Stereoscopic Omnidirectional Image Quality Evaluator
点击次数:
Introduction
Objective quality assessment of stereoscopic omnidirectional images is a challenging problem since it is influenced by multiple aspects such as projection deformation, field of view (FoV) range, binocular vision, visual comfort, etc. Existing studies show that classic 2D or 3D image quality assessment (IQA) metrics are not able to perform well for stereoscopic omnidirectional images. However, very few research works have focused on evaluating the perceptual visual quality of omnidirectional images, especially for stereoscopic omnidirectional images. In this paper, based on the predictive coding theory of the human vision system (HVS), we propose a stereoscopic omnidirectional image quality evaluator (SOIQE) to cope with the characteristics of 3D 360-degree images. Two modules are involved in SOIQE: predictive coding theory based binocular rivalry module and multi-view fusion module. In the binocular rivalry module, we introduce predictive coding theory to simulate the competition between high-level patterns and calculate the similarity and rivalry dominance to obtain the quality scores of viewport images. Moreover, we develop the multi-view fusion module to aggregate the quality scores of viewport images with the help of both content weight and location weight. The proposed SOIQE is a parametric model without necessary of regression learning, which ensures its interpretability and generalization performance. Experimental results on our published stereoscopic omnidirectional image quality assessment database (SOLID) demonstrate that our proposed SOIQE method outperforms state-of-the-art metrics. Furthermore, we also verify the effectiveness of each proposed module on both public stereoscopic image datasets and panoramic image datasets.
Paper
Zhibo Chen*, Jiahua Xu, Chaoyi Lin and Wei Zhou, "Stereoscopic Omnidirectional Image Quality Assessment Based on Predictive Coding Theory", Vol.14, Issue.1, pp.103-117, IEEE Journal of Selected Topics in Signal Processing, 2020.
Download
We develop an image quality metric according to the subjective experiment on the published stereoscopic omnidirectional image quality assessment database (SOLID).
To get the publicly available release of the dataset, Please fill THIS FORM and the source code will be sent to you.