叶向东
教师姓名:叶向东
电子邮箱:
联系方式:0551-63601046
学位:博士
职称:教授
所属院系:数学科学学院
学科:
其他联系方式
暂无内容
论文成果
- P. Dong, S. Donoso, A. Maass, S. Shao and X.D. Ye, Infinite-step nilsystems, independence and complexity, Ergod. Th. and Dynam. Sys., 33(2013), 118-143
- S. Shao and X.D. Ye, Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence, Adv. in Math., 231(2012), 1786-1817
- W. Huang, H.F. Li and X.D. Ye, Family-independence for topological and measurable dynamics, Trans. Amer. Math. Soc., 364(2012), 5209-5242
- W. Huang, X.D. Ye and G.H. Zhang, Local theory of entropy for a countable discrete amenable group action, Journal of Functional Analysis, 261(2011), 1028-1082
- W. Huang, P. Lu and X.D. Ye, Measure-theoretical sensitivity and equicontinuity, Israel J. of Math., 183 (2011), 233-283
- E. Akin, E. Glasner, W. Huang, S. Shao and X.D. Ye, Sufficient conditions under which a transitive system is chaotic, Ergod. Th. and Dynam. Sys., 30(2010), 1277-1310
- W. Huang and X.D. Ye, Combinatorial lemmas and applications to dynamics, Adv. Math., 220 (2009), 1689-1716
- W. Huang and X.D. Ye, A local variational relation and applications, Israel J. of Math., 151(2006), 237-279
- W. Huang and X.D. Ye, Dynamical systems disjoint from any minimal system, Trans. Amer. Math. Soc., 357(2005), 669-694
- W. Huang, A. Maass and X.D. Ye, Sequence entropy pairs and complexity pairs for a measure, Annales de l'Institut Fourier, 54(2004), 1005-1028
- W. Huang, A. Maass, P. Romagnoli and X.D. Ye, Entropy pairs and a local abramov formula for the mte of open covers, Erg. Th. and Dynam. Sys., 24(2004), 1127-1153
- W. Huang and X.D. Ye, Topological complexity, return times and weak disjointness, Erg. Th. Dynam. Sys., 24(2004), 825-846
- W. Huang, Simin Li, S. Shao and X.D. Ye, Null systems and sequence entropy pairs, Ergod. Th. and Dynam. Sys., 23(2003), 1505-1523
- T. Downarowicz and X.D. Ye, When every point is either transitive or periodic, Colloq. Math., 93(2002), 137-150
- W. Huang and X.D. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appli., 117(2002), 259-272