.C. Wang* & H.A. Wu; Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries. Journal of Chemical Physics, 2016. 145(5): 054704. (http://dx.doi.org/10.1063/1.4959902)

3. Zhu, Y.B.; F.C. Wang*; J. Bai; X.C. Zeng* & H.A. Wu; Formation of Trilayer Ices in Graphene Nanocapillaries under High Lateral Pressure. Journal of Physical Chemistry C, 2016. 120(15): 8109-8115. (http://dx.doi.org/10.1021/acs.jpcc.6b00258)

2. Zhao, Y.L.#; J. Yao#; L. Xu; M.N. Mankin; Y.B. Zhu; H.A. Wu; L.Q. Mai; Q.J. Zhang & C.M. Lieber*; Shape-Controlled Deterministic Assembly of Nanowires. Nano Letters, 2016. 16(4): 2644-2650. (http://dx.doi.org/10.1021/acs.nanolett.6b00292)

1. Zhu, Y.B.; F.C. Wang; J. Bai; X.C. Zeng* & H.A. Wu*; Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries. ACS Nano, 2015. 9(12): 12197-12204. (http://dx.doi.org/10.1021/acsnano.5b06572)


版权所有 ©2020 中国科学技术大学
地址:安徽省合肥市金寨路 96 号,邮政编码:230026