Estimation of coefficients in a hyperbolic equation with impulsive inputs
Hits:
DOI number:10.1515/156939406779768283
Journal:Journal of Inverse and Ill-Posed Problems
Abstract:For the solution to ∂^2_{t}u (x, t) − ∆u (x, t) + q(x)u (x, t) = δ(x_1)δ'(t) and u|_{t<0} = 0, we consider an inverse problem of determining q(x), x ∈ Ω from data f = u|_{S_T} and g = (∂u/∂ν)|_{S_T}. Here Ω ⊂ {(x_1, . . ., x_n) ∈ R^n|x_1 > 0}, n ≥ 2, is a bounded domain, S_T = {(x, t) | x ∈ ∂Ω, x_1 < t < T + x_1} and T > 0. For suitable T > 0, we prove an L^2(Ω)-size estimation of q:
||q||_{L^2(Ω)} ≤ C{||f||_{H^1(S_T)} + ||g||_{L^2(S_T)}},
provided that q satisfies a priori uniform boundedness conditions. We use an inequality of Carleman type in our proof.
First Author:S. Li
Indexed by:Journal paper
Discipline:Natural Science
Document Type:J
Volume:14
Issue:9
Page Number:891-904
Translation or Not:no
Date of Publication:2006-09-01
Included Journals:EI
Links to published journals:https://www.degruyter.com/document/doi/10.1515/156939406779768283/html
-
|
OfficePhone:57b43fa6e7b612d5244b37201a9f171589cfd57841167ab5b230e3495f698f291b413c8c5522b3254ca29f061e7f5a80ab7a1db83e585869fccb808c39e260215170db5375d84ba1c25c7e3cea8f907e8b15caba2000f3f141ab4e04209b1b0cf52ab0d10a4408bafcbc1b618418f80a320fafd58cf12c2edb682b302d1b98b9
Telephone:6aeea512d05f7a0a5e3f2232519667918f7c5f79c0910cc2267d3ac5397b59c3f55f8acf89fec652698eba24a885a4aa9196bbc2f93621677151c846edf7f9b6d4e84f7d793b92b401b7ee3c615674cc8d190b39ca8d3d2b95de3c3547bc4ee6a1979c502f5a91b7efa7fe826dc6a77b86d95fb9b8aa5d9359afbc67655d8521
Email:0886f7259069dfa067946d8a60830b27283cdb95dbfee0c032756a09a3013842a91877f6a96bb9311f5158cd107a4f2964fb111b6209f82388406bb9bc1794c6e2c1a1735e4d3e43450cee2375ffe44a862bc5eefd3b2e39743079ab2bbd6212f0c29bc692e0785938f4d381a7e771513180658ff38c52e368bac4c7dacca5c2
|