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Central simple algebras and Brauer groups

» a CSA(central simple algebra) A is a finite dimensional
k-algebra, having no non-trivial 2-sided ideal, with center k
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» a CSA(central simple algebra) A is a finite dimensional
k-algebra, having no non-trivial 2-sided ideal, with center k

» Wedderburn: A ~ M,(D) matrix algebra, for some division
algebra D with center k

» Brauer equivalence: A~ A" & D = D’ with A~ M,(D) and
A/ ~ Mn/(D/)
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» a CSA(central simple algebra) A is a finite dimensional
k-algebra, having no non-trivial 2-sided ideal, with center k

» Wedderburn: A ~ M,(D) matrix algebra, for some division
algebra D with center k

» Brauer equivalence: A~ A’ < D = D’ with A~ M,(D) and
A~ My (D')

» Brauer group Br(k) = ({CSAs}/ ~, ®)

neutral element: M,(k); inverse: A°P since A® A°P = M 2(k) with d = dimxA
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Central simple algebras and Brauer groups

» a CSA(central simple algebra) A is a finite dimensional
k-algebra, having no non-trivial 2-sided ideal, with center k

» Wedderburn: A ~ M,(D) matrix algebra, for some division
algebra D with center k

» Brauer equivalence: A~ A’ < D = D’ with A~ M,(D) and
A~ My (D')

» Brauer group Br(k) = ({CSAs}/ ~, ®)

neutral element: M,(k); inverse: A°P since A® A°P = M 2(k) with d = dimxA

» 2-torsion Br(k)[2] is given by classes of quaternion algebras

(a, b) = Vecty(1,i,j,ij) with i = a,j% = b, ij = —ji

= = = = =
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Central simple algebras and Brauer groups

» a CSA(central simple algebra) A is a finite dimensional
k-algebra, having no non-trivial 2-sided ideal, with center k

» Wedderburn: A ~ M,(D) matrix algebra, for some division
algebra D with center k

» Brauer equivalence: A~ A’ < D = D’ with A~ M,(D) and
A~ M, (D)

» Brauer group Br(k) = ({CSAs}/ ~, ®)
neutral element: M,(k); inverse: A°P since A® A°P = M 2(k) with d = dimxA

» 2-torsion Br(k)[2] is given by classes of quaternion algebras
(a, b) = Vecti(1,i,j,ij) with i = a,j2 = b, ij = —ji

» For number fields k:

Proposition (global class field theory)

We have an exact sequence 0 — Br(k) — @, .q Br(k,) Ozl
where inv, : Br(k,)—Q/Z is an isomorphism for p-adic ﬁe/ds
monomorphism otherwise.

Q/zZ — 0,

= = = = =
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Brauer groups

» Cohomological interpretation: Br(k) = HZ,(Spec(k), G )
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Yonggqi Liang Smallest Brauer subgroup obstructing the Hasse principle



Brauer groups

» Cohomological interpretation: Br(k) = HZ,(Spec(k), G )
» Extension to schemes: Br(X) = HZ,(X,G,)

When X is (proper) rationally connected, then Br(X)/Br(k) is
finite.

» rationally connected means any 2 geometric points can be
connected by a rational curve
VP,Q € X(C), If : PL — Xc s.t. P,Q € f(P)
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Brauer groups

» Cohomological interpretation: Br(k) = HZ,(Spec(k), G )
» Extension to schemes: Br(X) = HZ,(X,G,)

When X is (proper) rationally connected, then Br(X)/Br(k) is

finite.

» rationally connected means any 2 geometric points can be
connected by a rational curve
VP,Q € X(C), If : PL — Xc s.t. P,Q € f(P)

» Not easy to compute Br(X)/Br(k).
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Brauer groups

» Cohomological interpretation: Br(k) = HZ,(Spec(k), G )
» Extension to schemes: Br(X) = HZ,(X,G,)

When X is (proper) rationally connected, then Br(X)/Br(k) is
finite.

» rationally connected means any 2 geometric points can be
connected by a rational curve
VP,Q € X(C), If : PL — Xc s.t. P,Q € f(P)

» Not easy to compute Br(X)/Br(k).

Question 1 (“inverse Brauer problem”)

For a given finite abelian group B, does there exist a rationally
connected variety X, such that Br(X)/Br(k) = B?

» Known cases: groups of small order or certain p-groups
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Hasse principle

» k number field, v € Qy = {places/primes of k}, k C k,
completion (example Q C Q)
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» k number field, v € Qy = {places/primes of k}, k C k,
completion (example Q C Q)

» X varieties defined over k, injection X(k) < [],cq X(k)
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Hasse principle

» k number field, v € Q4 = {places/primes of k}, k C k,
completion (example Q C Qp)
» X varieties defined over k, injection X(k) <= [],cq X(k)

Definition

We say that Hasse principle holds if X(k,) # @ for all v € Q4
implies X(k) # @.
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Hasse principle

» k number field, v € Qi = {places/primes of k}, k C k,
completion (example Q C Qp)

» X varieties defined over k, injection X (k) < [],cq X(kv)

Definition

We say that Hasse principle holds if X(k,) # @ for all v € Qy
implies X(k) # @.

Theorem (Hasse—Minkowski)

If X C P" is defined by quadratic forms, then Hasse principle holds.
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» X varieties defined over k, injection X (k) < [],cq X(kv)
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completion (example Q C Qp)

» X varieties defined over k, injection X (k) < [],cq X(kv)
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We say that Hasse principle holds if X(k,) # @ for all v € Qy
implies X(k) # @.

Theorem (Hasse—Minkowski)
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» Violations of Hasse principle:

> intersections of quadrics in P* (i.e. del Pezzo surfaces of
degree 4)

Yonggi Liang Smallest Brauer subgroup obstructing the Hasse principle



Hasse principle

» k number field, v € Qi = {places/primes of k}, k C k,
completion (example Q C Qp)

» X varieties defined over k, injection X (k) < [],cq X(kv)

Definition

We say that Hasse principle holds if X(k,) # @ for all v € Qy
implies X(k) # @.

Theorem (Hasse—Minkowski)

If X C P" is defined by quadratic forms, then Hasse principle holds.

» Violations of Hasse principle:

> intersections of quadrics in P* (i.e. del Pezzo surfaces of
degree 4)
» cubic curves C P? (i.e. genus g = 1 > 0)
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Brauer—Manin obstruction

» 1970s, Manin made use of Br(X)
» Brauer—Manin pairing
X(Ak) x Br(X) = Q/Z
(). 8) = (). B) = D invy(B(x,)
veQ

Where ian . Br(kv) — Q/Z |Oca| inVariant (local class field theory)
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Brauer—Manin obstruction

» 1970s, Manin made use of Br(X)
» Brauer—Manin pairing
X(Ak) x Br(X) = Q/Z
(). 8) = (). B) = D invy(B(x,)

veQ
Where ian . Br(kv) — Q/Z |Oca| inVariant (local class field theory)
> X(AOPT = {(x) € X(AW): (x) L 8, V8 € Br(X)}
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Brauer—Manin obstruction

» 1970s, Manin made use of Br(X)
» Brauer—Manin pairing
X(Ak) x Br(X) = Q/Z
(). 8) > (%), 8) = 3 inv(8(x))
veQ
where inv, : Br(k,) — Q/Z local invariant (ocal class field theory)

> X(AW)®P = {(x) € X(Ak): (x) L B, VB € Br(X)}

» Fact. X(k) C X(Ax)B € X(Ax)

(global class field theory)
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Brauer—Manin obstruction

» 1970s, Manin made use of Br(X)
» Brauer—Manin pairing
X(Ak) x Br(X) = Q/Z
(). 8) > (%), 8) = 3 inv(8(x))
veQ
where inv, : Br(k,) — Q/Z local invariant (ocal class field theory)

> X(AW)®P = {(x) € X(Ak): (x) L B, VB € Br(X)}

» Fact. X(k) C X(Ax)B € X(Ax)

(global class field theory)

» Brauer—Manin obstruction to Hasse principle (explaining the
violation of HP)
if I=X(A)B" C X(A) #2@ (= X(k) =2)
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When the Brauer group completely controls the violation of Hasse
principle?

When X is the following varieties, then
X(AL)B # @ = X(k) # @.

- (Colliot-Théléne 1980) rationally connected varieties
- (Skorobogatov 2001) smooth projective curves
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When the Brauer group completely controls the violation of Hasse
principle?

When X is the following varieties, then
X(AL)B # @ = X(k) # @.

- (Colliot-Théléne 1980) rationally connected varieties
- (Skorobogatov 2001) smooth projective curves

» For curves C of genus 1, the conjecture is true when
II(Jac(C), k) is finite.
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When the Brauer group completely controls the violation of Hasse
principle?

When X is the following varieties, then
X(AL)B # @ = X(k) # @.
- (Colliot-Théléne 1980) rationally connected varieties
- (Skorobogatov 2001) smooth projective curves

» For curves C of genus 1, the conjecture is true when
II(Jac(C), k) is finite.

» Known cases include Chatelet surfaces
(Colliot-Théléne—Sansuc—Swinnerton-Dyer 1987):

y? — az? = P(x)

where a € k*, P € k[x], deg(P) =4
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An example (Chatelet surface)

» Chatelet surface X over k = Q

y2+322=—(x*—6)(x*—5) CA®
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An example (Chatelet surface)

» Chatelet surface X over k = Q
y2+322=—(x*—6)(x*—5) CA®

> X(R) # @ easy; X(Qp) # @(Vp # 3) by Hensel's lemma;
X(Q3) # @ by some more work.

Yonggqi Liang Smallest Brauer subgroup obstructing the Hasse principle



An example (Chatelet surface)
» Chatelet surface X over k = Q
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> X(R) # @ easy; X(Qp) # @(Vp # 3) by Hensel's lemma;
X(Q3) # @ by some more work.

» class of quaternion algebra 8 = (6 — x2, —3) € Br(Q(X))
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An example (Chatelet surface)

» Chatelet surface X over k = Q
y2+322=—(x*—6)(x*—5) CA®

> X(R) # @ easy; X(Qp) # @(Vp # 3) by Hensel's lemma;
X(Q3) # @ by some more work.
» class of quaternion algebra 8 = (6 — x2, —3) € Br(Q(X))

» Grothendieck: “purity thm for Br'= 3 € Br(X) C Br(Q(X))

(i.e. this algebra extends from the generic point Q(X) to an Azumaya algebra over the scheme X)
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An example (Chatelet surface)

» Chatelet surface X over k = Q
y2+322=—(x*—6)(x*—5) CA®

> X(R) # @ easy; X(Qp) # @(Vp # 3) by Hensel's lemma;
X(Q3) # @ by some more work.

» class of quaternion algebra 3 = (6 — x2, —3) € Br(Q(X))
» Grothendieck: “purity thm for Br'= 8 € Br(X) C Br(Q(X))

(i.e. this algebra extends from the generic point Q(X) to an Azumaya algebra over the scheme X)

> Vp # 3, Vxp € X(Qp), invp(B(xp)) = 0
= 3, VX3 S X(Q3), InV3(ﬂ( )) § c @/Z
v =00, VX € X(R), invoo(B(Xx0)) =0
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An example (Chatelet surface)

» Chatelet surface X over k = Q
y2+322=—(x*—6)(x*—5) CA®

> X(R) # @ easy; X(Qp) # @(Vp # 3) by Hensel's lemma;
X(Q3) # @ by some more work.

» class of quaternion algebra 8 = (6 — x2, —3) € Br(Q(X))
» Grothendieck: “purity thm for Br'= 3 € Br(X) C Br(Q(X))

(i.e. this algebra extends from the generic point Q(X) to an Azumaya algebra over the scheme X)
> Vp # 3, Vx, € X(Qp), invp(B(xp)) =0
p=3, ¥x3 € X(Qs), invs(B(x3)) = 5 € Q/Z
V=00, VX € X(R), inveo(S(x0)) =0
> = Y(x) € X(Ag). ((x),8) =3 #0
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An example (Chatelet surface)

» Chatelet surface X over k = Q
y2+322=—(x*—6)(x*—5) CA®

> X(R) # @ easy; X(Qp) # @(Vp # 3) by Hensel's lemma;
X(Q3) # @ by some more work.

» class of quaternion algebra 8 = (6 — x2, —3) € Br(Q(X))
» Grothendieck: “purity thm for Br'= 3 € Br(X) C Br(Q(X))

(i.e. this algebra extends from the generic point Q(X) to an Azumaya algebra over the scheme X)
> Vp # 3, Vx, € X(Qp), invp(B(xp)) =0
p=3, Vx3 € X(Q3), inv3(B(x3)) = 3 € Q/Z
V=00, VX € X(R), inveo(S(x0)) =0
> = VY(x) € X(Ag), ((x).8) =3 #0
» This means X(Ag)B" = @ and therefore X(Q) = @
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An example (Chatelet surface)

» Chatelet surface X over k = Q
y2+322=—(x*—6)(x*—5) CA®

> X(R) # @ easy; X(Qp) # @(Vp # 3) by Hensel's lemma;
X(Q3) # @ by some more work.

» class of quaternion algebra 8 = (6 — x2, —3) € Br(Q(X))
» Grothendieck: “purity thm for Br'= 3 € Br(X) C Br(Q(X))

(i.e. this algebra extends from the generic point Q(X) to an Azumaya algebra over the scheme X)

> Vp # 3, Vx, € X(Qp), invp(B(xp)) =0
p=3, Vx3 € X(Q3), inv3(B(x3)) = 3 € Q/Z
v =00, VX € X(R), invoo(B(Xx0)) =0
> = VY(x) € X(Ag). ((x),8) =3 #0
This means X(Ag)B" = @ and therefore X(Q) = @

> In this case, a single element 3 obstructs the Hasse principle.
Indeed Br(X)/Br(Q) ~ Z /27 is generated by [.
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Compactness argument

» If X is proper such that X(Ax) # @, then X(Ax) =[] X(k/)
is compact
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Compactness argument

» If X is proper such that X(Ax) # @, then X(Ax) =[] X(k/)
is compact

» Denote X(A)? = {(x) € X(Ax); (%) L 3}
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Compactness argument

» If X is proper such that X(Ax) # @, then X(Ax) =[] X(k/)
IS compact

» Denote X(A)? = {(x) € X(Ax); (%) L 3}

> If X(AL)B" = ﬂBeBr(X)X(Ak)B =0
compactness = 3 a finite subset B C Br(X) st.
X(AK)®? = Ngep X(AW)’ =@
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Compactness argument

» If X is proper such that X(Ax) # @, then X(Ax) = [[ X (k)
is compact

» Denote X(A)? = {(x,) € X(Ax); (x,) L 3}

> If X(AW)® = Naebr(x) X(Ay)’ =2
compactness = 3 a finite subset B C Br(X) st.
X(AK)®? = Ngep X(AW)’ =2

Which finite subset/subgroup B C Br(X) is essential for
obstructing the Hasse principle on X ?
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Compactness argument

» If X is proper such that X(Ax) # @, then X(Ax) = [[ X (k)
is compact
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> If X(AW)® = Naebr(x) X(Ay)’ =2
compactness = 3 a finite subset B C Br(X) st.
X(AK)®? = Ngep X(AW)’ =2

Which finite subset/subgroup B C Br(X) is essential for
obstructing the Hasse principle on X ?

» In many cases, one single element of Br(X) suffices to
obstruct the Hasse principle.
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is compact
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compactness = 3 a finite subset B C Br(X) st.
X(AK)®? = Ngep X(AW)’ =2

Which finite subset/subgroup B C Br(X) is essential for
obstructing the Hasse principle on X ?

» In many cases, one single element of Br(X) suffices to
obstruct the Hasse principle.

» Only very few exceptions: [Colliot-Théléne-Swinnerton-Dyer
1994], [Kresch—Tschinkel 2004], [Corn 2007]
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Compactness argument

» If X is proper such that X(Ax) # @, then X(Ax) = [[ X (k)
is compact

» Denote X(A)? = {(x,) € X(Ax); (x,) L 3}

> If X(AW)® = Naebr(x) X(Ay)’ =2
compactness = 3 a finite subset B C Br(X) st.
X(AK)®? = Ngep X(AW)’ =2

Which finite subset/subgroup B C Br(X) is essential for
obstructing the Hasse principle on X ?

» In many cases, one single element of Br(X) suffices to
obstruct the Hasse principle.

» Only very few exceptions: [Colliot-Théléne-Swinnerton-Dyer
1994], [Kresch—Tschinkel 2004], [Corn 2007]

» [Berg et al. 2024]: for any given number m, there exists a
conic bundles X over P! that requires more than m elements
of Br(X) to obstruct the Hasse principle.
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Main result

Theorem (Yonggi Liang & Yufan Liu 2025T)

Given a pair of finite abelian groups 0 # By C B, then

@ ‘inverse Brauer problem”: There exists a rationally connected
variety X defined by a normic equation

Nk /k(z) = P(x)

such that Br(X)/Br(k) = B.

© More over, we may further require that By is the smallest
subgroup that obstructs the Hasse principle.
In other words, X violates the Hasse principle, and for any
subgroup B' C B, the subset X(A,)B" = @ if and only if
By C B'.
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Thank you for your attention!

2008 graduates:
Shun Tang, Wen-Wei Li, Yong Hu, Zongbin Chen, Yonggi Liang, Shoumin Liu
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