A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source
Hits:
DOI number:10.1007/s40304-016-0091-4
Journal:Communications in Mathematics and Statistics
Key Words:Inverse problem; Stability; Carleman estimate; Hyperbolic equation
Abstract:For the solution to ∂^2_t u(x, t)−Δu(x, t)+q(x)u(x, t) = δ(x, t) and u |_{t<0}=0, consider an inverse problem of determining q(x), x ∈Ω from data f = u |_{S_T} and g = (∂u/∂n) |_{S_T} . Here Ω⊂{(x_1, x_2, x_3) ∈ R^3 | x_1 > 0} is a bounded domain, S_T = {(x, t) | x ∈ ∂Ω, |x| < t < T + |x|}, n = n(x) is the outward unit normal n to ∂Ω, and T > 0. For suitable T > 0, prove a Lipschitz stability estimation:
||q_1 − q_2||_{L^2(Ω)} ≤ C{||f_1 − f_2||_{H^1(S_T) }+ ||g_1 − g_2||_{L^2(S_T)}},
provided that q1 satisfies a priori uniform boundedness conditions and q2 satisfies a
priori uniform smallness conditions, where uk is the solution to problem (1.1) with
q = q_k , k = 1, 2.
Co-author:Shumin Li
First Author:Xue Qin
Indexed by:Journal paper
Discipline:Natural Science
Document Type:J
Volume:4
Issue:3
Page Number:403-421
ISSN No.:2194-6701
Translation or Not:no
Date of Publication:2016-09-12
Links to published journals:https://link.springer.com/article/10.1007/s40304-016-0091-4
-
|
OfficePhone:57b43fa6e7b612d5244b37201a9f171589cfd57841167ab5b230e3495f698f291b413c8c5522b3254ca29f061e7f5a80ab7a1db83e585869fccb808c39e260215170db5375d84ba1c25c7e3cea8f907e8b15caba2000f3f141ab4e04209b1b0cf52ab0d10a4408bafcbc1b618418f80a320fafd58cf12c2edb682b302d1b98b9
Telephone:6aeea512d05f7a0a5e3f2232519667918f7c5f79c0910cc2267d3ac5397b59c3f55f8acf89fec652698eba24a885a4aa9196bbc2f93621677151c846edf7f9b6d4e84f7d793b92b401b7ee3c615674cc8d190b39ca8d3d2b95de3c3547bc4ee6a1979c502f5a91b7efa7fe826dc6a77b86d95fb9b8aa5d9359afbc67655d8521
Email:0886f7259069dfa067946d8a60830b27283cdb95dbfee0c032756a09a3013842a91877f6a96bb9311f5158cd107a4f2964fb111b6209f82388406bb9bc1794c6e2c1a1735e4d3e43450cee2375ffe44a862bc5eefd3b2e39743079ab2bbd6212f0c29bc692e0785938f4d381a7e771513180658ff38c52e368bac4c7dacca5c2
|