ࡱ> ?A>` R0bjbj1( <;======$`h a!888a$$$8;8;$$ ]toB5;0,p!(p!p!P0";Waa8888J J $n$J J n Optical manipulation of quantum-degenerate excitonic particles Makoto Kuwata-Gonokami Department of Applied Physics, the University of Tokyo, and0CREST-JST 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Tel: +81-3-5841-6836, Fax: +81-3-5841-8809, gonokami@ap.t.u-tokyo.ac.jp Collective quantum mechanical phenomena such as superfluidity and superconductivity are observed for particles at a high density and low temperature. These collective effects can also take place in optically manipulated materials through a precise control of light-matter interactions. We have performed several experiments in order to obtain high particle density, low temperature photo-controlled matter states, including Bose-Einstein condensates of excitonic particles, electron-hole liquids and laser-cooled neutral atoms. In particular, photo-generated electrons and holes in semiconductors provide a unique opportunity to examine macroscopic quantum phenomena such as the crossover from quantum degenerate bosonic ensembles (Bose-Einstein condensate states of excitons) to Fermi-degenerate electron-hole ensembles. In this talk, several topics shown below on the creation and detection of high density and cold excitonic particles will be presented and novel experimental aspects of collective quantum phenomena with electron-hole ensembles in semiconductors will be discussed. (1) Generation of highly quantum-degenerate excitonic particles by pulsed two-photon excitation with phase space compression [1-3] (2) Observation of cold para-excitons in Cu2O by excitonic Lyman spectroscopy [4-8] (3) Dynamics of cold and dense electron-hole ensembles in semiconductors [9-12] [1] M. Kuwata-Gonokami, R. Shimano and A. Mysyrowicz,, J. Phys. Soc. Jpn, 71 (2002) 1257. [2] R. Shimano, Yu. P. Svirko, A. Mysyrowicz, and M. Kuwata-Gonokami, Phys. Rev. Lett. 89 (2002) 233601. [3] K. Yoshioka and M.Kuwata-Gonokami, Phys. Rev. B, 73 (2006) 081202 (R). [4] M. Kuwata-Gonokami , M. Kubouchi, R. Shimano, A. Mysyrowicz, J. Phys. Soc. Jpn. 73 (2004) 1065; M. Kuwata-Gonokami, Solid State Commun. 134 (2005) 127. [5] M. Kubouchi , K. Yoshioka, R. Shimano, A. Mysyrowicz and M. Kuwata-Gonokami, Phys. Rev. Lett. 94 (2005) 016403. [6] T. Tayagaki , A. Mysyrowicz and M. Kuwata-Gonokami J. Phys. Soc. Jpn. 74 (2005) 1423. [7]T. Tayagaki, A. Mysyrowicz, and M. Kuwata-Gonokami,Phys. Rev. B, 74, (2006) 245127. [8] K. Yoshioka, T. Ideguchi, and M. Kuwata-Gonokami,Phys. Rev. B, 76 (2007) 033204. [9] R. Shimano, M. Nagai, K. Horiuchi and M. Kuwata-Gonokami, Phys. Rev. Lett. 88 (2002) 057404. [10] M. Nagai, R. Shimano and M. Kuwata-Gonokami, Phys. Rev. Lett. 86 (2001) 5796. [11] M.Nagai and M. Kuwata-Gonokami. J. Lumi. 100 (2002) 233. [12] N. Naka, J. Omathi, M. Kuwata-Gonokami, Phys. Rev. B, in press. 0>@~& 4    ] w UVnaR@@@#haph1~?CJOJQJnHo(tHh,"CJOJQJnHo(tHhaph,"CJOJQJ-h6B*CJOJQJaJnHo(phtH(haph+6B*CJOJQJaJphhaph+6CJOJQJaJhaph+CJOJQJ\haph+CJOJQJ-hhE5CJ OJQJ\aJ nHo(tH"hhE5CJ OJQJ\aJ "hh+5CJ OJQJ\aJ ~   W.~BWD^`gd+CG$WD^`gd+CVDCWD^`gd+CG$VDCWD^`gd+C iG$`igd,"$da$ $da$gd$a$G$ $G$a$gdE'+,-.12vxy{|}~ԥԓs`P`P`=%haph+5CJ\aJnHo(tHhap5CJ\aJnHo(tH%haphap5CJ\aJnHo(tH#haph+5B*CJ\aJphhaph+5CJ\aJ#haph+CJOJQJnHo(tHh+CCJOJQJnHo(tHhaph+CJH*OJQJ#haph1~?CJOJQJnHo(tH#haphapCJOJQJnHo(tHhaph+CJOJQJhaph1~?CJOJQJ~029:ABXhwy߼߼ߩߖxePeߖ>"haph+5CJOJQJ\^J(haphap5B*CJOJQJaJph# %haphapB*CJOJQJaJph# haphapCJOJQJaJhaph1~?CJOJQJaJ$haph+CJOJQJ^JnHtH$haph3`-CJOJQJ^JnHtHhaph+5CJOJQJ^J$haph1~?CJOJQJ^JnHtHhaph+CJOJQJ^J!haph+B*CJOJQJph#'+,:z{񹦓|eK|e2haphC6CJOJQJ]^JmH nHsH tH,haphCCJOJQJ^JmH nHsH tH,haph1~?CJOJQJ^JmH nHsH tH$haph3`-CJOJQJ^JmH sH $haph+CJOJQJ^JmH sH *haph+5CJOJQJ\^JmH sH $haph+CJOJQJ^JnHtHhaph3`-CJOJQJ^Jhaph+CJOJQJ^J*R \WDv^`gd+CG$WD^`gd+CWD^`gd+C d*$WD^`gd+CWD^`gd+C$7$WD^`a$gd+C ?ARSTVҿ}jV}j}A)haph+0JB*^JaJmH phsH 'haphap5CJOJQJ^JmH sH $haphapCJOJQJ^JmH sH ,haphapCJOJQJ^JmH nHsH tH,haph1~?CJOJQJ^JmH nHsH tH'haphap5CJOJQJaJmH sH $haphapCJOJQJaJmH sH -haphapB*CJOJQJaJmH ph# sH ,haph+CJOJQJ^JmH nHsH tH   LN\]^_rcP=c+c"haph+5CJOJQJ\^J$haphapCJOJQJ^JnHtH$haph1~?CJOJQJ^JnHtHhaph+CJOJQJ^J'haph+5B*CJ\^JaJph)haphapB*CJ^JaJnHphtH!haph+B*CJ^JaJph'haph+0J5B*\^JaJph!haph+0JB*^JaJph)haph+0JB*^JaJmH phsH 1haphap0JB*^JaJmH nHphsH tHϼhaph+nHo(tH$haphapCJOJQJ^JnHtH$haph+CJOJQJ^JnHtHhaph+CJOJQJ^Jhaph3`-CJOJQJ^J/1h;0. A!n"n#$n%  `@` jn$*$1$A$a$/B*CJKHOJPJQJ^J_HaJmH sH tHJ@J QW0 1$$1$a$5CJKHOJQJaJ$A$ k=0000FiF jnn0h :V 44 la $k$000j0W0 &O& k=00001@O@ Bib First Name OJQJCJ(B@( ,ge x$/@"$ N^JHO2H Caption xx $6CJ]^JaJ.OB. Index $^JNON Heading x$CJOJPJQJ^JaJ>Ob> WW-f_j0W0CJKHOJQJaJ^O^ MC Section Head 1$x5CJKHOJQJaJROR MC Reference $1$a$CJKHOJQJaJhOh MC Author Affiliation $1$a$6CJKHOJQJaJZOZ MC OCIS1$]^`CJKHOJQJaJbOb MC Abstract1$]^`CJKHOJQJaJLOL f_j0W01 $1$a$CJKHOJQJaJmH sH HOH ,ge 31 $1$a$5CJ$KHOJQJaJ<@< E9TM0QW0CJOJPJ QJ^JaJZOZ ap HTML Body1$7$8$H$ OJ PJ QJ_HmH nHsH tH (?@WXW.~* \ {00{00{00{00{00{00{00{00{00{00{00{00{00{00{00{00{00{00{00{00?@WXW.~B*R \ 000000000?@WXW.~B*R \ 00000000000000 00000000000~   XC 7""7""@0(  B S  ?Q<R<̛S<܉    9*urn:schemas-microsoft-com:office:smarttagsplace=*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName pA+4GVIV   *.Vg#$'+,.:<z{  A D I J P S T V * 9 F J a h p  7)0AB)*Q R  L [ 3333333@7(\    8H 1 _ WW^W`o(. H\H^H`\hH() \^`\hH \^`\hH. 4\4^4`\hH()  \ ^ `\hH | \| ^| `\hH.  \ ^ `\hH() \^`\hH1 _V}`W         ,"'3`-z)<1~?Eap++C7kiVC@8H PP@Unknown Gz Times New Roman5Symbol3& z ArialG h-3 fgMS Mincho7Century5& zaTahoma1,s^bfg3z Times?5 z Courier NewK5  h-3 0000MS Gothic96 h-3 00000BAHhU&U&⚦A A !24d  2qHP(?E1Generation and detection of cold excitons in Cu2OMasakoGonokami Oh+'0$ 8D d p | 4Generation and detection of cold excitons in Cu2OMasako Normal.dot Gonokami3Microsoft Office Word@ @@h@aB5@aB5A ՜.+,0$ hp  Univ.of Tokyo  2Generation and detection of cold excitons in Cu2O Title  !"#$%&'()*+,-/012345789:;<=@Root Entry FoB5BData 1Table!WordDocument1(SummaryInformation(.DocumentSummaryInformation86CompObjm  FMicrosoft Office Word MSWordDocWord.Document.89q