Quantifying 3D cell-matrix interactions during mitosis and the effect of anticancer drugs on the interactions
点击次数:
DOI码:10.1007/s12274-021-3357-4
发表刊物:Nano Research
摘要:The mechanical force between cells and the extracellular microenvironment is crucial to many physiological processes such as cancer metastasis and stem cell differentiation. Mitosis plays an essential role in all these processes and thus an in-depth understanding of forces during mitosis gains insight into disease diagnosis and disease treatment. Here, we develop a traction force microscope method based on monolayer fluorescent beads for measuring the weak traction force (tens of Pa) of mitotic cells in three dimensions. We quantify traction forces of human ovarian granulosa (KGN) cells exerted on the extracellular matrix throughout the entire cell cycle in three dimensions. Our measurements reveal how forces vary during the cell cycle, especially during cell division. Furthermore, we study the effect of paclitaxel (PTX) and nocodazole (NDZ) on mitotic KGN cells through the measurement of traction forces. Our results show that mitotic cells with high concentrations of PTX exert a larger force than those with high concentrations of NDZ, which proved to be caused by changes in the structure and number of microtubules. These findings reveal the key functions of microtubule in generating traction forces during cell mitosis and explain how dividing cells regulate themselves in response to anti-mitosis drugs. This work provides a powerful tool for investigating cell-matrix interactions during mitosis and may offer a potential way to new therapies for cancer.
论文类型:期刊论文
卷号:14
页面范围:4163–4172
是否译文:否
发表时间:2021-03-03
收录刊物:SCI
发布期刊链接:
https://link.springer.com/article/10.1007/s12274-021-3357-4