首页
科学研究
论文成果
研究领域
著作成果
科研项目
教学研究
教学资源
授课信息
教学成果
获奖信息
招生信息
学生信息
我的相册
教师博客
扫描手机二维码
欢迎您的访问
您是第
位访客
开通时间:
.
.
最后更新时间:
.
.
登录
English
|
手机版
蒋琰
( 特任研究员 )
的个人主页 http://faculty.ustc.edu.cn/jiangyan/zh_CN/index.htm
特任研究员
电子邮箱:
bca236bd3b4677478b1ac6075530072050e05e3bf2980cfa3dbfbace46352d6eac8710a5ea5a40d3237cad082e9b2a3b7bc8c130df924117a77645f898fd515ce10b3c4d8f9d1c8db8edafed27e235ad82ff174ce9fb2e883343de9c5b578aa88a64b6563d44f5bde4202cc6162b05c13c0b619aefae60be7f970fca295dd959
办公地点:
管理科研楼1631室
联系方式:
0551-63601142
论文成果
当前位置:
中文主页
>>
科学研究
>>
论文成果
[11]
Y. Jiang, P. Sakkaplangkul, V. A. Bokil, Y. Cheng and F. Li, Dispersion analysis of finite difference and discontinuous Galerkin schemes for Maxwell's equations in linear Lorentz media, Journal of Computational Physics, v394 (2019), pp. 100-135.
[12]
Y. Jiang, High order finite difference multi-resolution WENO method for nonlinear degenerate parabolic equations, Journal of Scientific Computing, v86 (2021), 16.
[13]
A. Christlieb, W. Guo, Y. Jiang, H. Yang, A moving mesh WENO method based on exponential polynomials for one-dimensional conservation laws, Journal of Computational Physics, v380 (2019), pp. 334-354.
[14]
Y. Yu, Y. Jiang and M. Zhang, Free-stream preserving finite difference schemes for ideal magnetohydrodynamics on curvilinear meshes, Journal of Scientific Computing, v82 (2020), 23.
[15]
K. Wang, A. Christlieb, Y. Jiang and M. Zhang, A kernel based unconditionally stable scheme for nonlinear parabolic partial differential equations, Communications in Computational Physics, v29 (2021), pp. 237-264.
[16]
Z. Cheng, S. Liu, Y. Jiang, J. Lu, M. Zhang and S. Zhang, A high order boundary scheme to simulate a complex moving rigid body under the impingement of a shock wave, Applied Mathematics and Mechanics (English Edition), v42 (2021), pp. 841-854.
[17]
S. Liu, Y. Jiang, C.-W. Shu, M. Zhang and S. Zhang, A high order moving boundary treatment for convection-diffusion equations, Journal of Computational Physics, v473 (2023), 111752..
[18]
B. Dong, S. Gottlieb, Y. Hristova, Y. Jiang and H. Wang, The effect of the sensitivity parameter in weighted essentially non-oscillatory methods, In S. Brenner (Ed.), Topics in Numerical Partial Differential Equations and Scientific Computing, The IMA Volumes in Mathematics and its Applications, vol. 160, Springer New York, 2016, pp. 23-50.
[19]
蒋琰,蒋琰.AN ALTERNATIVE FORMULATION OF FINITE DIFFERENCE WEIGHTED ENO SCHEMES WITH LAX-WENDROFF TIME DISCRETIZATION FOR CONSERVATION LAWS.SIAM JOURNAL ON SCIENTIFIC COMPUTING,2012,35(2):A1137-A1160.
[20]
蒋琰,蒋琰.High-order finite difference WENO schemes with positivity-preserving limiter for correlated random walk with density-dependent turning rates.MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES,2015,25(8):1553-1588.
共20条 2/2
首页
上页
下页
尾页
页
版权所有 ©2020 中国科学技术大学
地址:安徽省合肥市金寨路 96 号,邮政编码:230026