李书敏

个人信息Personal Information

副教授

硕士生导师

教师英文名称:Shumin Li

教师拼音名称:Li Shumin

电子邮箱:

学历:博士研究生毕业

学位:博士

毕业院校:东京大学

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations

点击次数:

影响因子:2.1

DOI码:10.1088/1361-6420/aa941d

发表刊物:Inverse Problems

关键字:coefficient inverse problem; Carleman estimate; an acoustic equation of hyperbolic type; two space-dependent coefficients; adaptive algorithm

摘要:We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.

合写作者:L Beilina,M Cristofol,李书敏,山本昌宏

论文类型:期刊论文

论文编号:000428757900001

学科门类:理学

文献类型:J

卷号:34

期号:1

页面范围:015001

ISSN号:0266-5611

是否译文:

发表时间:2018-01-01

收录刊物:SCI、EI

发布期刊链接:https://iopscience.iop.org/article/10.1088/1361-6420/aa941d