Cui Hua
- Professor
- Supervisor of Doctorate Candidates
- Supervisor of Master's Candidates
- Name (English):Hua Cui
- Name (Pinyin):Cui Hua
- E-Mail:
- Business Address:环境资源楼-339
- Contact Information:0551-3600730
- Degree:Dr
- Professional Title:Professor
- Teacher College:Chemistry and Materials Science
Contact Information
- Fax:
- OfficePhone:
- Email:
- Paper Publications
Zn2+-Modified Nonmetal Porphyrin-Based Metal–Organic Frameworks with Improved Electrochemiluminescence for Nanoscale Exosome Detection
Release time:2023-07-01 Hits:
- DOI number:10.1021/acsanm.2c05273
- Journal:ACS Appl. Nano Mater.
- Abstract:Exploring effective and robust strategies for enhancing electrochemiluminescence (ECL) emissions of porphyrin-based metal–organic frameworks (MOFs) is of great importance for expanding their applications in bioassays. Herein, a simple, convenient, and effective endogenous strategy of post-synthesis-modified Zn2+ was proposed to enhance ECL of nonmetal porphyrin-based MOFs. The ECL emissions of porphyrin-cobuilt UiO-66-NH2 (TCPP/UiO-66-NH2), PCN-224, PCN-222, and Ce–TCPP–LMOF could be enhanced 31.9, 47.1, 49.9, and 19.2 times, respectively. By studying TCPP/UiO-66-NH2 nanoluminophores as a model, Zn2+ was incorporated into TCPP/UiO-66-NH2 through the coordination of Zn and pyrrolic N of TCPP. The ECL enhancement was attributed to the conversion of TCPP to ZnTCPP with high emission efficiency and MOFs could enrich co-reactants, shorten the ion/electron-transfer distance, and render electrochemical activation of porphyrin luminophores. On this basis, a simple ECL biosensor for detecting nanoscale exosomes was developed based on the boosted ECL signal of Zn–TCPP/UiO-66-NH2 nanoluminophores without additional recognition and amplification elements. The ECL biosensor exhibited good sensitivity with a detection range from 1.00 × 104 to 3.16 × 106 particles/μL and a detection limit of 9.08 × 103 particles/μL (S/N = 3). The linear range and detection limit of the proposed label-free ECL biosensor are better than most of the existing label-free methods for detecting exosomes, indicating its good performance as a powerful tool for accurate and sensitive detection of HepG2-derived exosomes. As a result, this work provides inspiration for exploring strategies to enhance ECL efficiencies of porphyrin-based MOFs, which has important application prospects in sensitive bioassays.
- Co-author:胡超,王慢莉,吕爱华
- First Author:王依莎
- Indexed by:Journal paper
- Correspondence Author:shujiangnan,Hua Cui
- Discipline:Natural Science
- Document Type:J
- Volume:6
- Issue:6
- Page Number:4214–4223
- Translation or Not:no
- Date of Publication:2023-03-14
- Included Journals:SCI
- Links to published journals:https://pubs.acs.org/doi/10.1021/acsanm.2c05273