刘啸嵩
开通时间:..
最后更新时间:..
点击次数:
DOI码:10.1103/PhysRevB.104.075156
发表刊物:Physical Review B
关键字:OXIDE;HETEROSTRUCTURES;PHYSICS
摘要:We have used angle-dependent soft x-ray absorption spectroscopy (XAS) at the O K edge and first-principles calculations to investigate the electronic structures of iridate-based superlattices (SrIrO3)(m)/(SrTiO3) (m = 1, 2, 3, and infinity). We focus on the pre-edge Ir 5d t(2g)-O 2p orbital hybridization feature in the XAS spectra. By varying the measurement geometry relative to the incident photon polarization, we are able to extract the dichroic contrast and observe the systematic increase in the anisotropy of Ir 5d orbitals as m decreases. First-principles calculations elucidate the orbital anisotropy coming mainly from the enhanced out-of-plane compression of IrO6 octahedra in the SrIrO3 layers that are adjacent to the inserted SrTiO3 layers. As m decreases, the increased volume fraction of these interfacial SrIrO3 layers and their contact with the SrTiO3 layers within the (SrIrO3)(m)/(SrTiO3) supercell lead to enhanced orbital anisotropy. Furthermore, the tilt and rotation of IrO6 octahedra are shown to be essential to understand the subtle orbital anisotropy in these superlattices, and constraining these degrees of freedom will give an incorrect trend. Our results demonstrate that the structural constraint from the inserted SrTiO3 layers, in addition to other electronic means such as polar interface and charge transfer, can serve as a knob to control the orbital degree of freedom in these iridate-based superlattices.
合写作者:Wanling Liu,Yu-Cheng Shao, Xuefei Feng, Nian Zhang, Jiamin Fu, Jenn-Min Lee, Dawei Shen, Yi-De Chuang,Xiaosong Liu
第一作者:Wencheng Huang
通讯作者:Wencheng Huang
论文编号:075156
卷号:104
期号:7
ISSN号:2469-9950
是否译文:否
发表时间:2021-08-30
发布期刊链接:https://journals.aps.org/prb/abstract/10.1103/PhysRevB.104.075156