Synthetic aperture radar autofocus based on phaseless measurements
Hits:
DOI number:10.1117/1.JRS.14.014515
Journal:Journal of Applied Remote Sensing
Key Words:synthetic aperture radar; model error; compressed sensing; phaseless measurements.
Abstract:We introduce a new framework for compressed sensing (CS) in synthetic aperture radar (SAR) imaging in the case of model error. Conventional CS-based autofocus methods solve a joint optimization problem to achieve both model error parameter estimation and SAR image formation simultaneously. Owing to the possibly nonconvex feature of the joint optimization problem, however, these algorithms may get stuck in local optima having large phase errors and thus fail to reconstruct the image. In contrast, we use phaseless measurements and pose imaging as a convex optimization problem. To solve the convex problem, we use the alternating direction method of multipliers-based approach, which is computationally efficient and easy to implement. The results from simulations with both point targets and extended targets validate the effectiveness of the proposed method.
First Author:Yanwei Yin (尹艳伟)
Co-author:Zhang Wang,Hao Han,Yuanhang Jia
Indexed by:Journal paper
Correspondence Author:Falin Liu
Document Code:014515
Discipline:Engineering
Document Type:J
Volume:14
Issue:1
Translation or Not:no
Date of Publication:2020-02-01
Included Journals:SCI、EI
-
|
 ZipCode:4033d038a97fa8a1e181832fb7374e02602ee696c0157a059ba3dede124bef920ced6426ac54dc14fe958f2764201685f155445b71f34a1bdb26d49a8e19909d5f12885d72e4a9af17189d12b56d9797e98a5aea30fc139d96a35fa624a75258ef4cb0d7f98f359ba300538a65269993f6dbe7be389418af3015b379354515cd
 OfficePhone:2c29ce60609ab4b788169086b4fdd9f5ac7380dedf229d753ad43396eb7a2cb8bfb970ff40ec4e3713bfa5f9b3d834a0a1817580064c3a179f0121bca200f63a2be841b5c347fae2d9e69b17d45e95eddde746c74825639ad46c2a0bd9f332b7943cba144aafb10f50a4ac216698013ff0f2a2363f77d2643174e03877cb3388
 Email:94c91894ab8dbeeac6c04497f81ed0b1319b1cd5a2aca48587580e88dcbd4616c141776d545f1bc168128ddfeaf4269d525ed2e053a6f8663c63b991401b456f3fe5e523ceac5da91f0f560ac95ec756bd754f8b10464c1f206382846b3636fd5d03cbb2b856b9c4be2e6878ae07d2d43842b0ef6967cfe21a413d26e9813733
|