刘发林
邮编:
办公室电话:
邮箱:
DOI码:10.1109/LMWC.2022.3148407
所属单位:中国科学技术大学
教研室:电子工程与信息科学系
发表刊物:IEEE Microwave and Wireless Components Letters
项目来源:国家自然科学基金 61471333
关键字:Behavioral modeling, digital predistortion (DPD), generalized ridge regression (GRR), power amplifiers (PAs).
摘要:Learning from fewer samples can effectively reduce the computational complexity of the parameter identification in digital predistortion (DPD). We refer to this kind of approach as few-sample learning (FSL). However, FSL is always challenging since the ill-conditioning of the matrix will lead to overfitting. In this letter, we explore a stable parameter identification method for FSL DPD based on generalized ridge regression (GRR) and give two closed-form expressions of GRR for fast implementation. Experiments confirm that the proposed method can achieve better performance than the previous methods without any prior knowledge.
合写作者:Wen Qiao,Chengye Jiang,Lei Su
第一作者:Guichen Yang (杨贵晨)
论文类型:期刊论文
通讯作者:Falin Liu
学科门类:工学
文献类型:J
卷号:32
期号:6
页面范围:603-606
是否译文:否
发表时间:2022-06-01
收录刊物:SCI、EI