李书敏

个人信息Personal Information

副教授

硕士生导师

教师英文名称:Shumin Li

教师拼音名称:Li Shumin

电子邮箱:

学历:博士研究生毕业

学位:博士

毕业院校:东京大学

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Stability Estimate for an Inverse Problem of Determining a Coefficient in a Hyperbolic Equation with a Point Source

点击次数:

DOI码:10.1007/s40304-016-0091-4

发表刊物:Communications in Mathematics and Statistics

关键字:Inverse problem; Stability; Carleman estimate; Hyperbolic equation

摘要:For the solution to ∂^2_t u(x, t)−Δu(x, t)+q(x)u(x, t) = δ(x, t) and u |_{t<0}=0, consider an inverse problem of determining q(x), x ∈Ω from data f = u |_{S_T} and g = (∂u/∂n) |_{S_T} . Here Ω⊂{(x_1, x_2, x_3) ∈ R^3 | x_1 > 0} is a bounded domain, S_T = {(x, t) | x ∈ ∂Ω, |x| < t < T + |x|}, n = n(x) is the outward unit normal n to ∂Ω, and T > 0. For suitable T > 0, prove a Lipschitz stability estimation: ||q_1 − q_2||_{L^2(Ω)} ≤ C{||f_1 − f_2||_{H^1(S_T) }+ ||g_1 − g_2||_{L^2(S_T)}}, provided that q1 satisfies a priori uniform boundedness conditions and q2 satisfies a priori uniform smallness conditions, where uk is the solution to problem (1.1) with q = q_k , k = 1, 2.

合写作者:李书敏

第一作者:秦雪

论文类型:期刊论文

学科门类:理学

文献类型:J

卷号:4

期号:3

页面范围:403-421

ISSN号:2194-6701

是否译文:

发表时间:2016-09-12

发布期刊链接:https://link.springer.com/article/10.1007/s40304-016-0091-4