Generalized Ridge Regression-Based Few-Sample Learning Digital Predistortion
Hits:
DOI number:10.1109/LMWC.2022.3148407
Affiliation of Author(s):中国科学技术大学
Teaching and Research Group:电子工程与信息科学系
Journal:IEEE Microwave and Wireless Components Letters
Funded by:国家自然科学基金 61471333
Key Words:Behavioral modeling, digital predistortion (DPD), generalized ridge regression (GRR), power amplifiers (PAs).
Abstract:Learning from fewer samples can effectively reduce the computational complexity of the parameter identification in
digital predistortion (DPD). We refer to this kind of approach as
few-sample learning (FSL). However, FSL is always challenging
since the ill-conditioning of the matrix will lead to overfitting.
In this letter, we explore a stable parameter identification method
for FSL DPD based on generalized ridge regression (GRR) and
give two closed-form expressions of GRR for fast implementation.
Experiments confirm that the proposed method can achieve
better performance than the previous methods without any prior
knowledge.
First Author:Guichen Yang (杨贵晨)
Co-author:Wen Qiao,Chengye Jiang,Lei Su
Indexed by:Journal paper
Correspondence Author:Falin Liu
Discipline:Engineering
Document Type:J
Volume:32
Issue:6
Page Number:603-606
Translation or Not:no
Date of Publication:2022-06-01
Included Journals:SCI、EI
-
|
 ZipCode:4033d038a97fa8a1e181832fb7374e02602ee696c0157a059ba3dede124bef920ced6426ac54dc14fe958f2764201685f155445b71f34a1bdb26d49a8e19909d5f12885d72e4a9af17189d12b56d9797e98a5aea30fc139d96a35fa624a75258ef4cb0d7f98f359ba300538a65269993f6dbe7be389418af3015b379354515cd
 OfficePhone:2c29ce60609ab4b788169086b4fdd9f5ac7380dedf229d753ad43396eb7a2cb8bfb970ff40ec4e3713bfa5f9b3d834a0a1817580064c3a179f0121bca200f63a2be841b5c347fae2d9e69b17d45e95eddde746c74825639ad46c2a0bd9f332b7943cba144aafb10f50a4ac216698013ff0f2a2363f77d2643174e03877cb3388
 Email:94c91894ab8dbeeac6c04497f81ed0b1319b1cd5a2aca48587580e88dcbd4616c141776d545f1bc168128ddfeaf4269d525ed2e053a6f8663c63b991401b456f3fe5e523ceac5da91f0f560ac95ec756bd754f8b10464c1f206382846b3636fd5d03cbb2b856b9c4be2e6878ae07d2d43842b0ef6967cfe21a413d26e9813733
|