个人信息Personal Information
副教授
硕士生导师
教师英文名称:Shumin Li
电子邮箱:
学历:博士研究生毕业
学位:博士
毕业院校:东京大学
Estimation of coefficients in a hyperbolic equation with impulsive inputs
点击次数:
DOI码:10.1515/156939406779768283
发表刊物:Journal of Inverse and Ill-Posed Problems
摘要:For the solution to ∂^2_{t}u (x, t) − ∆u (x, t) + q(x)u (x, t) = δ(x_1)δ'(t) and u|_{t<0} = 0, we consider an inverse problem of determining q(x), x ∈ Ω from data f = u|_{S_T} and g = (∂u/∂ν)|_{S_T}. Here Ω ⊂ {(x_1, . . ., x_n) ∈ R^n|x_1 > 0}, n ≥ 2, is a bounded domain, S_T = {(x, t) | x ∈ ∂Ω, x_1 < t < T + x_1} and T > 0. For suitable T > 0, we prove an L^2(Ω)-size estimation of q: ||q||_{L^2(Ω)} ≤ C{||f||_{H^1(S_T)} + ||g||_{L^2(S_T)}}, provided that q satisfies a priori uniform boundedness conditions. We use an inequality of Carleman type in our proof.
第一作者:李書敏
论文类型:期刊论文
学科门类:理学
文献类型:J
卷号:14
期号:9
页面范围:891-904
是否译文:否
发表时间:2006-09-01
收录刊物:EI
发布期刊链接:https://www.degruyter.com/document/doi/10.1515/156939406779768283/html