访问量:   最后更新时间:--

刘发林

博士生导师
硕士生导师
教师姓名:刘发林
教师英文名称:LIU Falin
电子邮箱:
学历:博士研究生毕业
联系方式:0551-63601922
学位:工学博士学位
职称:研究员
毕业院校:中国科学技术大学
所属院系:信息科学技术学院
学科:电子科学与技术    信息与通信工程    
其他联系方式

邮编:

办公室电话:

邮箱:

论文成果
Gated Dynamic Neural Network Model for Digital Predistortion of RF Power Amplifiers With Varying Transmission Configurations
发布时间:2023-02-17    点击次数:

DOI码:10.1109/TMTT.2023.3241612

所属单位:中国科学技术大学

教研室:电子工程与信息科学系

发表刊物:IEEE Transactions on Microwave Theory and Techniques

关键字:Digital predistortion (DPD), gated dynamic model, neural network (NN), power amplifier (PA), varying transmission configurations.

摘要:The future intelligent transmitter will dynamically adjust the transmission configuration on demand, which will bring new challenges to digital predistortion (DPD). In this article, we present a gated dynamic neural network (GDNN) DPD model to linearize the power amplifier (PA) with varying transmission configurations. The proposed GDNN model is composed of a gating network and a backbone network that can be any NN-based DPD model designed for a fixed configuration. The core idea of the GDNN model is that the backbone model can be dynamically adjusted using the configuration-dependent weights generated by the gating network to achieve transmission configuration-adaptive DPD. To further reduce the running complexity of the GDNN DPD, a sparse GDNN (SGDNN) DPD model is also proposed, which selectively activates the neurons of the backbone network according to the transmission configuration. Experiments are performed with a Doherty PA to validate the proposed method, where the varying transmission configuration includes power level, signal bandwidth (BW), and peak-to-average power ratio. The test results demonstrate that the proposed method can effectively linearize the PA with dynamic transmission configuration and has excellent configuration generalization capability. Moreover, the sparse gating technique can reduce the running complexity of the GDNN DPD by more than 50% with only a slight performance loss.

合写作者:Guichen Yang,Renlong Han,Jingchao Tan

第一作者:Chengye Jiang (姜成业)

论文类型:期刊论文

通讯作者:Falin Liu

论文编号:10.1109/TMTT.2023.3241612

学科门类:工学

文献类型:J

卷号:71

期号:8

页面范围:3605-3616

是否译文:

发表时间:2023-08-01

收录刊物:SCI、EI