个人信息Personal Information
副教授
硕士生导师
教师英文名称:Shumin Li
电子邮箱:
学历:博士研究生毕业
学位:博士
毕业院校:东京大学
Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem
点击次数:
DOI码:10.1007/978-3-319-94060-1
发表刊物:Nonlinear and Inverse Problems in Electromagnetics - PIERS 2017, Springer Proceedings in Mathematics & Statistics 243
关键字:Inverse problem; Carleman estimate; Time and space-dependent coefficient; Infinite domain; Hyperbolic equation
摘要:This paper is devoted to the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman estimate we prove the uniqueness and a Hölder stability in the determination of the conductivity by a single measurement on the lateral boundary. Our numerical examples show possibility of the determination of the location and the large contrast of the space-dependent function in three dimensions.
合写作者:L. Beilina,M. Cristofol,李书敏
论文类型:论文集
学科门类:理学
卷号:243
页面范围:133-145
ISSN号:2194-1009
是否译文:否
发表时间:2018-07-20
收录刊物:EI
发布期刊链接:https://link.springer.com/chapter/10.1007/978-3-319-94060-1_10