-
特任教授
- 电子邮箱:b1d15bc86114a7b277ea75e1a514cf6837ec49721285ea3941d499f7fee02667eb27d103d573cd11c746ba0095dc8937ed095e2c0e995709539af4f408a3ae29eaca09335a236479c8bfe5625fa838851ddffbe3c2fdaf12f5fa5aea889b5175e2c1f8926c979418848865d2b25b8ef7cafe5d93f5710a0bcee52e586066c5f6
- 办公地点:中国科学技术大学西校区力5楼910室
- 联系方式:0551-63601102
- 学位:博士
访问量:
-
[11]P. Tan, et al. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product, Applied Energy, 2017, 203, 254–266. (IF: 8.426).2021,
-
[12]P. Tan, et al. Advances and challenges in lithium-air batteries, Applied Energy, 2017, 204, 780–806. (IF: 8.426).2021,
-
[13]P. Tan, et al. Effects of moist air on the cycling performance of non-aqueous lithium-air batteries, Applied Energy, 2016, 182, 569–575. (IF: 8.426).2021,
-
[14]W. Shang, W. Yu, P. Tan*, et al. A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode, Journal of Power Sources, 2019, 421, 6–13. (IF: 7.467).2021,
-
[15]P. Tan, et al. Prediction of the theoretical capacity of non-aqueous lithium-air batteries, Applied Energy, 2013, 4, 275–282. (IF: 8.426).2021,
-
[16]W. Shang, W. Yu, P. Tan*, et al. A high-performance Zn battery based on self-assembled nanostructured NiCo2O4 electrode, Journal of Power Sources, 2019, 421, 6–13. (IF: 7.467).
-
[17]P. Tan, et al. Prediction of the theoretical capacity of non-aqueous lithium-air batteries, Applied Energy, 2013, 4, 275–282. (IF: 8.426).
-
[18]P. Tan, et al. Effects of moist air on the cycling performance of non-aqueous lithium-air batteries, Applied Energy, 2016, 182, 569–575. (IF: 8.426).
-
[19]P. Tan, et al. Advances and challenges in lithium-air batteries, Applied Energy, 2017, 204, 780–806. (IF: 8.426).
-
[20]P. Tan, et al. Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product, Applied Energy, 2017, 203, 254–266. (IF: 8.426).