李书敏

个人信息Personal Information

副教授

硕士生导师

教师英文名称:Shumin Li

教师拼音名称:Li Shumin

电子邮箱:

学历:博士研究生毕业

学位:博士

毕业院校:东京大学

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Uniqueness, stability and numerical reconstruction of a time and space-dependent conductivity for an inverse hyperbolic problem

点击次数:

DOI码:10.1007/978-3-319-94060-1

发表刊物:Nonlinear and Inverse Problems in Electromagnetics - PIERS 2017, Springer Proceedings in Mathematics & Statistics 243

关键字:Inverse problem; Carleman estimate; Time and space-dependent coefficient; Infinite domain; Hyperbolic equation

摘要:This paper is devoted to the reconstruction of the time and space-dependent coefficient in an inverse hyperbolic problem in a bounded domain. Using a local Carleman estimate we prove the uniqueness and a Hölder stability in the determination of the conductivity by a single measurement on the lateral boundary. Our numerical examples show possibility of the determination of the location and the large contrast of the space-dependent function in three dimensions.

合写作者:L. Beilina,M. Cristofol,李书敏

论文类型:论文集

学科门类:理学

卷号:243

页面范围:133-145

ISSN号:2194-1009

是否译文:

发表时间:2018-07-20

收录刊物:EI

发布期刊链接:https://link.springer.com/chapter/10.1007/978-3-319-94060-1_10