4. Y. Gong, Y. Li, and N. Freris, “FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to System Heterogeneity.” Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE), pp. 2575-2587, May 2022.
点击次数:
是否译文:否
上一条: 3. X. Wang, B. Tan, Y. Guo, T. Yang, D. Huang, L. Xu, N. Freris, H. Zhou, and X. Li, “CONFLUX: A Request-level Fusion Framework for Impression Allocation via Cascade Distillation.” Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 4070–4078, Aug. 2022.
下一条: 5. T. Wen, Y. Zhang, and N. Freris, “PF-MOT: Probability Fusion Based 3D Multi-Object Tracking for Autonomous Vehicles.” Proceedings of the 39th International Conference on Robotics and Applications (ICRA), pp. 700-706, May 2022.