Reducing Parameter Estimation Error of Behavioral Modeling and Digital Predistortion via Transfer Learning for RF Power Amplifiers
Hits:
DOI number:10.1109/TMTT.2023.3267117
Affiliation of Author(s):中国科技大学电子工程与信息科学系
Journal:IEEE Transactions on Microwave Theory and Techniques
Funded by:国际自然科学基金
Key Words:Behavioral modeling, digital predistortion (DPD),
few-sample learning (FSL), power amplifiers (PA), transfer learning
Abstract:Digital predistortion (DPD) has been widely used in linearizing radio frequency (RF) power amplifiers (PAs). However, model coefficients could not always be estimated accurately for a variety of reasons. Several regularization methods have been developed for parameter identification. However, the performance improvement is limited due to the missing information. Fortunately, if parameters from earlier operating conditions are available, they can be employed to enhance the accuracy of DPD in the current state. Despite the fact that many adaptive DPD methods are based on related concepts, they merely use past parameters as initialization for the target task. In this article, we proposed some novel transfer learning-based parameter estimation techniques for PAs operating in time-varying operating configurations. By effectively utilizing the structure knowledge of noncurrent parameters as a priori rather than just initializing them, the estimation error can be significantly decreased. Applying few-sample learning (FSL), for instance, can help to simplify the computational process of parameter extraction, but its robustness is poor. And the experimental results prove that the proposed method is useful for reducing the parameter estimation bias in FSL with negligible extra computational complexity.
First Author:Guichen Yang (杨贵晨)
Co-author:Chengye Jiang,Renlong Han,Jingchao Tan
Indexed by:Journal paper
Correspondence Author:Falin Liu
Document Code:10.1109/TMTT.2023.3267117
Discipline:Engineering
Document Type:J
Volume:71
Issue:11
Page Number:4787-4799
Translation or Not:no
Date of Publication:2023-11-08
Included Journals:SCI
-
|
 ZipCode:4033d038a97fa8a1e181832fb7374e02602ee696c0157a059ba3dede124bef920ced6426ac54dc14fe958f2764201685f155445b71f34a1bdb26d49a8e19909d5f12885d72e4a9af17189d12b56d9797e98a5aea30fc139d96a35fa624a75258ef4cb0d7f98f359ba300538a65269993f6dbe7be389418af3015b379354515cd
 OfficePhone:2c29ce60609ab4b788169086b4fdd9f5ac7380dedf229d753ad43396eb7a2cb8bfb970ff40ec4e3713bfa5f9b3d834a0a1817580064c3a179f0121bca200f63a2be841b5c347fae2d9e69b17d45e95eddde746c74825639ad46c2a0bd9f332b7943cba144aafb10f50a4ac216698013ff0f2a2363f77d2643174e03877cb3388
 Email:94c91894ab8dbeeac6c04497f81ed0b1319b1cd5a2aca48587580e88dcbd4616c141776d545f1bc168128ddfeaf4269d525ed2e053a6f8663c63b991401b456f3fe5e523ceac5da91f0f560ac95ec756bd754f8b10464c1f206382846b3636fd5d03cbb2b856b9c4be2e6878ae07d2d43842b0ef6967cfe21a413d26e9813733
|