Additive-Free Self-Presodiation Strategy for High-Performance Na-Ion Batteries
Hits:
DOI number:10.1002/adfm.202101475
Journal:Advanced Functional Materials
Key Words:Na‐ion batteries;quenching method;
Abstract:The irreversible consumption of sodium at the anode side during the first cycle prominently reduces the energy density of Na-ion batteries. Different sacrificial cathode additives have been recently reported to address this problem; however, critical issues such as by-products (e.g., CO2) release during cycling and incompatibility with current battery fabrication procedures potentially deteriorate the full-cell performance and prevent the practical application. Herein, an additive-free self-presodiation strategy is proposed to create lattice-coherent but component-dependent O3-NaxTMMnO2 (TM = transition metal ion(s)) cathodes by a quenching treatment rather than the general natural cooling. The quenching material preserves higher Mn3+ and Na+ content, which is able to release Na+ via Mn3+ oxidation to compensate for sodium consumption during the initial charge while adopting other TM to provide the capacity in the following cycles. Full cells fabricated with hard carbon anode and this material as both cathode and sodium supplement reagent have a nearly 9.4% cathode mass reduction, around 9.9% energy density improvement (from 233 to 256 Wh kg−1), and 8% capacity retention enhancement (from 76% to 84%) after 300 cycles. This study presents the route to rational design cathode materials with sodium reservoir property to simplify the presodiation process as well as improve the full-cell performance.
Co-author:Qingshi Meng,Pengfei Yu, Haibo Wang,Yaoshen Niu, Yuqi Li,Yang Yang, Yaxiang Lu, Liquan Chen
First Author:Feixiang Ding
Correspondence Author:Xiaohui Rong,Xiaosong Liu,Yong-sheng Hu
Document Code:2101475
Volume:31
Issue:26
ISSN No.:1616-301X
Translation or Not:no
Date of Publication:2021-04-17
Links to published journals:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202101475
-
|
ZipCode:6ecf516b0e64e49898151228b3521c6404d1d0d229ac6297637d793502e4ac4d001775ce8bf8f9ccbd11c1876951bc2c4f60aace33a1f499265e061e13812b5e513c5d0c21ebc2988c726ce14fe9eb8bf1faa736b1aab211806fe850c6346b4e2d45f004dc52014fe08c3a31d9112e27bb58eca35cabc161d5ba78489b204ac9
PostalAddress:01ff0fc6306481f180c432d47cf92d995bf51adad9d69e5c64ffa481add8e2151f8d1a2adc4b569ab1a976dc43b9c3f93a3fa4def56c096d3aa94c01ed57a2eb8209548adf3422524ca56c5d0c395230935cb31dfe103552a8ed254e4ff527632d7664c515d4407fb4e09496510a80fdbfaf165fcc290263530f0b84492ccd08
OfficePhone:9ec8090c724edb00e65264d29e467883c687120725ab05c6325d67c9e63c317fac058c5a3a1052b4e9bf56f7ed6fa0711a506d6466900699f1352d516362820c8e24815db6fd5528cc77409baa78ab3c193c455f1ae8b2fa5db5e3670dfd44c783475458bc9da59f775aaa8bb9be40dc9a6fefa5502bf1dcb824240f35b47f86
Email:a66c01a07b3cb2c2ae994b73116b949151ceae686ddae3fcaf06aab8ad668926196c8b733b71fc5804c184f5570ec09f77fbf17fc92ae5f66c66c4567dfd3e52daaa26fdeb0c8617250c2b3f09a0cf9547723029a0deca22bb9b34fa78adcad45ca59195bda973da9772574bcda250f6e10728cc0e8910c9a51a9e05921468f8
|