

Smallest Brauer subgroup obstructing the Hasse principle

Yongqi Liang
梁永祺

University of Science and Technology of China

ALGANT Master: 2006-2008 Padova, Italy & Orsay, France

Central simple algebras and Brauer groups

- ▶ a CSA(**central simple algebra**) A is a finite dimensional k -algebra, having no non-trivial 2-sided ideal, with center k
- ▶ Wedderburn: $A \simeq M_n(D)$ matrix algebra, for some division algebra D with center k
- ▶ Brauer equivalence: $A \sim A' \Leftrightarrow D = D'$ with $A \simeq M_n(D)$ and $A' \simeq M_{n'}(D')$
- ▶ Brauer group $\text{Br}(k) = (\{\text{CSAs}\} / \sim, \otimes_k)$
neutral element: $M_n(k)$; inverse: A^{op} since $A \otimes A^{\text{op}} = M_{d^2}(k)$ with $d = \dim_k A$
- ▶ 2-torsion $\text{Br}(k)[2]$ is given by classes of quaternion algebras $(a, b) = \text{Vect}_k(1, i, j, ij)$ with $i^2 = a, j^2 = b, ij = -ji$
- ▶ For **number fields** k :

Proposition (global class field theory)

We have an exact sequence $0 \rightarrow \text{Br}(k) \rightarrow \bigoplus_{v \in \Omega} \text{Br}(k_v) \xrightarrow{\sum_v \text{inv}_v} \mathbb{Q}/\mathbb{Z} \rightarrow 0$,
where $\text{inv}_v : \text{Br}(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ is an isomorphism for p -adic fields,
monomorphism otherwise.

Central simple algebras and Brauer groups

- ▶ a CSA(**central simple algebra**) A is a finite dimensional k -algebra, having no non-trivial 2-sided ideal, with center k
- ▶ Wedderburn: $A \simeq M_n(D)$ matrix algebra, for some division algebra D with center k
- ▶ Brauer equivalence: $A \sim A' \Leftrightarrow D = D'$ with $A \simeq M_n(D)$ and $A' \simeq M_{n'}(D')$
- ▶ Brauer group $\text{Br}(k) = (\{\text{CSAs}\} / \sim, \otimes_k)$
neutral element: $M_n(k)$; inverse: A^{op} since $A \otimes A^{\text{op}} = M_{d^2}(k)$ with $d = \dim_k A$
- ▶ 2-torsion $\text{Br}(k)[2]$ is given by classes of quaternion algebras $(a, b) = \text{Vect}_k(1, i, j, ij)$ with $i^2 = a, j^2 = b, ij = -ji$
- ▶ For **number fields** k :

Proposition (global class field theory)

We have an exact sequence $0 \rightarrow \text{Br}(k) \rightarrow \bigoplus_{v \in \Omega} \text{Br}(k_v) \xrightarrow{\sum_v \text{inv}_v} \mathbb{Q}/\mathbb{Z} \rightarrow 0$,
where $\text{inv}_v : \text{Br}(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ is an isomorphism for p -adic fields,
monomorphism otherwise.

Central simple algebras and Brauer groups

- ▶ a CSA(**central simple algebra**) A is a finite dimensional k -algebra, having no non-trivial 2-sided ideal, with center k
- ▶ Wedderburn: $A \simeq M_n(D)$ matrix algebra, for some division algebra D with center k
- ▶ Brauer equivalence: $A \sim A' \Leftrightarrow D = D'$ with $A \simeq M_n(D)$ and $A' \simeq M_{n'}(D')$
- ▶ Brauer group $\text{Br}(k) = (\{\text{CSAs}\} / \sim, \otimes_k)$
neutral element: $M_n(k)$; inverse: A^{op} since $A \otimes A^{\text{op}} = M_{d^2}(k)$ with $d = \dim_k A$
- ▶ 2-torsion $\text{Br}(k)[2]$ is given by classes of quaternion algebras $(a, b) = \text{Vect}_k(1, i, j, ij)$ with $i^2 = a, j^2 = b, ij = -ji$
- ▶ For **number fields** k :

Proposition (global class field theory)

We have an exact sequence $0 \rightarrow \text{Br}(k) \rightarrow \bigoplus_{v \in \Omega} \text{Br}(k_v) \xrightarrow{\sum_v \text{inv}_v} \mathbb{Q}/\mathbb{Z} \rightarrow 0$,
where $\text{inv}_v : \text{Br}(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ is an isomorphism for p -adic fields,
monomorphism otherwise.

Central simple algebras and Brauer groups

- ▶ a CSA(**central simple algebra**) A is a finite dimensional k -algebra, having no non-trivial 2-sided ideal, with center k
- ▶ Wedderburn: $A \simeq M_n(D)$ matrix algebra, for some division algebra D with center k
- ▶ Brauer equivalence: $A \sim A' \Leftrightarrow D = D'$ with $A \simeq M_n(D)$ and $A' \simeq M_{n'}(D')$
- ▶ Brauer group $\text{Br}(k) = (\{\text{CSAs}\} / \sim, \otimes_k)$
neutral element: $M_n(k)$; inverse: A^{op} since $A \otimes A^{\text{op}} = M_{d^2}(k)$ with $d = \dim_k A$
- ▶ 2-torsion $\text{Br}(k)[2]$ is given by classes of quaternion algebras $(a, b) = \text{Vect}_k(1, i, j, ij)$ with $i^2 = a, j^2 = b, ij = -ji$
- ▶ For **number fields** k :

Proposition (global class field theory)

We have an exact sequence $0 \rightarrow \text{Br}(k) \rightarrow \bigoplus_{v \in \Omega} \text{Br}(k_v) \xrightarrow{\sum_v \text{inv}_v} \mathbb{Q}/\mathbb{Z} \rightarrow 0$,
where $\text{inv}_v : \text{Br}(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ is an isomorphism for p -adic fields,
monomorphism otherwise.

Central simple algebras and Brauer groups

- ▶ a CSA(**central simple algebra**) A is a finite dimensional k -algebra, having no non-trivial 2-sided ideal, with center k
- ▶ Wedderburn: $A \simeq M_n(D)$ matrix algebra, for some division algebra D with center k
- ▶ Brauer equivalence: $A \sim A' \Leftrightarrow D = D'$ with $A \simeq M_n(D)$ and $A' \simeq M_{n'}(D')$
- ▶ Brauer group $\text{Br}(k) = (\{\text{CSAs}\} / \sim, \otimes_k)$
neutral element: $M_n(k)$; inverse: A^{op} since $A \otimes A^{\text{op}} = M_{d^2}(k)$ with $d = \dim_k A$
- ▶ 2-torsion $\text{Br}(k)[2]$ is given by classes of quaternion algebras $(a, b) = \text{Vect}_k(1, i, j, ij)$ with $i^2 = a, j^2 = b, ij = -ji$
- ▶ For **number fields** k :

Proposition (global class field theory)

We have an exact sequence $0 \rightarrow \text{Br}(k) \rightarrow \bigoplus_{v \in \Omega} \text{Br}(k_v) \xrightarrow{\sum_v \text{inv}_v} \mathbb{Q}/\mathbb{Z} \rightarrow 0$,
where $\text{inv}_v : \text{Br}(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ is an isomorphism for p -adic fields,
monomorphism otherwise.

Central simple algebras and Brauer groups

- ▶ a CSA(**central simple algebra**) A is a finite dimensional k -algebra, having no non-trivial 2-sided ideal, with center k
- ▶ Wedderburn: $A \simeq M_n(D)$ matrix algebra, for some division algebra D with center k
- ▶ Brauer equivalence: $A \sim A' \Leftrightarrow D = D'$ with $A \simeq M_n(D)$ and $A' \simeq M_{n'}(D')$
- ▶ Brauer group $\text{Br}(k) = (\{\text{CSAs}\} / \sim, \otimes_k)$
neutral element: $M_n(k)$; inverse: A^{op} since $A \otimes A^{\text{op}} = M_{d^2}(k)$ with $d = \dim_k A$
- ▶ 2-torsion $\text{Br}(k)[2]$ is given by classes of quaternion algebras $(a, b) = \text{Vect}_k(1, i, j, ij)$ with $i^2 = a, j^2 = b, ij = -ji$
- ▶ For **number fields** k :

Proposition (global class field theory)

We have an exact sequence $0 \rightarrow \text{Br}(k) \rightarrow \bigoplus_{v \in \Omega} \text{Br}(k_v) \xrightarrow{\sum_v \text{inv}_v} \mathbb{Q}/\mathbb{Z} \rightarrow 0$,
where $\text{inv}_v : \text{Br}(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ is an isomorphism for p -adic fields,
monomorphism otherwise.

Brauer groups

- ▶ Cohomological interpretation: $\text{Br}(k) = H_{\text{ét}}^2(\text{Spec}(k), \mathbb{G}_m)$
- ▶ Extension to schemes: $\text{Br}(X) = H_{\text{ét}}^2(X, \mathbb{G}_m)$

Theorem

When X is (proper) *rationally connected*, then $\text{Br}(X)/\text{Br}(k)$ is finite.

- ▶ *rationally connected* means any 2 geometric points can be connected by a *rational curve*
 $\forall P, Q \in X(\mathbb{C}), \exists f : \mathbb{P}_{\mathbb{C}}^1 \rightarrow X_{\mathbb{C}}$ s.t. $P, Q \in f(\mathbb{P}^1)$
- ▶ Not easy to compute $\text{Br}(X)/\text{Br}(k)$.

Question 1 (“inverse Brauer problem”)

For a given finite abelian group B , does there exist a rationally connected variety $X_{/K}$ such that $\text{Br}(X)/\text{Br}(k) = B$?

- ▶ Known cases: groups of small order or certain p -groups

Brauer groups

- ▶ Cohomological interpretation: $\text{Br}(k) = H^2_{\text{ét}}(\text{Spec}(k), \mathbb{G}_m)$
- ▶ Extension to schemes: $\text{Br}(X) = H^2_{\text{ét}}(X, \mathbb{G}_m)$

Theorem

When X is (proper) *rationally connected*, then $\text{Br}(X)/\text{Br}(k)$ is finite.

- ▶ *rationally connected* means any 2 geometric points can be connected by a *rational curve*
 $\forall P, Q \in X(\mathbb{C}), \exists f : \mathbb{P}^1_{\mathbb{C}} \rightarrow X_{\mathbb{C}}$ s.t. $P, Q \in f(\mathbb{P}^1)$
- ▶ Not easy to compute $\text{Br}(X)/\text{Br}(k)$.

Question 1 (“inverse Brauer problem”)

For a given finite abelian group B , does there exist a rationally connected variety $X_{/K}$ such that $\text{Br}(X)/\text{Br}(k) = B$?

- ▶ Known cases: groups of small order or certain p -groups

Brauer groups

- ▶ Cohomological interpretation: $\text{Br}(k) = H_{\text{ét}}^2(\text{Spec}(k), \mathbb{G}_m)$
- ▶ Extension to schemes: $\text{Br}(X) = H_{\text{ét}}^2(X, \mathbb{G}_m)$

Theorem

When X is (proper) **rationally connected**, then $\text{Br}(X)/\text{Br}(k)$ is finite.

- ▶ **rationally connected** means any 2 geometric points can be connected by a **rational curve**
 $\forall P, Q \in X(\mathbb{C}), \exists f : \mathbb{P}_{\mathbb{C}}^1 \rightarrow X_{\mathbb{C}}$ s.t. $P, Q \in f(\mathbb{P}^1)$
- ▶ Not easy to compute $\text{Br}(X)/\text{Br}(k)$.

Question 1 (“inverse Brauer problem”)

For a given finite abelian group B , does there exist a rationally connected variety $X_{/K}$ such that $\text{Br}(X)/\text{Br}(k) = B$?

- ▶ Known cases: groups of small order or certain p -groups

Brauer groups

- ▶ Cohomological interpretation: $\text{Br}(k) = H_{\text{ét}}^2(\text{Spec}(k), \mathbb{G}_m)$
- ▶ Extension to schemes: $\text{Br}(X) = H_{\text{ét}}^2(X, \mathbb{G}_m)$

Theorem

When X is (proper) **rationally connected**, then $\text{Br}(X)/\text{Br}(k)$ is finite.

- ▶ **rationally connected** means any 2 geometric points can be connected by a **rational curve**
 $\forall P, Q \in X(\mathbb{C}), \exists f : \mathbb{P}_{\mathbb{C}}^1 \rightarrow X_{\mathbb{C}}$ s.t. $P, Q \in f(\mathbb{P}^1)$
- ▶ Not easy to compute $\text{Br}(X)/\text{Br}(k)$.

Question 1 (“inverse Brauer problem”)

For a given finite abelian group B , does there exist a rationally connected variety $X_{/K}$ such that $\text{Br}(X)/\text{Br}(k) = B$?

- ▶ Known cases: groups of small order or certain p -groups

Brauer groups

- ▶ Cohomological interpretation: $\text{Br}(k) = H^2_{\text{ét}}(\text{Spec}(k), \mathbb{G}_m)$
- ▶ Extension to schemes: $\text{Br}(X) = H^2_{\text{ét}}(X, \mathbb{G}_m)$

Theorem

When X is (proper) **rationally connected**, then $\text{Br}(X)/\text{Br}(k)$ is finite.

- ▶ **rationally connected** means any 2 geometric points can be connected by a **rational curve**
 $\forall P, Q \in X(\mathbb{C}), \exists f : \mathbb{P}_{\mathbb{C}}^1 \rightarrow X_{\mathbb{C}}$ s.t. $P, Q \in f(\mathbb{P}^1)$
- ▶ Not easy to compute $\text{Br}(X)/\text{Br}(k)$.

Question 1 (“inverse Brauer problem”)

For a given finite abelian group B , does there exist a rationally connected variety $X_{/K}$ such that $\text{Br}(X)/\text{Br}(k) = B$?

- ▶ Known cases: groups of small order or certain p -groups

Hasse principle

- ▶ k number field, $v \in \Omega_k = \{\text{places/primes of } k\}$, $k \subset k_v$ completion (example $\mathbb{Q} \subset \mathbb{Q}_p$)
- ▶ X varieties defined over k , injection $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$

- ▶ Violations of Hasse principle:
 - ▶ intersections of quadrics in \mathbb{P}^4 (i.e. del Pezzo surfaces of degree 4)
 - ▶ cubic curves $\subset \mathbb{P}^2$ (i.e. genus $g = 1 > 0$)

Hasse principle

- ▶ k number field, $v \in \Omega_k = \{\text{places/primes of } k\}$, $k \subset k_v$ completion (example $\mathbb{Q} \subset \mathbb{Q}_p$)
- ▶ X varieties defined over k , injection $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$

- ▶ Violations of Hasse principle:
 - ▶ intersections of quadrics in \mathbb{P}^4 (i.e. del Pezzo surfaces of degree 4)
 - ▶ cubic curves $\subset \mathbb{P}^2$ (i.e. genus $g = 1 > 0$)

Hasse principle

- ▶ k number field, $v \in \Omega_k = \{\text{places/primes of } k\}$, $k \subset k_v$ completion (example $\mathbb{Q} \subset \mathbb{Q}_p$)
- ▶ X varieties defined over k , injection $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$

Definition

We say that **Hasse principle** holds if $X(k_v) \neq \emptyset$ for all $v \in \Omega_k$ implies $X(k) \neq \emptyset$.

- ▶ Violations of Hasse principle:
 - ▶ intersections of quadrics in \mathbb{P}^4 (i.e. del Pezzo surfaces of degree 4)
 - ▶ cubic curves $\subset \mathbb{P}^2$ (i.e. genus $g = 1 > 0$)

Hasse principle

- ▶ k number field, $v \in \Omega_k = \{\text{places/primes of } k\}$, $k \subset k_v$ completion (example $\mathbb{Q} \subset \mathbb{Q}_p$)
- ▶ X varieties defined over k , injection $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$

Definition

We say that **Hasse principle** holds if $X(k_v) \neq \emptyset$ for all $v \in \Omega_k$ implies $X(k) \neq \emptyset$.

Theorem (Hasse–Minkowski)

If $X \subset \mathbb{P}^n$ is defined by quadratic forms, then Hasse principle holds.

- ▶ Violations of Hasse principle:
 - ▶ intersections of quadrics in \mathbb{P}^4 (i.e. del Pezzo surfaces of degree 4)
 - ▶ cubic curves $\subset \mathbb{P}^2$ (i.e. genus $g = 1 > 0$)

Hasse principle

- ▶ k number field, $v \in \Omega_k = \{\text{places/primes of } k\}$, $k \subset k_v$ completion (example $\mathbb{Q} \subset \mathbb{Q}_p$)
- ▶ X varieties defined over k , injection $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$

Definition

We say that **Hasse principle** holds if $X(k_v) \neq \emptyset$ for all $v \in \Omega_k$ implies $X(k) \neq \emptyset$.

Theorem (Hasse–Minkowski)

If $X \subset \mathbb{P}^n$ is defined by quadratic forms, then Hasse principle holds.

- ▶ Violations of Hasse principle:
 - ▶ intersections of quadrics in \mathbb{P}^4 (i.e. del Pezzo surfaces of degree 4)
 - ▶ cubic curves $\subset \mathbb{P}^2$ (i.e. genus $g = 1 > 0$)

Hasse principle

- ▶ k number field, $v \in \Omega_k = \{\text{places/primes of } k\}$, $k \subset k_v$ completion (example $\mathbb{Q} \subset \mathbb{Q}_p$)
- ▶ X varieties defined over k , injection $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$

Definition

We say that **Hasse principle** holds if $X(k_v) \neq \emptyset$ for all $v \in \Omega_k$ implies $X(k) \neq \emptyset$.

Theorem (Hasse–Minkowski)

If $X \subset \mathbb{P}^n$ is defined by quadratic forms, then Hasse principle holds.

- ▶ Violations of Hasse principle:
 - ▶ intersections of quadrics in \mathbb{P}^4 (i.e. del Pezzo surfaces of degree 4)
 - ▶ cubic curves $\subset \mathbb{P}^2$ (i.e. genus $g = 1 > 0$)

Hasse principle

- ▶ k number field, $v \in \Omega_k = \{\text{places/primes of } k\}$, $k \subset k_v$ completion (example $\mathbb{Q} \subset \mathbb{Q}_p$)
- ▶ X varieties defined over k , injection $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$

Definition

We say that **Hasse principle** holds if $X(k_v) \neq \emptyset$ for all $v \in \Omega_k$ implies $X(k) \neq \emptyset$.

Theorem (Hasse–Minkowski)

If $X \subset \mathbb{P}^n$ is defined by quadratic forms, then Hasse principle holds.

- ▶ Violations of Hasse principle:
 - ▶ intersections of quadrics in \mathbb{P}^4 (i.e. del Pezzo surfaces of degree 4)
 - ▶ cubic curves $\subset \mathbb{P}^2$ (i.e. genus $g = 1 > 0$)

- ▶ 1970s, Manin made use of $\text{Br}(X)$
- ▶ Brauer–Manin pairing

$$X(\mathbf{A}_k) \times \text{Br}(X) \rightarrow \mathbb{Q}/\mathbb{Z}$$
$$((x_v), \beta) \mapsto \langle (x_v), \beta \rangle := \sum_{v \in \Omega} \text{inv}_v(\beta(x_v))$$

where $\text{inv}_v : \text{Br}(k_v) \hookrightarrow \mathbb{Q}/\mathbb{Z}$ local invariant (local class field theory)

- ▶ $X(\mathbf{A}_k)^{\text{Br}} = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta, \forall \beta \in \text{Br}(X)\}$
- ▶ Fact. $X(k) \subset X(\mathbf{A}_k)^{\text{Br}} \subset X(\mathbf{A}_k)$
(global class field theory)
- ▶ Brauer–Manin obstruction to Hasse principle (explaining the violation of HP)
if $\emptyset = X(\mathbf{A}_k)^{\text{Br}} \subset X(\mathbf{A}_k) \neq \emptyset \quad (\Rightarrow X(k) = \emptyset)$

- ▶ 1970s, Manin made use of $\text{Br}(X)$
- ▶ Brauer–Manin pairing

$$X(\mathbf{A}_k) \times \text{Br}(X) \rightarrow \mathbb{Q}/\mathbb{Z}$$
$$((x_v), \beta) \mapsto \langle (x_v), \beta \rangle := \sum_{v \in \Omega} \text{inv}_v(\beta(x_v))$$

where $\text{inv}_v : \text{Br}(k_v) \hookrightarrow \mathbb{Q}/\mathbb{Z}$ local invariant (local class field theory)

- ▶ $X(\mathbf{A}_k)^{\text{Br}} = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta, \forall \beta \in \text{Br}(X)\}$
- ▶ Fact. $X(k) \subset X(\mathbf{A}_k)^{\text{Br}} \subset X(\mathbf{A}_k)$
(global class field theory)
- ▶ Brauer–Manin obstruction to Hasse principle (explaining the violation of HP)
if $\emptyset = X(\mathbf{A}_k)^{\text{Br}} \subset X(\mathbf{A}_k) \neq \emptyset \quad (\Rightarrow X(k) = \emptyset)$

Brauer–Manin obstruction

- ▶ 1970s, Manin made use of $\text{Br}(X)$
- ▶ Brauer–Manin pairing

$$X(\mathbf{A}_k) \times \text{Br}(X) \rightarrow \mathbb{Q}/\mathbb{Z}$$
$$((x_v), \beta) \mapsto \langle (x_v), \beta \rangle := \sum_{v \in \Omega} \text{inv}_v(\beta(x_v))$$

where $\text{inv}_v : \text{Br}(k_v) \hookrightarrow \mathbb{Q}/\mathbb{Z}$ local invariant (local class field theory)

- ▶ $X(\mathbf{A}_k)^{\text{Br}} = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta, \forall \beta \in \text{Br}(X)\}$
- ▶ Fact. $X(k) \subset X(\mathbf{A}_k)^{\text{Br}} \subset X(\mathbf{A}_k)$
(global class field theory)
- ▶ Brauer–Manin obstruction to Hasse principle (explaining the violation of HP)
if $\emptyset = X(\mathbf{A}_k)^{\text{Br}} \subset X(\mathbf{A}_k) \neq \emptyset \quad (\Rightarrow X(k) = \emptyset)$

- ▶ 1970s, Manin made use of $\text{Br}(X)$
- ▶ Brauer–Manin pairing

$$X(\mathbf{A}_k) \times \text{Br}(X) \rightarrow \mathbb{Q}/\mathbb{Z}$$
$$((x_v), \beta) \mapsto \langle (x_v), \beta \rangle := \sum_{v \in \Omega} \text{inv}_v(\beta(x_v))$$

where $\text{inv}_v : \text{Br}(k_v) \hookrightarrow \mathbb{Q}/\mathbb{Z}$ local invariant (local class field theory)

- ▶ $X(\mathbf{A}_k)^{\text{Br}} = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta, \forall \beta \in \text{Br}(X)\}$
- ▶ Fact. $X(k) \subset X(\mathbf{A}_k)^{\text{Br}} \subset X(\mathbf{A}_k)$
(global class field theory)
- ▶ **Brauer–Manin obstruction** to Hasse principle (explaining the violation of HP)
if $\emptyset = X(\mathbf{A}_k)^{\text{Br}} \subset X(\mathbf{A}_k) \neq \emptyset \quad (\Rightarrow X(k) = \emptyset)$

Conjecture

When the Brauer group completely controls the violation of Hasse principle?

Conjecture

When X is the following varieties, then

$$X(\mathbf{A}_k)^{\text{Br}} \neq \emptyset \Rightarrow X(k) \neq \emptyset.$$

- (Colliot-Thélène 1980) rationally connected varieties
- (Skorobogatov 2001) smooth projective curves

- ▶ For curves C of genus 1, the conjecture is true when $\text{III}(\text{Jac}(C), k)$ is finite.
- ▶ Known cases include Châtelet surfaces
(Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987):

$$y^2 - az^2 = P(x)$$

where $a \in k^*$, $P \in k[x]$, $\deg(P) = 4$

Conjecture

When the Brauer group completely controls the violation of Hasse principle?

Conjecture

When X is the following varieties, then

$$X(\mathbf{A}_k)^{\text{Br}} \neq \emptyset \Rightarrow X(k) \neq \emptyset.$$

- (Colliot-Thélène 1980) rationally connected varieties
- (Skorobogatov 2001) smooth projective curves

- ▶ For curves C of genus 1, the conjecture is true when $\text{III}(\text{Jac}(C), k)$ is finite.
- ▶ Known cases include Châtelet surfaces (Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987):

$$y^2 - az^2 = P(x)$$

where $a \in k^*$, $P \in k[x]$, $\deg(P) = 4$

Conjecture

When the Brauer group completely controls the violation of Hasse principle?

Conjecture

When X is the following varieties, then

$$X(\mathbf{A}_k)^{\text{Br}} \neq \emptyset \Rightarrow X(k) \neq \emptyset.$$

- (Colliot-Thélène 1980) rationally connected varieties
- (Skorobogatov 2001) smooth projective curves

- ▶ For curves C of genus 1, the conjecture is true when $\text{III}(\text{Jac}(C), k)$ is finite.
- ▶ Known cases include Châtelet surfaces
(Colliot-Thélène–Sansuc–Swinnerton-Dyer 1987):

$$y^2 - az^2 = P(x)$$

where $a \in k^*$, $P \in k[x]$, $\deg(P) = 4$

An example (Châtelet surface)

- ▶ Châtelet surface X over $k = \mathbb{Q}$

$$y^2 + 3z^2 = -(x^2 - 6)(x^2 - 5) \subset \mathbb{A}^3$$

- ▶ $X(\mathbb{R}) \neq \emptyset$ easy; $X(\mathbb{Q}_p) \neq \emptyset (\forall p \neq 3)$ by Hensel's lemma; $X(\mathbb{Q}_3) \neq \emptyset$ by some more work.
- ▶ class of quaternion algebra $\beta = (6 - x^2, -3) \in \text{Br}(\mathbb{Q}(X))$
- ▶ Grothendieck: “purity thm for Br ” $\Rightarrow \beta \in \text{Br}(X) \subset \text{Br}(\mathbb{Q}(X))$
(i.e. this algebra extends from the generic point $\mathbb{Q}(X)$ to an Azumaya algebra over the scheme X)
- ▶ $\forall p \neq 3, \forall x_p \in X(\mathbb{Q}_p), \text{inv}_p(\beta(x_p)) = 0$
 $p = 3, \forall x_3 \in X(\mathbb{Q}_3), \text{inv}_3(\beta(x_3)) = \frac{1}{2} \in \mathbb{Q}/\mathbb{Z}$
 $v = \infty, \forall x_\infty \in X(\mathbb{R}), \text{inv}_\infty(\beta(x_\infty)) = 0$
- ▶ $\Rightarrow \forall (x_v) \in X(\mathbf{A}_\mathbb{Q}), \langle (x_v), \beta \rangle = \frac{1}{2} \neq 0$
- ▶ This means $X(\mathbf{A}_\mathbb{Q})^{\text{Br}} = \emptyset$ and therefore $X(\mathbb{Q}) = \emptyset$
- ▶ In this case, a **single** element β obstructs the Hasse principle.
Indeed $\text{Br}(X)/\text{Br}(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by β .

An example (Châtelet surface)

- ▶ Châtelet surface X over $k = \mathbb{Q}$

$$y^2 + 3z^2 = -(x^2 - 6)(x^2 - 5) \subset \mathbb{A}^3$$

- ▶ $X(\mathbb{R}) \neq \emptyset$ easy; $X(\mathbb{Q}_p) \neq \emptyset (\forall p \neq 3)$ by Hensel's lemma; $X(\mathbb{Q}_3) \neq \emptyset$ by some more work.
- ▶ class of quaternion algebra $\beta = (6 - x^2, -3) \in \text{Br}(\mathbb{Q}(X))$
- ▶ Grothendieck: “purity thm for Br ” $\Rightarrow \beta \in \text{Br}(X) \subset \text{Br}(\mathbb{Q}(X))$
(i.e. this algebra extends from the generic point $\mathbb{Q}(X)$ to an Azumaya algebra over the scheme X)
- ▶ $\forall p \neq 3, \forall x_p \in X(\mathbb{Q}_p), \text{inv}_p(\beta(x_p)) = 0$
 $p = 3, \forall x_3 \in X(\mathbb{Q}_3), \text{inv}_3(\beta(x_3)) = \frac{1}{2} \in \mathbb{Q}/\mathbb{Z}$
 $v = \infty, \forall x_\infty \in X(\mathbb{R}), \text{inv}_\infty(\beta(x_\infty)) = 0$
- ▶ $\Rightarrow \forall (x_v) \in X(\mathbf{A}_\mathbb{Q}), \langle (x_v), \beta \rangle = \frac{1}{2} \neq 0$
- ▶ This means $X(\mathbf{A}_\mathbb{Q})^{\text{Br}} = \emptyset$ and therefore $X(\mathbb{Q}) = \emptyset$
- ▶ In this case, a single element β obstructs the Hasse principle.
Indeed $\text{Br}(X)/\text{Br}(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by β .

An example (Châtelet surface)

- ▶ Châtelet surface X over $k = \mathbb{Q}$

$$y^2 + 3z^2 = -(x^2 - 6)(x^2 - 5) \subset \mathbb{A}^3$$

- ▶ $X(\mathbb{R}) \neq \emptyset$ easy; $X(\mathbb{Q}_p) \neq \emptyset (\forall p \neq 3)$ by Hensel's lemma; $X(\mathbb{Q}_3) \neq \emptyset$ by some more work.
- ▶ class of quaternion algebra $\beta = (6 - x^2, -3) \in \text{Br}(\mathbb{Q}(X))$
- ▶ Grothendieck: “purity thm for Br ” $\Rightarrow \beta \in \text{Br}(X) \subset \text{Br}(\mathbb{Q}(X))$
(i.e. this algebra extends from the generic point $\mathbb{Q}(X)$ to an Azumaya algebra over the scheme X)
- ▶ $\forall p \neq 3, \forall x_p \in X(\mathbb{Q}_p), \text{inv}_p(\beta(x_p)) = 0$
 $p = 3, \forall x_3 \in X(\mathbb{Q}_3), \text{inv}_3(\beta(x_3)) = \frac{1}{2} \in \mathbb{Q}/\mathbb{Z}$
 $v = \infty, \forall x_\infty \in X(\mathbb{R}), \text{inv}_\infty(\beta(x_\infty)) = 0$
- ▶ $\Rightarrow \forall (x_v) \in X(\mathbf{A}_\mathbb{Q}), \langle (x_v), \beta \rangle = \frac{1}{2} \neq 0$
- ▶ This means $X(\mathbf{A}_\mathbb{Q})^{\text{Br}} = \emptyset$ and therefore $X(\mathbb{Q}) = \emptyset$
- ▶ In this case, a **single** element β obstructs the Hasse principle.
Indeed $\text{Br}(X)/\text{Br}(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by β .

An example (Châtelet surface)

- ▶ Châtelet surface X over $k = \mathbb{Q}$

$$y^2 + 3z^2 = -(x^2 - 6)(x^2 - 5) \subset \mathbb{A}^3$$

- ▶ $X(\mathbb{R}) \neq \emptyset$ easy; $X(\mathbb{Q}_p) \neq \emptyset (\forall p \neq 3)$ by Hensel's lemma; $X(\mathbb{Q}_3) \neq \emptyset$ by some more work.
- ▶ class of quaternion algebra $\beta = (6 - x^2, -3) \in \text{Br}(\mathbb{Q}(X))$
- ▶ Grothendieck: “purity thm for Br ” $\Rightarrow \beta \in \text{Br}(X) \subset \text{Br}(\mathbb{Q}(X))$
(i.e. this algebra extends from the generic point $\mathbb{Q}(X)$ to an Azumaya algebra over the scheme X)
- ▶ $\forall p \neq 3, \forall x_p \in X(\mathbb{Q}_p), \text{inv}_p(\beta(x_p)) = 0$
 $p = 3, \forall x_3 \in X(\mathbb{Q}_3), \text{inv}_3(\beta(x_3)) = \frac{1}{2} \in \mathbb{Q}/\mathbb{Z}$
 $v = \infty, \forall x_\infty \in X(\mathbb{R}), \text{inv}_\infty(\beta(x_\infty)) = 0$
- ▶ $\Rightarrow \forall (x_v) \in X(\mathbf{A}_\mathbb{Q}), \langle (x_v), \beta \rangle = \frac{1}{2} \neq 0$
- ▶ This means $X(\mathbf{A}_\mathbb{Q})^{\text{Br}} = \emptyset$ and therefore $X(\mathbb{Q}) = \emptyset$
- ▶ In this case, a single element β obstructs the Hasse principle.
Indeed $\text{Br}(X)/\text{Br}(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by β .

An example (Châtelet surface)

- ▶ Châtelet surface X over $k = \mathbb{Q}$

$$y^2 + 3z^2 = -(x^2 - 6)(x^2 - 5) \subset \mathbb{A}^3$$

- ▶ $X(\mathbb{R}) \neq \emptyset$ easy; $X(\mathbb{Q}_p) \neq \emptyset (\forall p \neq 3)$ by Hensel's lemma; $X(\mathbb{Q}_3) \neq \emptyset$ by some more work.
- ▶ class of quaternion algebra $\beta = (6 - x^2, -3) \in \text{Br}(\mathbb{Q}(X))$
- ▶ Grothendieck: “purity thm for Br ” $\Rightarrow \beta \in \text{Br}(X) \subset \text{Br}(\mathbb{Q}(X))$
(i.e. this algebra extends from the generic point $\mathbb{Q}(X)$ to an Azumaya algebra over the scheme X)
- ▶ $\forall p \neq 3, \forall x_p \in X(\mathbb{Q}_p), \text{inv}_p(\beta(x_p)) = 0$
 $p = 3, \forall x_3 \in X(\mathbb{Q}_3), \text{inv}_3(\beta(x_3)) = \frac{1}{2} \in \mathbb{Q}/\mathbb{Z}$
 $v = \infty, \forall x_\infty \in X(\mathbb{R}), \text{inv}_\infty(\beta(x_\infty)) = 0$
- ▶ $\Rightarrow \forall (x_v) \in X(\mathbb{A}_\mathbb{Q}), \langle (x_v), \beta \rangle = \frac{1}{2} \neq 0$
- ▶ This means $X(\mathbb{A}_\mathbb{Q})^{\text{Br}} = \emptyset$ and therefore $X(\mathbb{Q}) = \emptyset$
- ▶ In this case, a single element β obstructs the Hasse principle.
Indeed $\text{Br}(X)/\text{Br}(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by β .

An example (Châtelet surface)

- ▶ Châtelet surface X over $k = \mathbb{Q}$

$$y^2 + 3z^2 = -(x^2 - 6)(x^2 - 5) \subset \mathbb{A}^3$$

- ▶ $X(\mathbb{R}) \neq \emptyset$ easy; $X(\mathbb{Q}_p) \neq \emptyset (\forall p \neq 3)$ by Hensel's lemma; $X(\mathbb{Q}_3) \neq \emptyset$ by some more work.
- ▶ class of quaternion algebra $\beta = (6 - x^2, -3) \in \text{Br}(\mathbb{Q}(X))$
- ▶ Grothendieck: “purity thm for Br ” $\Rightarrow \beta \in \text{Br}(X) \subset \text{Br}(\mathbb{Q}(X))$
(i.e. this algebra extends from the generic point $\mathbb{Q}(X)$ to an Azumaya algebra over the scheme X)
- ▶ $\forall p \neq 3, \forall x_p \in X(\mathbb{Q}_p), \text{inv}_p(\beta(x_p)) = 0$
 $p = 3, \forall x_3 \in X(\mathbb{Q}_3), \text{inv}_3(\beta(x_3)) = \frac{1}{2} \in \mathbb{Q}/\mathbb{Z}$
 $v = \infty, \forall x_\infty \in X(\mathbb{R}), \text{inv}_\infty(\beta(x_\infty)) = 0$
- ▶ $\Rightarrow \forall (x_v) \in X(\mathbf{A}_\mathbb{Q}), \langle (x_v), \beta \rangle = \frac{1}{2} \neq 0$
- ▶ This means $X(\mathbf{A}_\mathbb{Q})^{\text{Br}} = \emptyset$ and therefore $X(\mathbb{Q}) = \emptyset$
- ▶ In this case, a single element β obstructs the Hasse principle.
Indeed $\text{Br}(X)/\text{Br}(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by β .

An example (Châtelet surface)

- ▶ Châtelet surface X over $k = \mathbb{Q}$

$$y^2 + 3z^2 = -(x^2 - 6)(x^2 - 5) \subset \mathbb{A}^3$$

- ▶ $X(\mathbb{R}) \neq \emptyset$ easy; $X(\mathbb{Q}_p) \neq \emptyset (\forall p \neq 3)$ by Hensel's lemma; $X(\mathbb{Q}_3) \neq \emptyset$ by some more work.
- ▶ class of quaternion algebra $\beta = (6 - x^2, -3) \in \text{Br}(\mathbb{Q}(X))$
- ▶ Grothendieck: “purity thm for Br ” $\Rightarrow \beta \in \text{Br}(X) \subset \text{Br}(\mathbb{Q}(X))$
(i.e. this algebra extends from the generic point $\mathbb{Q}(X)$ to an Azumaya algebra over the scheme X)
- ▶ $\forall p \neq 3, \forall x_p \in X(\mathbb{Q}_p), \text{inv}_p(\beta(x_p)) = 0$
 $p = 3, \forall x_3 \in X(\mathbb{Q}_3), \text{inv}_3(\beta(x_3)) = \frac{1}{2} \in \mathbb{Q}/\mathbb{Z}$
 $v = \infty, \forall x_\infty \in X(\mathbb{R}), \text{inv}_\infty(\beta(x_\infty)) = 0$
- ▶ $\Rightarrow \forall (x_v) \in X(\mathbf{A}_\mathbb{Q}), \langle (x_v), \beta \rangle = \frac{1}{2} \neq 0$
- ▶ This means $X(\mathbf{A}_\mathbb{Q})^{\text{Br}} = \emptyset$ and therefore $X(\mathbb{Q}) = \emptyset$
- ▶ In this case, a single element β obstructs the Hasse principle.
Indeed $\text{Br}(X)/\text{Br}(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by β .

An example (Châtelet surface)

- ▶ Châtelet surface X over $k = \mathbb{Q}$

$$y^2 + 3z^2 = -(x^2 - 6)(x^2 - 5) \subset \mathbb{A}^3$$

- ▶ $X(\mathbb{R}) \neq \emptyset$ easy; $X(\mathbb{Q}_p) \neq \emptyset (\forall p \neq 3)$ by Hensel's lemma; $X(\mathbb{Q}_3) \neq \emptyset$ by some more work.
- ▶ class of quaternion algebra $\beta = (6 - x^2, -3) \in \text{Br}(\mathbb{Q}(X))$
- ▶ Grothendieck: “purity thm for Br ” $\Rightarrow \beta \in \text{Br}(X) \subset \text{Br}(\mathbb{Q}(X))$
(i.e. this algebra extends from the generic point $\mathbb{Q}(X)$ to an Azumaya algebra over the scheme X)
- ▶ $\forall p \neq 3, \forall x_p \in X(\mathbb{Q}_p), \text{inv}_p(\beta(x_p)) = 0$
 $p = 3, \forall x_3 \in X(\mathbb{Q}_3), \text{inv}_3(\beta(x_3)) = \frac{1}{2} \in \mathbb{Q}/\mathbb{Z}$
 $v = \infty, \forall x_\infty \in X(\mathbb{R}), \text{inv}_\infty(\beta(x_\infty)) = 0$
- ▶ $\Rightarrow \forall (x_v) \in X(\mathbf{A}_\mathbb{Q}), \langle (x_v), \beta \rangle = \frac{1}{2} \neq 0$
- ▶ This means $X(\mathbf{A}_\mathbb{Q})^{\text{Br}} = \emptyset$ and therefore $X(\mathbb{Q}) = \emptyset$
- ▶ In this case, a **single** element β obstructs the Hasse principle.
Indeed $\text{Br}(X)/\text{Br}(\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by β .

Compactness argument

- ▶ If X is proper such that $X(\mathbf{A}_k) \neq \emptyset$, then $X(\mathbf{A}_k) = \prod X(k_v)$ is compact
- ▶ Denote $X(\mathbf{A}_k)^\beta = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta\}$
- ▶ If $X(\mathbf{A}_k)^{\text{Br}} = \bigcap_{\beta \in \text{Br}(X)} X(\mathbf{A}_k)^\beta = \emptyset$
compactness $\Rightarrow \exists$ a finite subset $B \subset \text{Br}(X)$ st.
 $X(\mathbf{A}_k)^B = \bigcap_{\beta \in B} X(\mathbf{A}_k)^\beta = \emptyset$

- ▶ In many cases, one **single** element of $\text{Br}(X)$ suffices to obstruct the Hasse principle.
- ▶ Only very few exceptions: [Colliot-Thélène–Swinnerton-Dyer 1994], [Kresch–Tscheinkel 2004], [Corn 2007]
- ▶ [Berg et al. 2024]: for any given number m , there exists a conic bundles X over \mathbb{P}^1 that requires more than m elements of $\text{Br}(X)$ to obstruct the Hasse principle.

Compactness argument

- ▶ If X is proper such that $X(\mathbf{A}_k) \neq \emptyset$, then $X(\mathbf{A}_k) = \prod X(k_v)$ is compact
- ▶ Denote $X(\mathbf{A}_k)^\beta = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta\}$
- ▶ If $X(\mathbf{A}_k)^{\text{Br}} = \bigcap_{\beta \in \text{Br}(X)} X(\mathbf{A}_k)^\beta = \emptyset$
compactness $\Rightarrow \exists$ a finite subset $B \subset \text{Br}(X)$ st.
 $X(\mathbf{A}_k)^B = \bigcap_{\beta \in B} X(\mathbf{A}_k)^\beta = \emptyset$

- ▶ In many cases, one **single** element of $\text{Br}(X)$ suffices to obstruct the Hasse principle.
- ▶ Only very few exceptions: [Colliot-Thélène–Swinnerton-Dyer 1994], [Kresch–Tscheinkel 2004], [Corn 2007]
- ▶ [Berg et al. 2024]: for any given number m , there exists a conic bundles X over \mathbb{P}^1 that requires more than m elements of $\text{Br}(X)$ to obstruct the Hasse principle.

Compactness argument

- ▶ If X is proper such that $X(\mathbf{A}_k) \neq \emptyset$, then $X(\mathbf{A}_k) = \prod X(k_v)$ is compact
- ▶ Denote $X(\mathbf{A}_k)^\beta = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta\}$
- ▶ If $X(\mathbf{A}_k)^{\text{Br}} = \bigcap_{\beta \in \text{Br}(X)} X(\mathbf{A}_k)^\beta = \emptyset$
compactness $\Rightarrow \exists$ a finite subset $B \subset \text{Br}(X)$ st.
 $X(\mathbf{A}_k)^B = \bigcap_{\beta \in B} X(\mathbf{A}_k)^\beta = \emptyset$

- ▶ In many cases, one **single** element of $\text{Br}(X)$ suffices to obstruct the Hasse principle.
- ▶ Only very few exceptions: [Colliot-Thélène–Swinnerton-Dyer 1994], [Kresch–Tscheinkel 2004], [Corn 2007]
- ▶ [Berg et al. 2024]: for any given number m , there exists a conic bundles X over \mathbb{P}^1 that requires more than m elements of $\text{Br}(X)$ to obstruct the Hasse principle.

Compactness argument

- ▶ If X is proper such that $X(\mathbf{A}_k) \neq \emptyset$, then $X(\mathbf{A}_k) = \prod X(k_v)$ is compact
- ▶ Denote $X(\mathbf{A}_k)^\beta = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta\}$
- ▶ If $X(\mathbf{A}_k)^{\text{Br}} = \bigcap_{\beta \in \text{Br}(X)} X(\mathbf{A}_k)^\beta = \emptyset$
compactness $\Rightarrow \exists$ a finite subset $B \subset \text{Br}(X)$ st.
 $X(\mathbf{A}_k)^B = \bigcap_{\beta \in B} X(\mathbf{A}_k)^\beta = \emptyset$

Question 2

Which finite subset/subgroup $B \subset \text{Br}(X)$ is essential for obstructing the Hasse principle on X ?

- ▶ In many cases, one **single** element of $\text{Br}(X)$ suffices to obstruct the Hasse principle.
- ▶ Only very few exceptions: [Colliot-Thélène–Swinnerton-Dyer 1994], [Kresch–Tschinkel 2004], [Corn 2007]
- ▶ [Berg et al. 2024]: for any given number m , there exists a conic bundles X over \mathbb{P}^1 that requires more than m elements of $\text{Br}(X)$ to obstruct the Hasse principle

Compactness argument

- ▶ If X is proper such that $X(\mathbf{A}_k) \neq \emptyset$, then $X(\mathbf{A}_k) = \prod X(k_v)$ is compact
- ▶ Denote $X(\mathbf{A}_k)^\beta = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta\}$
- ▶ If $X(\mathbf{A}_k)^{\text{Br}} = \bigcap_{\beta \in \text{Br}(X)} X(\mathbf{A}_k)^\beta = \emptyset$
compactness $\Rightarrow \exists$ a finite subset $B \subset \text{Br}(X)$ st.
 $X(\mathbf{A}_k)^B = \bigcap_{\beta \in B} X(\mathbf{A}_k)^\beta = \emptyset$

Question 2

Which finite subset/subgroup $B \subset \text{Br}(X)$ is essential for obstructing the Hasse principle on X ?

- ▶ In many cases, one **single** element of $\text{Br}(X)$ suffices to obstruct the Hasse principle.
- ▶ Only very few exceptions: [Colliot-Thélène–Swinnerton-Dyer 1994], [Kresch–Tschinkel 2004], [Corn 2007]
- ▶ [Berg et al. 2024]: for any given number m , there exists a conic bundles X over \mathbb{P}^1 that requires more than m elements of $\text{Br}(X)$ to obstruct the Hasse principle

Compactness argument

- ▶ If X is proper such that $X(\mathbf{A}_k) \neq \emptyset$, then $X(\mathbf{A}_k) = \prod X(k_v)$ is compact
- ▶ Denote $X(\mathbf{A}_k)^\beta = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta\}$
- ▶ If $X(\mathbf{A}_k)^{\text{Br}} = \bigcap_{\beta \in \text{Br}(X)} X(\mathbf{A}_k)^\beta = \emptyset$
compactness $\Rightarrow \exists$ a finite subset $B \subset \text{Br}(X)$ st.
 $X(\mathbf{A}_k)^B = \bigcap_{\beta \in B} X(\mathbf{A}_k)^\beta = \emptyset$

Question 2

Which finite subset/subgroup $B \subset \text{Br}(X)$ is essential for obstructing the Hasse principle on X ?

- ▶ In many cases, one **single** element of $\text{Br}(X)$ suffices to obstruct the Hasse principle.
- ▶ Only very few exceptions: [Colliot-Thélène–Swinnerton-Dyer 1994], [Kresch–Tschinkel 2004], [Corn 2007]
- ▶ [Berg et al. 2024]: for any given number m , there exists a conic bundles X over \mathbb{P}^1 that requires more than m elements of $\text{Br}(X)$ to obstruct the Hasse principle

Compactness argument

- ▶ If X is proper such that $X(\mathbf{A}_k) \neq \emptyset$, then $X(\mathbf{A}_k) = \prod X(k_v)$ is compact
- ▶ Denote $X(\mathbf{A}_k)^\beta = \{(x_v) \in X(\mathbf{A}_k); (x_v) \perp \beta\}$
- ▶ If $X(\mathbf{A}_k)^{\text{Br}} = \bigcap_{\beta \in \text{Br}(X)} X(\mathbf{A}_k)^\beta = \emptyset$
compactness $\Rightarrow \exists$ a finite subset $B \subset \text{Br}(X)$ st.
 $X(\mathbf{A}_k)^B = \bigcap_{\beta \in B} X(\mathbf{A}_k)^\beta = \emptyset$

Question 2

Which finite subset/subgroup $B \subset \text{Br}(X)$ is essential for obstructing the Hasse principle on X ?

- ▶ In many cases, one **single** element of $\text{Br}(X)$ suffices to obstruct the Hasse principle.
- ▶ Only very few exceptions: [Colliot-Thélène–Swinnerton-Dyer 1994], [Kresch–Tschinkel 2004], [Corn 2007]
- ▶ [Berg et al. 2024]: for any given number m , there exists a conic bundles X over \mathbb{P}^1 that requires more than m elements of $\text{Br}(X)$ to obstruct the Hasse principle.

Theorem (Yongqi Liang & Yufan Liu 2025⁺)

Given a pair of finite abelian groups $0 \neq B_0 \subseteq B$, then

- ① “inverse Brauer problem”: There exists a rationally connected variety X defined by a normic equation

$$N_{K/k}(z) = P(x)$$

such that $\text{Br}(X)/\text{Br}(k) = B$.

- ② More over, we may further require that B_0 is the smallest subgroup that obstructs the Hasse principle.

In other words, X violates the Hasse principle, and for any subgroup $B' \subseteq B$, the subset $X(\mathbf{A}_k)^{B'} = \emptyset$ if and only if $B_0 \subseteq B'$.

Thank you for your attention!

2008 graduates:

Shun Tang, Wen-Wei Li, Yong Hu, Zongbin Chen, Yongqi Liang, Shoumin Liu

20 years later

