访问量:   最后更新时间:--

刘发林

博士生导师
硕士生导师
教师姓名:刘发林
教师英文名称:LIU Falin
电子邮箱:
学历:博士研究生毕业
联系方式:0551-63601922
学位:工学博士学位
职称:研究员
毕业院校:中国科学技术大学
所属院系:信息科学技术学院
学科:电子科学与技术    信息与通信工程    
其他联系方式

邮编:

办公室电话:

邮箱:

论文成果
Adaptive Transfer Strategy for Digital Predistortion With Varying Transmission Configurations
发布时间:2025-10-25    点击次数:

DOI码:10.1109/TVT.2025.3624547

所属单位:中国科学技术大学信息学院

教研室:电子工程与信息科学系

发表刊物:IEEE Transactions on Vehicular Technology ( Early Access )

项目来源:NSFC 62371436

关键字:Digital predistortion (DPD), power amplifiers (PAs), Kolmogorov–Arnold network (KAN), transfer learning, time-varying transmission configurations.

摘要:Power amplifier (PA) behaviors are highly correlated under different transmission configurations. Utilizing transfer learning to apply effective information from an already trained digital predistortion (DPD) model under a certain configuration to the current configuration can greatly reduce update resources and shorten the transition period. Fine-tuning is an effective method to implement transfer learning in neural networks (NNs). For the trade-off between performance and update resources, this paper proposes an adaptive fine-tuning strategy (ATS) for DPD networks in time-varying transmission configuration scenarios. ATS can determine the location of the fine-tuning operation according to the transmission configuration to obtain better gains with limited resources. Owing to the high fitting efficiency and good interpretability of Kolmogorov-Arnold network (KAN), the block-oriented KAN (BO-KAN) model is also proposed in this paper. Unlike NNs based on multilayer perceptron (MLP), BO-KAN has the ability to transfer information between networks of different capacities. Therefore, the BO-KAN model with a larger capacity can be used for fast updating in complex configurations without training from scratch. Experimental results demonstrate that the BO-KAN with ATS achieves excellent dynamic linearization performance, with low running complexity and acceptable update complexity.

第一作者:Qianqian Zhang(张牵牵)

合写作者:Renlong Han,Chengye Jiang,Junsen Wang,Hao Chang

论文类型:期刊论文

通讯作者:Falin Liu

论文编号:10.1109/TVT.2025.3624547

学科门类:工学

文献类型:J

卷号:Online

期号:Online

页面范围:1-13

是否译文:

发表时间:2025-10-23