个人信息Personal Information
副教授
硕士生导师
教师英文名称:Shumin Li
教师拼音名称:Li Shumin
电子邮箱:
学历:博士研究生毕业
学位:博士
毕业院校:东京大学
Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations
点击次数:
影响因子:2.1
DOI码:10.1088/1361-6420/aa941d
发表刊物:Inverse Problems
关键字:coefficient inverse problem; Carleman estimate; an acoustic equation of hyperbolic type; two space-dependent coefficients; adaptive algorithm
摘要:We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.
合写作者:L Beilina,M Cristofol,李书敏,山本昌宏
论文类型:期刊论文
论文编号:000428757900001
学科门类:理学
文献类型:J
卷号:34
期号:1
页面范围:015001
ISSN号:0266-5611
是否译文:否
发表时间:2018-01-01
收录刊物:SCI、EI
发布期刊链接:https://iopscience.iop.org/article/10.1088/1361-6420/aa941d